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We revisit the problem of excluded volume deposition of rigid rods of length k unit cells over square lattices.
Two new features are introduced: (a) two new short-distance complementary order parameters, called � and �,
are defined, calculated, and discussed to deal with the phases present as coverage increases; (b) the interpretation
is now done beginning at the high-coverage ordered phase which allows us to interpret the low-coverage nematic
phase as an ergodicity breakdown present only when k � 7. In addition the data analysis invokes both mutability
(dynamical information theory method) and Shannon entropy (static distribution analysis) to further characterize
the phases of the system. Moreover, mutability and Shannon entropy are compared, and we report the advantages
and disadvantages they present for their use in this problem.
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I. INTRODUCTION

The study of systems of hard rod-like particles having
different geometrical shapes has been of continued interest
in classical statistical mechanics. A pioneer contribution to
this subject was made by Onsager [1], who predicted that very
long and thin rods interacting by means of excluded-volume
interaction only can lead to long-range orientational (nematic)
order. This nematic phase, characterized by a big domain of
parallel molecules, is separated from an isotropic state by a
phase transition occurring at a finite critical density.

The phase properties of systems with purely steric inter-
actions are important from a statistical mechanical perspec-
tive because temperature plays no role, and all phase transi-
tions are entropy driven. The problem proposed by Onsager
is a clear example of an entropy-driven phase transition.
Other examples, corresponding to phase transitions in systems
of hard particles of different shapes include triangles [2],
squares [3–9], dimers [10–13], mixtures of squares and dimers
[14,15], Y-shaped particles [16–18], tetrominoes [19,20], rods
[21–36], rectangles [26,37–39], disks [40,41], and hexagons
[42]. Experimental realizations of such systems include to-
bacco mosaic virus [43,44], liquid crystals [45], f d virus
[46–48], silica colloids [49,50], boehmite particles [51,52],
DNA origami nanoneedles [53], as well as simple models for
studying adsorption of molecules onto two-dimensional (2D)
substrates [54–56].

For the continuum problem, there is general agreement
that in the case of deposition of infinitely thin rods in three
dimensions the system undergoes a first-order phase transition
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[1]. On the other hand, in two dimensions, when the rods may
orient in any direction, the continuous rotational symmetry
remains unbroken at any density. However, the system under-
goes a Kosterlitz-Thouless-type transition from a low-density
phase with exponential decay of orientational correlations to
a high-density phase with a power-law decay [57–60].

The lattice version of the problem, which is the topic of
this paper, has also been studied in the literature. Here, the
hard rods are composed of k collinear and consecutive sites
of a regular lattice (k-mers). No two k-mers are allowed to
intersect, and all allowed configurations have the same energy.
Ghosh and Dhar [21] investigated the problem on square
lattices. Using Monte Carlo (MC) simulations and analytical
arguments based on the classical orientational order parameter
(designated as δ below), the authors found that the deposition
of straight rods presents no special characteristics until the
length of the rod is 7 times the lattice constant. From there up,
ordering appears and two transitions were reported as function
of the coverage θ (fraction of the occupied sites): first, at θ =
θ1, from a low-density disordered to an intermediate-density
nematic phase and second, at θ = θ2, from the nematic to a
high-density disordered phase.

Later, and based on the seminal work of Ghosh and Dhar
[21], several papers were devoted to the detailed study of
the transition occurring at intermediate density values in a
system of long straight rigid rods on 2D lattices with discrete
allowed orientations [22–29]. This transition was usually re-
ferred to as isotropic to nematic (I-N) but due to the results
presented below the high coverage phase is also isotropic but
ordered, while the low-density isotropic phase is disordered.
We propose referring to these phases as disordered-isotropic
(D), nematic (N), and ordered-isotropic (O) in the order they
appear when coverage is increased.
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In the just cited articles, it was shown that (1) the D-N
phase transition belongs to the 2D Ising universality class
for square lattices and the three-state Potts universality class
for honeycomb and triangular lattices [22,23]; (2) the critical
value of k which allows the formation of a nematic phase is
k = 7 for square and triangular lattices [22,24] and k = 11 for
honeycomb lattices [23]; (3) the critical density characterizing
the D-N transition θ1 follows a power law as θ1(k) ∝ k−1

[24–26]; and (4) the orientational order survives in a wide
range of lateral interactions between the adsorbed k-mers
[27–29].

