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Partial equivalence of statistical ensembles in a simple spin model with
discontinuous phase transitions
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In this paper, we draw attention to the problem of phase transitions in systems with locally affine micro-
canonical entropy, in which partial equivalence of (microcanonical and canonical) ensembles is observed. We
focus on a very simple spin model, that was shown to be an equilibrium statistical mechanics representation of
the biased random walk. The model exhibits interesting discontinuous phase transitions that are simultaneously
observed in the microcanonical, canonical, and grand canonical ensemble, although in each of these ensembles
the transition occurs in a slightly different way. The differences are related to fluctuations accompanying the
discontinuous change of the number of positive spins. In the microcanonical ensemble, there is no fluctuation
at all. In the canonical ensemble, one observes power-law fluctuations, which are, however, size dependent and
disappear in the thermodynamic limit. Finally, in the grand canonical ensemble, the discontinuous transition is
of mixed order (hybrid) kind with diverging (critical-like) fluctuations. In general, this paper consists of many
small results, which together make up an interesting example of phase transitions that are not covered by the
known classifications of these phenomena.
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I. INTRODUCTION

Classic ideal gas has the same properties regardless of
whether it is studied in the formalism of the microcanonical,
canonical, or grand canonical ensemble [1–3]. Many other
models of statistical physics also show such a correspondence.
Because of that time, over time, the feature began to be con-
sidered as a kind of paradigm of statistical physics. However,
the truth is that the so-called equivalence of ensembles does
not hold in general and the prominent counterexamples are
nonadditive systems, which include systems with long range
interactions [4,5].

The first mentions of nonequivalent ensembles began to
appear about 50 years ago (e.g., [6–8]), and they concerned
astrophysical self-gravitating systems. Over time, however,
the problem was also noticed in other physical systems and
models (to name a few examples, see [9–19]). Some time
ago, systematic research on these phenomena started, which,
in addition to studying specific models, laid the foundations
for the general theory of nonequivalent ensembles [20–24].

Among the references just mentioned, two contributions
[20,21] deserve special attention. The first one, entitled “Large
deviation principles and complete equivalence and nonequiv-
alence results for pure and mixed ensembles” by Ellis et al.
[20], provides the basis for a complete mathematical theory
of the problem. The authors show there that the issue of
nonequivalent ensembles can be resolved by examining the
concavity of entropy as a function of energy, S(U ). In short, in
[20] (see also [22,23]), the authors show that microcanonical
and canonical ensembles are equivalent when S(U ) is strictly
concave. Nonequivalence is observed when S(U ) is convex.
Finally, the partial equivalence is referred to systems with
locally affine S(U ).

In turn, [21], entitled “Classification of phase transitions
and ensemble inequivalence in systems with long range inter-
actions,” by Bouchet and Barre, takes up an important issue of
phase transitions in nonequivalent ensembles. By combining
the singularity and concavity analysis of the entropy S(U ), the
authors present a kind of thermodynamic classification of the
phase transitions in nonequivalent ensembles.

To be concrete, in the case of equivalent ensembles, mi-
crocanonical macrostates with the fixed energy U and micro-
canonical temperature given by βm =∂S/∂U directly corre-
spond to canonical macrostates with the fixed temperature and
average energy satisfying β = βm and 〈U 〉 = U , respectively.
The equivalence of ensembles holds whenever entropy is a
concave function, regardless of whether the considered system
is additive or not. The case of macrostates for which S(U ) is a
convex function is much more complicated. In general, convex
macrostates have less entropy than states represented by the
concave envelope of S(U ). Therefore, such envelope states are
realized in additive systems, where they correspond to phase
separation. They are, however, forbidden in nonadditive sys-
tems. Thus, the lack of additivity forces the system to realize
convex states, which (surprisingly) make the microcanonical
ensemble much more interesting than the canonical one. An
immediate consequence of such states is, for example, neg-
ative specific heat or negative magnetic susceptibility. Other
noncommon behaviors arising from ensemble nonequivalence
relate to the entire spectrum of microcanonical phase transi-
tions, which are not visible in other ensembles.

