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Percolation thresholds for discorectangles: Numerical estimation for a range of aspect ratios
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Using Monte Carlo simulation, we have studied the percolation of discorectangles. Also known as stadiums
or two-dimensional spherocylinders, a discorectangle is a rectangle with semicircles at a pair of opposite sides.
Scaling analysis was performed to obtain the percolation thresholds in the thermodynamic limits. We found
that (i) for the two marginal aspect ratios ε = 1 (disc) and ε → ∞ (stick) the percolation thresholds coincide
with known values within the statistical error and (ii) for intermediate values of ε the percolation threshold
lies between the percolation thresholds for ellipses and rectangles and approaches the latter as the aspect ratio
increases.
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I. INTRODUCTION

Percolation, i.e., the emergence of a connected subset
(a cluster) that spans opposite boundaries in a disordered
medium, has attracted the attention of the scientific commu-
nity for several decades [1–5]. The occurrence of a perco-
lation cluster drastically changes the physical properties of
the medium, e.g., an insulator-conductor phase transition can
be observed when the disordered medium is a mixture of
conductive and insulating substances. Special attention has
been paid to percolation in disordered systems produced by
the random deposition of elongated particles onto a substrate
[6–9]. Elongated species such as nanotubes, nanowires, and
nanorods are of particular interest for nanotechnology, e.g.,
the production of transparent electrodes [10–16].

To characterize a deposit, the number density, i.e., the
number of objects, N , per unit area, A, is commonly used:

n = N

A
. (1)

Another useful quantity is the filling fraction:

η = na, (2)

where a is the area of one particle. The total fraction of the
plane covered by the overlapping (penetrable) particles is

φ = 1 − exp(−η) (3)

(see, e.g., [7]).
To mimic the shape of elongated particles and, at the same

time, simplify the simulations, different simple geometrical
figures are used, e.g., sticks, rectangles, ellipses, superellipses,
and discorectangles. A discorectangle is a rectangle with
semicircles at a pair of opposite sides (Fig. 1). Its aspect ratio
is

ε = 1 + l

2r
. (4)
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A discorectangle (or “stadium”) is a two-dimensional analog
of a spherocylinder (a “stadium of revolution” or “capsule”),
i.e., a three-dimensional geometric shape consisting of a cylin-
der with hemispherical ends.

Percolation thresholds of two-dimensional continuum sys-
tems of rectangles [8] and ellipses [9] for a wide range
of aspect ratios from ε = 1 to 1000 have been reported.
Both ellipses and rectangles transform into sticks when ε =
∞. When ε = 1, a rectangle is simply a square, while an
ellipse is a disk. Currently, the best known value of the
percolation threshold of zero-width sticks of equal length
that are randomly oriented and placed onto a plane is n×

c =
5.637 285 8(6) [7]. By convention, the value of a for sticks
is taken as equal to l2, where l is the length of the stick.
The best known value of the percolation threshold of discs,
i.e., ellipses with ε = 1, is η◦

c = 1.128 087 37(6), respectively,
n◦

c = η◦
c/(πr2) = 1.436 325 45(8) [7]. A calculation has been

presented for the excluded area between penetrable rectangles
in two dimensions as a function of the aspect ratio and
orientational order parameter [17]. The percolation threshold
was found to rise with increases in the degree of particle align-
ment. For isotropically distributed systems, the percolation
thresholds for different values of the aspect ratio are in close
agreement with findings from Monte Carlo simulations [8].
Recently, percolation thresholds of superellipses have been
reported [18]. In a Cartesian coordinate system, the equation
of a superellipse is

|x|2m

a2m
+ |y|2m

b2m
= 1, (5)

where a and b are the semimajor lengths in the direction
of the x and y axes and m is the shape parameter. m = 1
corresponds to an ellipse while m = +∞ corresponds to a
rectangle. Percolation thresholds as the total fractions of the
plane covered by the particles, φc, have been presented for 14
shapes, for each of six aspect ratios [18].

Although the percolation of spherocylinders has been
studied [19], to the best of our knowledge, the perco-
lation thresholds for their two-dimensional analogs, i.e.,
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FIG. 1. Example of a discorectangle.

discorectangles, have not yet been presented in the literature.
The goal of the present paper was to obtain the dependencies
of the percolation thresholds of randomly placed and oriented
discorectangles on their aspect ratios. The rest of the paper
is constructed as follows. In Sec. II, the technical details of
the simulations and calculations are described. Section III
presents our main findings. Section IV summarizes the main
results.