The study of the second transition (N-O) using simula-
tions is more difficult due to the presence of many long-
lived metastable states. Conventional MC algorithms using
deposition-evaporation moves involving only addition or re-
moval of single rods at a time are quite inefficient at large
densities. For these reasons, there have been few studies
related to the second transition from the nematic phase to
the high-density phase [30–32]. However, this transition is the
most essential issue in the present article as the high coverage
phase is present for all systems regardless of the k value, as
will be shown below.

In Ref. [21], Ghosh and Dhar found that θ2 ≈ 1 − Ck−2

for large values of k, where C is some constant. Linares et al.
[30] provided numerical evidence for the existence of the N-O
phase transition at high coverage. The case of linear 7-mers
(k = 7) on square lattices was studied and the corresponding
critical density was estimated to be between 0.87 and 0.93.
On the other hand, using an efficient grand-canonical MC
algorithm, Kundu et al. [31,32] studied the problem of straight
rigid rods on square and triangular lattices at densities close
to full packing. However, the nature of the second transition
from the nematic phase to the high-density phase, that is
neither nematic or disordered, is still an open problem.

On square lattices, the second transition is continuous with
effective critical exponents that are different from the 2D Ising
exponents [32]. On triangular lattices the critical exponents
are numerically close to those of the first transition [32].
This raises the question whether the low-density disordered
and high-density disordered phases are the same or they
correspond to different phases. If this is the case, the order
parameter δ designed to recognize the low coverage phase
transition does not necessarily properly characterizes this high
coverage phase transition. This is the reason we search for
new ways to better characterize this high-coverage phase
upon defining two different local-order parameters intended
to recognize local order.

From a theoretical point of view, rigorous results are still
very limited. In this line, Heilmann and Lieb [12] showed
that, for k = 2, the system is disordered at all densities.
The existence of the intermediate nematic phase, and hence
the D-N phase transition, has been rigorously proved [33].
The problem of hard rods was solved exactly on a Bethe-like
lattice [34,35]. The solution obtained leads to continuous
or discontinuous isotropic-nematic transitions for sufficiently
high values of k, depending of the coordination number of
the lattice. The second transition does not occur on such a
lattice [34], although two transitions are found on a Bethe-like
lattice if additional repulsive interactions between the rods are
included [35].

The behavior of long rods has also been studied
by using approximate methods [61,62]. Based on the
configuration-counting procedure of the Guggenheim approx-
imation [63], DiMarzio [61] showed the existence of nematic
order in a lattice model of straight rigid rods. Identical results
were obtained in Ref. [62], by using density functional theory.

In a recent paper from our group, an alternative numerical
method to treat orientational phase transitions was applied to
the hard-rod problem on square lattices [36]. The approach
is based on the application of information theory using data
compressor WLZIP for the recognition of repetitive data in time
series such as those generated in Monte Carlo simulations
of magnetic systems [64–66]. The method was then applied
to recognize volatility and critical periods in stock markets
[67] and pension funds [68]. The time series obtained from
ambulatory measurement of blood pressure also can be ana-
lyzed by means of this information theory technique, allow-
ing one to characterize vascular risk [69]. The information
recognition focused next on the time series associated with
the intervals between consecutive seisms, finding an indicator
that increases several months before a major earthquake [70].
More recently the same technique was applied to wind energy
production, finding favorable periods for the use of this tech-
nology thus saving fuels [71].

Shannon entropy is a better known data analyzer [72]. It
is based on the probability of visiting a state characterized by
the value of a given parameter regardless of the time sequence
in which the visits took place. Hence it is the only static
measure of a given distribution in contrast to mutability that
can produce different results depending on the order the visits
took place. In any case, Shannon entropy has been used to
study a variety of nonlinear dynamical phenomena such as
magnetic transitions, the Rayleigh-Bernard convection, the
3D magnetohydrodynamics model of plasmas, and turbulence
or time series produced by seismic activity [73–78].

Besides applying these two numerical techniques to the
problem, we shall discuss their similarities and differences in
practical terms. We will end up preferring mutability for the
present transitions and we will justify this choice.