In particular, a number of generic situations, regarding
concave and convex entropies, and having the hallmarks of
microcanonical phase transitions, were discussed in [21].
Many of these possible generic situations have not yet been
observed in any models, not to mention real systems. Clearly,
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there is a lot of work to be done in this field, especially since
so far little attention has been paid to the partial equivalence
of ensembles [25]. To be honest, the preliminary classification
of phase transitions in nonadditive [26] systems developed in
[21] completely ignores the cases with locally affine entropy
and focuses only on singularities arising in its concave and
convex regions. This paper aims to make a small contribution
to this omitted area.

In what follows, we study the partial equivalence of en-
sembles in the so-called minimal diffusion-based spin model,
which has been introduced in [27]. It was already shown that
the model exhibits very interesting critical-like behavior (i.e.,
Thouless effect [27] and hybrid phase transition [28]), when it
is analyzed in the canonical and grand canonical ensemble. In
this paper, we confront microcanonical and canonical proper-
ties of the model. Our paper reveals that in this simple model
a unique first order transition in both ensembles emerges,
which results from affine thermodynamic potentials. Not so
long ago, the possibility of such a behavior was predicted
theoretically [29]. Such a generic situation, however, has not
been raised in the context of phase transitions in partially
equivalent ensembles [21], which we are doing here.

II. PARTIAL EQUIVALENCE OF ENSEMBLES:
CASE STUDY

A. The model

The spin model we deal with is completely defined by the
Hamiltonian:

HN (�) = −N+(�) ln a + ln

(
N

N+(�)

)
, (1)

where � = (s1, s2, . . . , sN ) represents microscopic configura-
tion of the system of N distinguishable spins si = ±1, with
N+(�) standing for the number of positive spins, and a > 0
being the model external parameter [with the notion from
[27] we take a = (1 − q)/q]. Although in [27] the model
was designed to provide theoretical explanation for certain
critical-like phenomena observed in a dynamic social network
[30,31], and although it was shown there that its dynamical
properties can be one-to-one related to the phenomenon of the
biased random walk, in this paper, we cut ourselves off from
the question of whether the model is physically realistic or
not. We just treat it as a toy model having some nontrivial
properties resulting from the lack of additivity (i.e., HN +
HR �= HN+R ).

B. Microcanonical ensemble

In textbooks on statistical physics, the discussion of the mi-
crocanonical ensemble usually precedes the discussion of the
canonical ensemble. In this paper, we also uphold this habit.
Our first goal is to draw up the microcanonical phase diagram
of the considered model and to identify phase transition points
on it.

In the microcanonical ensemble, one assumes that the
energy U of the system as a whole is fixed. In this paper,
however, since we study systems in the thermodynamic limit,
N → ∞, instead of the total energy U , as the control param-
eter, we use the energy per spin, u, which is given by [cf.

Eq. (1)]

u = U

N
= − ln a n+ − n+ ln n+ − n− ln n− , (2)

where

n+ = N+/N, n− = 1 − n+ . (3)

Equation (2) defines energy as a function of the number of
positive spins n+ and the parameter a, i.e., u(n+ , a). Since the
variable n+ belongs to the range [0,1], the energy per spin is
not arbitrary, but it meets certain restrictions [see Figs. 1(a)–
1(c)]. In particular,

for a < 1: u ∈ [u(0), umax]= [0, ln 1+a
a ],

for a = 1: u ∈ [u(0), umax]= [u(1), umax]= [0, ln 2],
for a > 1: u ∈ [u(1), umax] = [ − ln a, ln 1+a

a ],
where umax = u(n∗

+ , a) = ln a+1
a is the maximum energy value

obtained for n∗
+ = 1

a+1 . A few realizations of u(n+ , a), for
various representative values of the parameter a are shown in
Figs. 1(a)–1(c). In this figure, one can see that certain energy
values can be realized in one way and others can be realized
in two ways. In the first case, microcanonical entropy of the
system is simply given by