II. METHODS

We used the union-find algorithm [20,21] to check for any
occurrences of wrapping clusters. In our study, we used the
version of the union-find algorithm adapted for continuous
percolation [6,7].

Discorectangles with l = 1 were added one by one ran-
domly, uniformly, and isotropically onto a substrate of size
L × L having periodic boundary conditions, i.e., onto a torus,
until a cluster wrapping around the torus in two directions had
arisen. In this case, the desired number density, n, is

n = N

L2
. (6)

Intersections of the discorectangles were allowed (Fig. 2). For
each given system size, L, and number of deposited discorect-
angles, N , 105 independent runs were performed to obtain the
probability of percolation, R(c)

N,L. Here, the superscript c means
a used criterion; viz., h, v, or b means that the cluster winds
the torus in the horizontal direction, in the vertical direction,
or in both directions, respectively.

To obtain the probability R(c)(η, L) of percolation in the
grand canonical ensemble, we convolved R(c)

N,L with the Pois-
son distribution [6,7]:

R(c)(η, L) =
∞∑

N=0

λN e−λ

N!
R(c)

N,L. (7)

The weights in Eq. (7) wN (λ) = λN/N! can be calculated
using the recurrent relations [7],

wN̄−k =
{

1, for k = 0,

N̄−k+1
λ

wN̄−k+1, for k = 1, 2, . . . ,
(8)

and

wN̄+k =
{

1, for k = 0,

λ

N̄+k wN̄+k−1, for k = 1, 2, . . . ,
(9)

where the relation
∞∑

N=0

λN

N!
=

∞∑
N=0

wN (λ) = eλ, ∀λ > 0
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FIG. 2. Example of a system of discorectangles (ε = 2) exactly
at the percolation threshold. The linear system size is 16l . The
incipient wrapping cluster is highlighted.

should be borne in mind. Here, N̄ = �λ�. Therefore, the
convolution can be calculated as

R(c)(η, L) =
∞∑

N=0

w∗
N (λ)R(c)

N,L, (10)

where

w∗
N (λ) = wN (λ)∑∞

N=0 wN (λ)
. (11)

The factor e−λ is absent in the master equation (10), since

∞∑
N=0

wN (λ) = eλ

∞∑
N=0

w∗
N (λ).

Conformal field theory gives exact values for the wrapping
probabilities at the transition in the limit L → ∞ [20–22]:

R(c)
∞ =

⎧⎪⎨
⎪⎩

0, if η < ηc,

R∗, if η = ηc,

1, if η > ηc,

(12)

where R∗ = 0.521 058 290 . . . is the probability of wrapping
horizontally around the system and R∗ = 0.351 642 855 . . . is
the probability of wrapping around both directions simulta-
neously. More precise values of R∗ including other possible
criteria are presented in Ref. [7]. This theory provides the
most effective method for estimating the percolation threshold
[6,7,20,21] since

ηc(∞) − ηc(L) ∝ L−2−1/ν, where ν = 4/3. (13)

Typically, we used systems of sizes L = 8, 16, 32, 64 to per-
form the scaling analysis. The number of independent runs
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FIG. 3. Example of scaling for discs, i.e., discorectangles with
ε = 1.

was 105. All results presented in Sec. III correspond to the
thermodynamic limit.

To verify our program, we performed more accurate esti-
mations for one particular case, viz., ε = 1 (discs of r = 1/2).
For this particular case, we used L = 16, 24, 32, 48, 64, 128
while the number of independent runs was 109 for L � 48 and
108 for L > 48 (Fig. 3).

Figure 3 demonstrates an example of scaling for ε = 1.
According to Ref. [7], the standard deviation was taken as ≈
N−1/2

ir L−3/4, where Nir is the number of independent runs. Our
estimations gave n◦

c = 1.436 327(7) with the adjusted R2 =
0.98. This estimation is reasonably close to the published
values for discs of unit diameter n◦

c = 1.436 323(3) [9] and
1.436 325 45(8) [7]. n◦

c = 1.436 322(3) [23] and 1.436 32(5)
[24].

Additionally, we checked the derivative of R at the per-
colation threshold. An example of the dependency of R′(L)
for wrapping in the horizontal direction is presented in Fig. 4

FIG. 4. R(n) for different system sizes. The curved arrow indi-
cates increasing of L. Inset: Example of the dependency of R′(L) for
wrapping in the horizontal direction in log-log scale.