This paper is organized as follows: the model, simulation
scheme, and basic definitions are given in Sec. II; there, the
order parameters are defined and the measurement methods,
mutability and Shannon entropy, are reviewed. Section III
is devoted to the main results of the application of the new
technique and the comparison with previous results. Finally,
the general conclusions are given in Sec. IV.

II. MODEL AND SIMULATION SCHEME

A. Deposition dynamics

Straight rigid rods containing k identical constituents (k-
mers) are deposited on a perfect match on square lattices.
Namely, the distance between k-mer units is equal to the
lattice constant, so exactly k sites are occupied by a k-mer
deposition; the width of the k-mer is one lattice constant. No
other interactions than hard-core exclusion are present: no site
can be occupied by more than one k-mer unit. The substrate
is represented as an array of M = L × L sites; conventional
periodic boundary conditions are imposed.
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FIG. 1. Example of a saturated deposition (jamming condition)
of liner trimers (k = 3) for a density θ = 0.8125 on a square lattice
with L = 12. Horizontal trimers are painted white, vertical trimers
are painted black, and empty sites are painted gray.

MC simulations were carried out in the grand-canonical
ensemble where temperature T , system size L, and chemical
potential μ are held fixed while the number of adsorbed
particles (linear k-mers or rods) is allowed to fluctuate. To
overcome the slowdown in the configuration sampling at high
densities due to jamming effects, we use an efficient algorithm
introduced by Kundu et al. [31,32]. This algorithm, in contrast
to the standard Metropolis algorithm [79], makes nonlocal
changes, i.e., adsorption or desorption of many particles at
a time, so that it is possible to sample at equilibrium con-
figurations of density near unity in an effective way. The
process begins by distinguishing horizontal from vertical k-
mers, naming them x-mers and y-mers. Then, starting with
the horizontal direction, all the x-mers in the system are evap-
orated. Each row now consists of sets of contiguous empty
sites, separated from each other by sites occupied by y-mers.
Thus, the system can be seen as a collection of horizontal
spaces of length l (�L). The lattice is now reoccupied with
x-mers. This reduces the problem to the 1D problem of filling
each space of length l with particles of length k (x-mers)
with equilibrium configurations. Finally, the same process is
repeated for the vertical direction, completing the elementary
MC step (1 MCS) of the algorithm.

The algorithm has been proved to be ergodic [31,32] and
allowed us to reach equilibrium in reasonable time for the dif-
ferent conditions present in this study. This is usually achieved
after discarding n0 = 107 MCS, and then the different ob-
servables are averaged throughout the next n1 = 107 MCS.
Additionally, L/k values up to 80 were considered to ensure
finite size effects are negligible. The results showed that, for
most of the cases, values around L/k = 10 yielded results
similar to those of systems with larger ratios; this is important
since these small L/k systems are less expensive in terms of
computational cost.

Figure 1 shows the trimer (k = 3) deposition on a 12×12
lattice. To guide the eye the 19 horizontal trimers are painted
white while the 20 vertical trimers are painted black, although
there is no probabilistic distinction between these two kind of
depositions. The 27 empty spaces are painted gray. Thus, the
density or coverage for this example is

θ = kN

M
= 117

144
= 0.8125, (1)

where N is the total number of k-mers adsorbed on the lattice.
In the MC simulations, the chemical potential is varied while
the density is monitored.

B. Order parameters

The standard order parameter to deal with this problem for
square lattices is defined as [21,22,80]

δ = |n1 − n2|
(n1 + n2)

, (2)

where n1 (n2) is the number of k-mers aligned along the
horizontal (vertical) direction.

For the example given in Fig. 1 this order parameter can be
readily calculated,

δ = |19 − 20|
(19 + 20)

= 0.026, (3)

indicating that essentially there is no preferred deposition
direction.

However this parameter does not consider other forms of
possible ordering, for instance local arrangements of k-mers
forming patches like intercalated paths or chessboard-like
patterns (see Fig. 2) which can lead to a very small δ value
but indicating a local correlation. To cope with this possibility
we will construct here a simple algebra which will allow us to
define two new order parameters.