S = ln

(
N

N+

)
. (4)

The second case, with two different macroscopic realizations
of the system, n(1)

+ and n(2)
+ [see Figs. 1(a)–1(c)], is a bit more

complicated. Now, microcanonical entropy of the system is
given by

S = ln

[(
N

N (1)
+

)
+

(
N

N (2)
+

)]
, (5)

where N (i)
+ = Nn(i)

+ for i = 1, 2. In the thermodynamic limit
N → ∞, Eq. (5) reduces to Eq. (4) with N+ standing
for the macrostate with higher entropy among the two
considered, i.e.,(

N

N+

)
= max

{(
N

N (1)
+

)
,

(
N

N (2)
+

)}
. (6)

In Figs. 1(a) and 1(c), the bold parts of the u(n+ , a) curves
represent those system realizations (macrostates) that have
greater entropy and therefore they are more likely to occur.
Correspondingly, in the thermodynamic limit, microcanonical
entropy per spin underlying ergodic dynamics of the system
can be written as

s = S

N
=

ln
( N

N+

)
N

= −n+ ln n+ − n− ln n− (7)

= u + n+ ln a, (8)

where n+ refers to the most entropic state satisfying the energy
constraint, Eq. (2).

Figures 1(d)–1(f) show a few realizations of s(u, a),
Eq. (7), for various representative values of the parameter
a. By making simple calculations [32], one can show that
these entropy curves are strictly concave for all values of
the parameter a �= 1. The case when a = 1 is an exception.
Then, entropy becomes affine in the whole energy range:
s(u, a) = u for u ∈ [0, ln 2]. According to what was said at the
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FIG. 1. A few realizations of different thermodynamic state functions characterizing the model for three representative values of the
parameter a = 0.45, 1.0, 2.0. In the first column, in graphs (a)–(c), internal energy, u, as a function of the number of positive spins, n+ , is
shown [see Eq. (2)]. In the second column, in graphs (d)–(f), microcanonical entropy per spin, s, is presented as a function of the internal
energy, u [see Eq. (7)]. In the third column, in graphs (g)–(i), free energy per spin φ characterizing the model in the canonical ensemble is
drawn as a function of β [see Eq. (21)]. The meaning of bold parts of the u(n+ , a) and s(u, a) curves, and other symbols in this figure (e.g.,
umax, n∗

+ , n(1)
+ , n(2)

+ , etc.), is explained in the main text.

beginning of this paper, the strict concavity of s(u, a) proves
the equivalence of statistical ensembles while affinity results
in partial equivalence. Now, we will take a closer look at
these issues. To this aim, we will compare phase diagrams,
microcanonical and canonical, of the model.

To start with, let us note that the microcanonical tempera-
ture of the model is given by

βm = ∂s

∂u
= ∂s

∂n+

∂n+

∂u
=

ln
( n+

n−

)
ln a + ln

( n+
n−

) , (9)

where n+ , which stands for the most entropic macrostate,
is not arbitrary but it depends on u and a, which are the
control parameters in this ensemble. In particular, this makes
the range of temperatures βm > 1 unattainable in this model.
To make this inaccessibility more understandable, let us con-
centrate, for example, on Fig. 1(a). For a given value of
the energy u (marked by the intermediate horizontal dashed
line), there are two possible states n(1)

+ = 0.42 and n(2)
+ = 0.91.

According to Eq. (9), the first one corresponds to βm = 0.3

and the second one corresponds to βm = 2 (i.e., βm > 1).
However, for large systems, the number of microstates that
could be realized for n(1)

+ is of orders of magnitude larger
than that for n(2)

+ (e.g., the factor is 10164 for N = 1000).
It means that the system will visit almost all the time the
state characterized by βm = 0.3. In this sense, the temperature
βm > 1 is inaccessible in the thermodynamic limit.