TABLE I. Comparison of the percolation thresholds of rectangles
nr

c [8], ellipses ne
c [9], and discorectangles (our results) for different

values of the aspect ratio. Case ε = ∞ corresponds to the percolation
of sticks [7]. The values are rounded to significant figures.

ε nr
c nDR

c ne
c

1 0.982278 1.436 1.436323
1.5 1.425745 1.894 2.059081
2 1.786294 2.245 2.523560
3 2.333491 2.760 3.157339
4 2.731318 3.123 3.569706
5 3.036130 3.396 3.861262
6 3.278680 3.612 4.079359
7 3.477211 3.787 4.249158
8 3.643137 3.933 4.385303
9 3.784321 4.057 4.497044
10 3.906022 4.163 4.590416
15 4.329848 4.530 4.894745
20 4.584535 4.749 5.062313
30 4.878091 5.000 5.241522
50 5.149008 5.229 5.393863
100 5.378856 5.422 5.513464
200 5.504099 5.612260
1000 5.609947 5.624756
∞ 5.6372858

(inset) in log-log scale. The slope is 0.752 ± 0.002 and this
corresponds to the value of the critical exponent ν.

III. RESULTS

Our results are presented in Table I, which compares the
percolation thresholds for discorectangles (our results) with

FIG. 5. Dependencies of the percolation threshold, nc, on the
aspect ratio, ε, for rectangles [8], ellipses [9], and discorectangles
(our results) in a semilog plot with a logarithmic scale on the ε

axis, and a linear scale on the nc axis. The horizontal dashed line
corresponds to the percolation of sticks (ε = ∞) [7]. The error bars
are of the order of the marker size when not shown explicitly.
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FIG. 6. Permeable (a) and hard-core soft-shell (c) particles can
form a cluster while impermeable particles (b) cannot.

known values for rectangles nr
c [8] and ellipses ne

c [9] for
different values of the aspect ratio.

Figure 5 demonstrates the dependencies of the percolation
threshold, nDR

c , on the aspect ratios of discorectangles, ε. The
dependencies for rectangles nr

c(ε) [8] and ellipses ne
c(ε) [9]

are shown for comparison. For any value of ε, the critical
number density increases as the aspect ratio increases. When
ε = 1, the discorectangle is simply a disk; hence, the perco-
lation threshold of such discorectangles equals the percola-
tion threshold of discs. When ε → ∞, ellipses, rectangles,
and discorectangles all tend to sticks. Thus their percolation
thresholds approach the percolation threshold of zero-width
sticks. For any values of ε, the percolation threshold of
discorectangles is situated between the percolation thresholds
of ellipses (upper boundary) and rectangles (lower boundary).

IV. CONCLUSION

By means of computer simulation and scaling analysis,
we studied the percolation of discorectangles on a torus. The

dependencies of the percolation threshold, nDR
c , on the aspect

ratio, ε, have been obtained in the thermodynamic limit.
Comparison with known results for rectangles [8], nr

c, and
ellipses [9], ne

c, evidenced that

nr
c(ε) < nDR

c (ε) � ne
c(ε).

Naturally, nDR
c (0) = ne

c(0) since, in this case, each of these
shapes is simply a disk. The value of nDR

c (ε) tends to the value
nc for zero-width sticks [7] when ε → ∞. Improvements to
the accuracy of the obtained values of the percolation thresh-
old will require additional time and computational resources.

Our consideration deals with only one particular case when
overlapping of particles is allowed. If the particles are treated
as permeable, overlapped particles form a cluster [Fig. 6(a)].
However, other possibilities are also feasible. For instance, in
random sequential adsorption [25], particles are impermeable
and no cluster can occur [Fig. 6(b)].

An intermediate possibility is the so-called connectedness
percolation of nonoverlapping particles [26,27]. Two nonover-
lapping particles are assumed to be connected when the short-
est distance between them does not a exceed a certain value,
i.e., the so-called cutoff distance [28]. This case can be also
treated as a hard-core soft-shell model [Fig. 6(c)]. Naturally,
in this case, the percolation threshold has to significantly
depend on the cutoff distance.

Both length dispersity and alignment of particles may
affect the percolation threshold [26,29,30]. In the case of
permeable discorectangles, these effects require additional
examination.
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