First, let us assign labels to each position (i, j) in the
lattice of Fig. 1: i runs over the columns from left to right,
while j runs over the rows from top to bottom. Now we
assign numerical values to the lattice sites thus defining a
matrix m(i, j) with the occupied and empty sites: empty
(gray) site is zero, any site belonging to a horizontal rod
(white) is +1, any site belonging to a vertical rod (black) is
−1. Thus, the second row in the example, m(i, 2), would be
−1, 0,−1,+1,+1,+1,−1,−1,+1,+1,+1, 0, where we
have used commas to separate the positions from m(1, 2) to
m(12, 2).

The quantity m(i, j) was previously defined and used by
Kundu et al. [32] to calculate the order parameter correlation
function, CSS , as a function of the distance between two lattice
sites r. In Ref. [32], the authors showed that CSS (r) has an
oscillatory dependence on distance with period k, and for r �
k appears to decrease as a power law r−η, with η > 2.

In the present contribution, m(i, j) will be used in a differ-
ent and complementary way, namely, to build two new order
parameters destined to characterize the critical behavior of the
system. For this purpose, we start by defining the directional
products between two neighboring sites. The horizontal prod-
uct associated to site (i, j) is defined as

h(i, j) = +1 (4)
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FIG. 2. Optimized path-like deposition of rods of length k on
an L × L square lattice under commensurate conditions. Proportions
here are for L = 12 and k = 3.

if both m(i, j) and m(i + 1, j) take the value −1, while

h(i, j) = 0 (5)

otherwise.
On the other hand the vertical product associated to the

position (i, j) is defined as

v(i, j) = +1 (6)

if both m(i, j) and m(i, j + 1) take the value +1, while

v(i, j) = 0 (7)

otherwise.
Periodic boundary conditions are imposed to previous al-

gebra. We now add the products along columns and rows to
define directional indicators in the following way:

σh = 1

M

L∑
j=1

L∑
i=1

h(i, j) (8)

and

σv = 1

M

L∑
i=1

L∑
j=1

v(i, j). (9)

For the example given in Fig. 1 we readily obtain σh =
32/144 and σv = 34/144.

With these indicators we can now define two parameters,
� and �:

� = σh + σv

RS (L, k)
, (10)

� = σh ∗ σv

RP(L, k)
. (11)

The divisors RS (L, k) and RP(L, k) represent the normal-
ization factors for � and � respectively. They are obtained
from previous equations for an arbitrary saturation configura-
tion; we choose the one presented in Fig. 2 for the particular
case of L = 12, k = 3. For perfectly commensurate lattices
(L = f × k, with f an integer number) the optimized stripes
distribution leads to

RS (L, k) = 1 − 1

2k
(12)

and

RP(L, k) = 1

4

(
1 − 1

k

)
. (13)

It is very interesting that for this particular configuration
the normalization factors are independent of L, which is an
advantage for comparison purposes among different lattice
sizes. For the example given in Fig. 2 we get RS (12, 3) =
0.8333 and RP(12, 3) = 0.1667.

C. Information content and Shannon entropy

A useful measure of the information content of any se-
quence is the mutability ζ , whose definition we review next.
Let w(Q, ν, t ) be the weight in bytes of the vector file Q(ν, t )
storing the sequence of parameter Q along ν episodes labeled
by symbol t (it could be any kind of ordered information).
Then, this file is processed by data compressor WLZIP [65–67]
yielding a new file whose weight in bytes is w∗(Q, ν), where
the original order is hidden within the map created by WLZIP.
It should be noticed that no information has been lost since
the inverse algorithm can be invoked to restore the original
file Q(ν, t ), although this process will not be necessary here.
Then, the mutability associated with the sequence of parame-
ter Q(ν, t ) is given by the ratio

ζ (Q, ν) = w∗(Q, ν)

w(Q, ν, t )
. (14)

This procedure was already applied to order parameter δ [36],
where more details about the procedure can be found. In the
present article we shall apply WLZIP to parameters � and
� for k in the range (3 � k � 11) and L/k = 10 (in some
selected cases, higher values of L/k were considered to test
the stability).