Furthermore, for a = 1, regardless of the energy value,
the microcanonical temperature is always βm = 1. It means
that phase diagram points for which a=1 and βm �= 1 are
forbidden [see Fig. 2(a)]. Correspondingly, for a = 1 and
βm = 1, discontinuous phase transition occurs for different
values of u. It is due to the fact that for a = 1 (or ln a = 0)
and for the energy values u ∈ [0, ln 2) there are always two
different macrostates [i.e., n(1)

+ = η+ and n(2)
+ = 1 − η+ , see

Fig. 1(b)] which have the same entropy. When a �= 1, one
of these states becomes more entropic [see the discussion
that accompanies Eqs. (4)–(7)]. This leads to a discontinuous
jump in n+ . The size of this jump depends on the energy of
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FIG. 2. Phase diagrams of the model in the microcanonical (a, b) and canonical ensemble (c, d). Two variants of phase diagrams are shown:
(i) (a) and (c) present the number of positive spins [n+ and 〈n+〉, cf. Eqs. (10) and (19)] as a function of the inverse temperature (βm and β,
respectively) and the parameter a, and (ii) (b) and (d) show the number of positive spins as a function of the internal energy (correspondingly,
u and 〈u〉) and the parameter a. The grayscale bar on the right represents the average number of spins. The hatchet areas indicate forbidden
macrostates. The black contour lines in graphs (a) and (c) highlight states with a given value of the internal energy, u and 〈u〉, respectively.
The phase transition points a = 1 and βm = β = 1, in diagrams (a) and (c), correspond to straight line segments: a = 1 and u, 〈u〉 ∈ [0, ln 2]
in diagrams (b) and (d). Inset plots in (b) and (d) show cross sections of these diagrams for u = 〈u〉 = 0.5, respectively.

the system. This is clearly visible in Fig. 2(b), where n+ is
depicted as a function of u and a.

Finally, from Eq. (9), the expression for n+ as a function of
βm and a �= 1 can be obtained:

n+ (βm , a) = 1

1 + aκm
, where κm = βm

βm − 1
, (10)

which is useful in drawing up the microcanonical phase
diagram of the model. In Fig. 2(a), forbidden macrostates are
marked as hatched areas. As already said, in addition to states
for which a = 1 and βm �= 1, all macrostates with βm > 1
are also unavailable. The solid lines in Fig. 2(a) indicate
states with the same energy (numbers placed on these curves
correspond to different values of u). The point a = βm = 1,
at which all these curves converge, is the point of the first
order microcanonical transition. From Eqs. (2) and (10) one
can show that

lim
βm →1−

n+ (βm , a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for ln a < 0

η+ for ln a → 0−

1 − η+ for ln a → 0+

1 for ln a > 0

, (11)

where η+ � 1
2 and 1 − η+ � 1

2 represent the allowed
macrostates of equal entropy in the system for which a = 1
[see Fig. 1(b) and Fig. 2(b) inset].

Below we show that the canonical phase diagram differs
from the just described microcanonical one.

C. Canonical ensemble

As mentioned at the beginning of this paper, some canoni-
cal analysis of the considered model has already been carried
out. Namely, in [27], properties of the model at fixed tempera-
ture, β = 1, have been studied. It was shown there that, when
the parameter a approaches unity, an interesting discontinuous
phase transition with diverging response function is observed.

To be concrete, for β = 1, the partition function was shown
to be given by

ZN (a) =
∑
�

e−HN (�) = 1 − aN+1

1 − a
. (12)

Resulting from the above expression, Helmholtz free energy
per spin has a singularity at a = 1. This singularity leads to a
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discontinuous jump in the average number of positive spins:

〈n+〉 = lim
N→∞

〈N+〉
N

=

⎧⎪⎨
⎪⎩

0 for ln a < 0
1
2 for ln a = 0

1 for ln a > 0

, (13)

which is accompanied by diverging susceptibility:

χ = ∂〈n+〉
∂a

∼ 1

N
|a − 1|−2. (14)

Although further in this section a more extensive canonical
analysis of this model for any temperature value is performed,
already at this moment, we highlight that at the transition point
β = βm = 1 and a = 1 both (microcanonical and canonical)
ensembles differ from each other at the level of macrostates
[cf. Eqs. (11) and (13)].