A better known similar parameter is the Shannon entropy
associated with Q(ν, t ), which is defined as

H (ν, t ) = −
ν∑
j=

p j ln(p j ), (15)

where pj is the probability distribution function of finding
the value Q(ν, t j ) in the ν instants previous to time t ; if such
value is found g j times in the sequence of ν measurements the
probability p j is simply given by

p j = g j/ν. (16)

We shall use the same dynamic time window ν for the
evaluation of both mutability and Shannon entropy to allow
for comparison. It turns out that it is the former that produces
sharper curves, pointing to better resolved maximum values,
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FIG. 3. Classical parameter δ (filled symbols) and new parameter
� (hollow symbols) as functions of the deposition density θ for
selected k values 3, 6, 7, 11, using lattices with L = 10k.

so we will show mutability values most of the time, illustrat-
ing Shannon entropy in just one case.

III. RESULTS AND DISCUSSION

To avoid overcrowding in the following figures, we present
curves for selected k values, varying them through the dif-
ferent figures in the range (3 � k � 11). The reason to stop at
k = 11 is exclusively due to the huge computer times involved
for larger k values, as will be discussed towards the end of the
present section. Symbol shapes (and color when available) are
kept the same for each k value through the pertinent figures.

Parameter �(θ ) will turn out to better describe all the
stages or phases of the system for different values of k as
the deposition density θ increases. So we begin by comparing
the behavior of this parameter with the classical parameter
δ, which is done in Fig. 3. As can be seen, δ is low for
k = 3 and 6, while it rises to unity for k = 7 and 11, thus
evidencing the nematic transition for k � 7. Actually, a closer
observation reveals that, for k = 6, δ tends to depart from
very low values, while for k = 7 unity is not quite reached.
Then the limiting behavior for the nematic transition is clearly
between these two values of k. This is the expected behavior
of this parameter used here for comparison purposes [36].
On the other hand, parameter �(θ ) shows a monotonic and
almost coincidental behavior for k = 3 and 6, but it presents
a clear structure for the higher values of k, which we discuss
separately.

For k = 7 parameter �(θ ) maximizes just under θ = 0.7,
coinciding with the inflection point of δ(θ ) precisely at this
point; so the onset of the nematic transition is recognized
by both parameters. Then �(θ ) begins to rise precisely at
the concentration where δ begins its descent, evidencing that
the nematic ordering is lost but without pointing to any char-
acteristic of the emerging phase. However, �(θ ) continues
to increase, evidencing that the order that was built into
its definition is establishing. This is the short-order nematic

FIG. 4. Parameter �(θ ) for k = 8 deposited on lattices of two
very different sizes: L = 10k and L = 80k.

phase in the form of paths of width nearly or just over k.
Surprisingly �(θ ) recognizes both transitions, although the
low coverage transition was not intended.

For k = 11 the situation is the same as that for k = 7
except that transitions are more abruptly obtained. Thus �(θ )
presents a maximum just over θ = 0.4 at the inflection point
of δ(θ ). Although this maximum is barely visible in this
scale it is very well defined when a more appropriate scale is
used. Then, when θ approaches the limit of high coverage, δ

and � cross each other with the former descending and the
latter ascending, thus marking the appearance of the phase
present at high coverage: the path-like near-distance ordering.
Curves for other values of k � 7 present this same structure,
whch will be presented in some of the following figures when
discussing other properties.

Previous results were obtained for L/k = 10. Is it enough
to use values of L of this sort to validate the phenomenon
and to legitimate the new parameter �? We did a systematic
study, varying L/k from 10 to 80, finding only small changes
in the value of the coverage for the maxima of �(θ ) but
preserving the phenomenon and the tendencies. We illustrate
this response in Fig. 4 for k = 8 using the extreme values of
the range of L/k values explored, namely 10 and 80. As can be
seen, the only changes are the slight shifts to higher coverage
values when larger lattices are employed. Since large values
of L mean huge computer times, we shall stick to L/k = 10
in the present paper, intending to analyze the behavior of the
new parameters rather than reporting exact values for them.

Parameter �(θ ) is plotted in Fig. 5 for different values
of k. The main body covers values of k = 3, 4, 5, 6, and 7
up to θ = 0.8; all curves grow monotonically, not showing
the expected low coverage nematic transition for k = 7 near
θ = 0.7. The inset displays curves for k = 6, 7, 8, 9, and 10,
over θ = 0.85, where broad indications for the high coverage
transitions are obtained near the expected concentrations for
the different k values; the general tendency of increasing the
critical coverage as k grows is also established. Evidently
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FIG. 5. Order parameter � as function of θ for several k values
with L/k = 10.

parameter �(θ ) does not provide significant information re-
lated to the possible phases present in the system.

We go back now to parameter �(θ ) to establish the dif-
ferent responses for low and high values of k. This is done in
Fig. 6 for k = 4, 5, 8, and 9, complementary to those of Fig. 3.
Curves for low-k values are almost coincidental, ascending
monotonically to their maximum values close to unity; no
indication for any ordering appears. However, the curves for
the high-k values present clear maxima at low coverage, which
represents the onset of the transition to the nematic phase.
The value of the maximum shifts to lower coverage, as can be
expected from the results of the δ(θ ) order parameter [36]. As
θ increases �(θ ) tends to vanish and remains near zero until
at θ slightly over 0.9 it very abruptly rises, with the curve for

FIG. 6. Parameter � as function of θ for k = 4, 5, 8, 9 and
L/k = 10. The inset shows the minimum at lower coverage for k = 9
better resolved in an appropriate scale.

larger k value displaced to the right (higher coverage). This
parameter is intended to recognize the path-like ordering, so
the high value of this parameter indicates that this is the kind
of configuration that dominates in the high coverage regime.

However, the most striking fact shown by Fig. 6 is that
all curves have a common origin and a coincidental response
under the low coverage maximum, and they also have a similar
tendency and final values towards deposition saturation. The
interpretation is clear: deposition for all k values tend to the
same high coverage phase in the form of mixed horizontal and
vertical paths; this tendency is interrupted for k � 7 where an
ergodic breakdown arises favoring depositions along one of
the two possible directions only. In the slow high coverage
dynamics, group shifts dominate over individual rod shifts and
the path-like structures are generated.

It is interesting to notice that for 3 � k � 6 parameter
�(θ ) reaches its maximum value softly. So the high coverage
phase is reached by means of an evolutionary process without
drastic changes in the properties of the system. But for k � 7
this evolutionary process is abruptly changed due to the surge
of an ordered phase, a nematic ordering, at the concentration
θ = θ1 for the corresponding k value. This means an immedi-
ate decrease of parameter �(θ ) near θ1 (not necessarily at the
θ1 value obtained by a different order parameter). Then, �(θ )
stays at values near 0.0 until the nematic order disappears
and parameter �(θ ) recovers abruptly to the values of the
interrupted monotonic increasing tendency shown by lower
values of k.

The inset of Fig. 6 is intended to show that the low-
coverage transition is well recognized by parameter �(θ ),
although it can be somewhat hidden in a large scale used in the
plot. The value at which �(θ ) maximizes is not necessarily
the same as the θ1 value found by other methods since it is
measuring a different property. However, this value should
follow tendencies similar to any other similar values for θ1

as k varies.
To investigate what kind of phases and transitions are

present, we prepared a succession of snapshots for k = 5 (D-N
phase transition is not present) and for k = 8 (with phase
transitions at θ1 and θ2), increasing coverage at the same
steps. Results are reported in Fig. 7, where different evolution
processes are observed for these two k values. In the case
of k = 5 we find a continuous evolution towards a path-like
configuration somewhat similar to the optimal one shown in
Fig. 2. On the other hand, for the case of k = 8 we observe
a clear nematic ordering over a characteristic concentration
(θ1 ≈ 0.58). Then, as the depositions continue, the nematic
phase prevails until the concentration reaches a second charac-
teristic concentration (θ2 ≈ 0.92) when the systems abruptly
tend to the short order path-like configuration present for all k
values. Values for the concentration θ , order parameter �(θ ),
and mutability ζ for parameter �(θ ) are given to the right of
each row.

From previous discussion, we propose here that the second
phase transition is nothing but the disappearance of the ne-
matic order, followed by the recovery of the evolution towards
the high-coverage configuration. To appreciate that this high
concentration phase is basically independent of k, a gallery
of snapshots obtained for different k is presented in Fig. 8.
In all cases, the concentration is θ ≈ 0.98, namely, over θ2.
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FIG. 7. For k = 5 (left column) and for k = 8 (right column)
we present snapshots showing the different orderings reached as the
concentration is increased from top to bottom. The corresponding
values of the concentration θ and parameters �k (θ ) and ζ (�k (θ ))
are given to the right of the pictures.