For arbitrary temperature, in the continuum limit, the par-
tition function of the model can be written as

ZN (β, a) =
∑
�

e−βHN (�) (15)

=
N∑

N+=0

(
N

N+

)1−β

aβN+ (16)

= N
∫ 1

0
e−Nφ(n+;β,a)dn+ , (17)

where

φ(n+ ; β, a) = (1 − β )(n+ ln n+ + n− ln n− ) − β n+ ln a.

(18)

It is easy to check that for β < 1 the function φ(n+ ; β, a)
is strictly convex with respect to n+ on the interval [0,1].
Furthermore, in this interval, it has a minimum at

nc
+ = 1

1 + aκ
, where κ = β

β − 1
. (19)

Therefore, for β < 1, the Laplace method of steepest descents
(also known as the saddle-point method) can be used to
calculate the integral (17). In this way one gets

ZN (β, a) 
 e−Nφ(β,a), (20)

where

φ(β, a)
Eq.(18)= φ(nc

+ ; β, a) = (1−β ) ln

(
aκ

1 + aκ

)
. (21)

The symbol “
” in Eq. (20) means that, as N → ∞, the
dominant part of the partition function, ZN (β, a), scales ex-
ponentially with the system size.

Rephrasing the remark closing the last paragraph, one
could say that for β < 1 the considered system is extensive.
This is because its free energy [33]

	N (β, a) = − ln ZN (β, a)
N�1= Nφ(β, a) (22)

is linear with respect to N . This confirms the known fact
that extensiveness is not in contradiction with the lack of
additivity. On the other hand, for β > 1, due to strict concavity
of φ(n+ ; β, a) with respect to n+ , the model is nonextensive.
We will not bother with this case here.

In what follows, we discuss thermodynamic properties of
the model in the canonical ensemble. These properties can be
easily obtained from the bulk free energy, φ(β, a) (21), which
is an analytic and concave function for all β < 1 and a > 0
[see Figs. 1(g)–1(i)]. For these parameter ranges, the average
number of positive spins is also an analytic function,

〈n+〉= − 1

β

∂φ(β, a)

∂ ln a
= 1

1 + aκ
, (23)

just like the average energy

〈u〉= ∂φ(β, a)

∂β
=−〈n+〉 ln(a〈n+〉) − 〈n−〉 ln〈n−〉, (24)

where 〈n−〉 = 1 − 〈n+〉. It is remarkable that Eqs. (23) and
(24) have the same form as the corresponding Eqs. (10) and
(2) in the microcanonical ensemble. The difference, how-
ever, arises when ranges of their applicability are taken into
account. Namely, in the canonical ensemble, when a = 1,
for the entire temperature range, β � 1, one has 〈n+〉 = 1

2
and 〈u〉 = ln 2. On the other hand, in the microcanonical
ensemble, when a = 1, the states with βm < 1 are forbidden,
whereas for βm = 1 the number of positive spins, η+ , depends
on u ∈ [0, ln 2] [see Eq. (11)]. The above properties of the
model are illustrated in Fig. 2, where the canonical phase
diagram is shown in comparison to its microcanonical version.

D. Partial equivalence and phase transitions

The equivalence of microcanonical and canonical ensem-
bles of the model studied, which holds for β � 1 and a �= 1,
is in agreement with theoretical predictions of [20]. It is due
to strict concavity of the microcanonical entropy as a function
of u. For a = 1, when entropy becomes affine in u, partial
equivalence is observed in the model, again in agreement
with [20].

As emphasized in [25], in a situation of partial equivalence,
a whole set of values of the control parameter in one ensem-
ble corresponds to a single value of the control parameter
in the other ensemble. In particular, the same value of the
average energy can be obtained for the whole set of canonical
temperatures, or the whole set of energies characterizing
microcanonical systems may show the same microcanonical
temperature. In our case study, both behaviors are observed,
which make the considered model interesting, because in the
systems studied so far at most one (usually the first one) of
these behaviors was observed.

Another valuable feature of the model studied is a unique
phenomenology of the observed first order transition that
occurs simultaneously in both ensembles. In additive systems,
the commonly known cause of such simultaneous transitions
is the bimodal shape of the microcanonical entropy as a
function of the energy. In nonadditive systems, when only
strict nonequivalence of ensembles is taken into account,
much richer phenomenology comes into play [21], which,
however, in any of the possible scenarios, does not lead to
simultaneous (in both ensembles) first order transitions. Our
paper shows that such a scenario is possible in partially
equivalent ensembles.

In our model, the microcanonical transition arises as a
result of singularity in entropy s(u, a) (7) that appears at a = 1

022111-5



FRONCZAK, FRONCZAK, AND SIUDEM PHYSICAL REVIEW E 101, 022111 (2020)

FIG. 3. Thermodynamic state functions in the vicinity of the
transition point: (a) the microcanonical entropy per spin, s(u, a)
(8), as a function of the parameter a for u = 0.5, and (b) the free
energy per spin, φ(β, a) (21), as a function of the parameter a for
β = 1. These state functions have nonanalytical points for a = 1 and
u ∈ [0, ln 2), in the microcanonical ensemble, and for a = β = 1,
in the canonical ensemble, respectively. These nonanalytical points
are seen as discontinuities of the corresponding derivatives: n+ =
∂s/∂ ln a and 〈n+〉 = −∂φ/∂ ln a (see inset plots).

(and correspondingly βm = 1) when energy of the system is
in the range u ∈ [0, ln 2). At this point, the right- and left-
sided derivatives of s(u, a) with respect to ln a, which give
the average number of positive spins, n+ = ∂s/∂ ln a, differ
from each other [see Eq. (11) and Fig. 3(a)]. On the other
hand, the canonical first order transition, that appears for the
same parameter values as in the microcanonical ensemble,
a = 1 and β = 1, results from the free energy (21) com-

posed of two parts, flat [i.e., φ(1, a)
a<1= 0] and affine [i.e.,

φ(1, a)
a�1= − ln a], at the interface of which a nonanalytical

point develops [see Eq. (13) and Fig. 3(b)]. Not so long
ago, purely theoretical considerations about such a canonical
transition were put forward in [29]. The model studied in
this paper is one in which such a transition was observed
as resulting from the affine microcanonical entropy which is
defined on a limited energy range.

III. CONCLUDING REMARKS

In this paper, we draw attention to the problem of phase
transitions in partially equivalent ensembles. We focus on a
very simple spin model which shows interesting discontinu-
ous phase transitions that are simultaneously observed in all
three basic statistical ensembles (microcanonical, canonical,
and grand canonical), although in each of these three ensem-
bles they occur in a slightly different way.

In the microcanonical ensemble (see Sec. II B), the transi-
tion is associated with a discontinuous change in the average
number of positive spins (which is the order parameter of the
transition), that is not accompanied by any fluctuations. In the
canonical ensemble (see Sec. II C and [27]), the average num-
ber of spins also changes discontinuously, but this change is
accompanied by power-law fluctuations, which are, however,
size dependent and disappear in the thermodynamic limit.
Finally, in the grand canonical ensemble (see [28]), the phase
transition is mixed order (hybrid), because the discontinuous
change of the order parameter is accompanied by diverging
(i.e., critical-like) fluctuations.

The unique nature of phase transitions observed in this
model escapes the existing classifications of these phenom-
ena. (Here, we mean not only the well-established “modern”
classification of phase transitions, which applies to additive
systems, but also the recent attempt to generalize this clas-
sification into nonadditive systems that was introduced in
[21]). In a broader context, results reported in this paper show
that existing classifications must be refined. Particularly, the
issue of phase transitions in partially equivalent ensembles
(with locally affine microcanonical entropy) needs deeper
insight. It also needs to be clarified whether the coexistence of
affine microcanonical entropy and hybrid transition (see also
[34–36]) that is observed in this model is accidental or not.
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