Values of parameter � and for the corresponding mutability ζ

(reported below) are given underneath along with the k value.
The nematic transition can be viewed as an ergodicity

breakdown where the systems with rods over a minimum
length and over a characteristic concentration prefer one spe-
cific dominant direction, making easier further depositions if
they are parallel to the already existing majority. Other con-
figurations including depositions with different orientations
are no longer possible or extremely unlikely. This is not far
from the ergodicity breakdown shown by magnetic systems

FIG. 8. Snapshots at concentration θ = 0.98 for k values com-
plementary to those reported in Fig. 7.

over a minimum number of elements [81]. However, as the
coverage continues to increase, individual behavior is lost in
favor of group reorientations; then paths are obtained reach-
ing a labyrinth-like configuration whose optimal organized
goal would be something like the depositions presented in
Fig. 2. As can be noticed from Fig. 8, the aspects of these
high-coverage configurations are very similar to each other,
independently of k. Moreover, parameter � is near 0.9 for
all these cases, thus pointing to the just mentioned optimal
configuration depicted in Fig. 2.

Most of the previous figures reporting the concentration
dependence of the parameters did not include error bars. The
only exception was Fig. 4 due to its simplicity. This was due
to two different reasons. First, error bars would overcrowd
the most complex plots. Second, we will report now the
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FIG. 9. Mutability for order parameter �, namely ζ (�(θ )), for
L/k = 10 and different values of k.

variability of the parameters using two alternative measures of
this property: one is the Shannon entropy based on the static
distribution of the data, the other is the mutability based on a
dynamic measure of the information content of the data chain.
As we report below, it turns out that the latter gives the better
response to the variability of the data under analysis. Thus,
mutability is a far better measure of variability than standard
deviation or its related error bar analysis. However, Fig. 4
already indicates that error bars are larger precisely near the
transition concentrations θ1 and θ2. This is also true for all the
other figures where error bars were omitted.

We begin the information content analysis by presenting
Fig. 9, where the mutability of the � function, namely
ζ (�(θ )), is presented for selected values of k. The curve for
k = 6 does not present any maximum and it is included as a
reference, but curves for higher values of k present a structure
that is progressively better defined as k increases.

It might be surprising that, in spite the parameter �(θ )
itself not showing any indication of the transition at θ1 and
showing only a general response around θ2, its mutability does
maximize at these concentrations according to the k value.
The maxima are broad but the mutability of the parameter
indicates that a change of dynamics is present near the cor-
responding concentrations and follows the expected tendency
as k increases.

Curves for k � 7 maximize around or over 0.92 corre-
sponding to θ2, in correspondence with the deviation from the
linear behavior shown by the parameter itself, as \can be seen
in the inset of Fig. 5. However, the characterization of this
transition afforded by ζ (�(θ )) allows a clearer determination
of θ2 as compared with the information provided by the
parameter itself.

In Fig. 10 we present the mutability of parameter �(θ )
for selected values of k. The curve for k = 5 is included as
a reference although it does not show a sharp maximizing
structure. Similar curves are obtained for k � 6. Plots for
k � 7 clearly recognize both θ1 and θ2 on the same footing.
The critical concentrations are better defined than in any of

FIG. 10. Mutability of parameter �, namely ζ (�(θ )), for L/k =
10 and different values of k.

the preceding determinations, with the parameter pointing to
a clear interpretation of the phases present. The tendencies
are also clear: θ1 shifts to low concentration values while
simultaneously θ2 tends to high concentration values as k
increases.

We have chosen mutability to do most of previous analysis,
which is now justified by means of Fig. 11 for the case
k = 9. Here parameter δ(θ ) is included as a reference. Three
other curves are plotted: parameter �(θ ) itself, its mutability
ζ (�(θ )), and its Shannon entropy H (�(θ )). The transition at
θ1 is recognized by these three curves, with a clear advantage
for ζ (�(θ )) which shows the best defined maximum and
sharper resolution. Then, for the second transition, δ(θ ) and
�(θ ) move in different manners, crossing each other at θ2.
Near this value both ζ (�(θ )) and H (�(θ )) maximize, with

FIG. 11. Comparison of mutability and Shannon entropy of pa-
rameter �(θ ) for k = 9. In addition parameters � and δ are also
plotted to help in the discussion.
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FIG. 12. Critical coverage values θi (i = 1, 2) obtained by the
different methods introduced in the present paper and L/k = 10. A
linear fit for θ1 obtained from the better defined parameter �(θ ) is
also included.

the maximum being sharper the former one. Curves for other
cases with k � 7 are similar to this one.

As can be observed, ζ (�(θ )) and H (�(θ )) are somewhat
related, a phenomenon that could deserve special attention but
which is beyond the scope and goals of the present paper.
The advantage shown by mutability over Shannon entropy has
been also detected in other applications of these information
recognizers [82].

Let us continue the analysis by considering the critical
coverage values obtained from the use of the new parameters.
From Fig. 5 we realize that the parameter � cannot produce
any numerical indication of the critical coverage values at
which the transitions take place. However, Fig. 6 shows that
we can use the low-coverage maximum to define θ1(�). The
definition of θ2(�) is somewhat trickier since this function
was built to maximize at θ = 1 regardless of the k value.
So we define θ2(�) at the concentration where �(θ ) ≈ 0.5.
Critical coverage values associated at the mutability values
are directly obtained from the two maxima of each of the
functions ζ (�(θ )) (see Fig. 9) and ζ (�(θ )) (see Fig. 10).

These critical coverage values are plotted in Fig. 12. As can
be seen, the tendencies are basically the same in spite of some
minor differences among the methods. Generally speaking θ1

tends to low values, eventually to zero. This is reinforced by
the linear fit included for θ1(�) in Fig. 12, which is given by

θ1(k) = A + B
1

k
(k � 9), (17)

where A = −0.067(19) and B = 4.97(20). Equation (17) is
consistent with previous results obtained by Kundu and Ra-
jesh [26], who reported that the critical density θ1 follows
a power law as θ1(k) = Bk−1, with B = 4.80(5). This ex-
pression was derived for large values of the k-mer size and
lattice sizes in the thermodynamic limit (L → ∞). The small
deviation from 0 observed in A can be attributed to size effects
(note that the calculations in Fig. 12 were done for L/k = 10).

On the other extreme θ2 grows to eventually reach the
value 1.0. However the high-coverage slow dynamics and

FIG. 13. A portion of the sequence for parameter � at a concen-
tration θ well over the second maximum θ2 showing the oscillations
present for high values of the chemical potential. Time is measured
in MC steps (MCS) after equilibration.

its associated unstable behavior make difficult any further
numerical treatment. So we can imagine that as the depositing
k-mer tends to infinite length the nematic phase will be the
only one present.

A careful look at the very high coverage values of the pa-
rameter �(θ ) in Figs. 4 and 6 may suggest that this parameter
tends to unity as θ → 1.0. With the idea of elucidating this
point we analyzed the time series for this parameter at these
extreme coverage values after equilibration. In Fig. 13 we
present a segment of the evolution of the parameter �(θ ) after
equilibration; it is observed that �(θ ) oscillates strongly at
high coverages. This is due to the dominant dynamics present
at high coverages (large chemical potentials), which implies
the shift of several rods at a time. It can also be noticed that
the range of the oscillations for �(θ ) is larger for the higher
values of k.

This behavior contrasts with the constant value close to
0.0 for �(θ ) present during the nematic phase. Moreover, the
jump to recover high values shown in Figs. 4 and 6 is not
reproducible in the sense that it occurs erratically depending
on the trajectory of the attempts to change configurations
established by the unstable dynamics present at high coverage.
We have set a step counter to monitor the number of steps to
obtain the first jump from the minimum value of �(θ ) to any
value towards the monotonic tendency established in Fig. 6,
thus initiating the “unfreezing” process of the nematic phase.

For values of k ranging from 7 to 11, we explored the
minimum number of MCS to initiate the unfreezing process
(this is a extremely time consuming task for the larger values
of k). Results are presented in Fig. 14 as a function of k. It
is quite clear that computer times necessary to handle this
dynamics grow exponentially with the size of the deposit-
ing k-mer. This is the only reason we stopped at k = 11,
whose results were extremely difficult to obtain and had large
fluctuations. Actually, we were not able to unfreeze the
nematic phase for k = 12 with the computer facilities at our
disposal.
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FIG. 14. Minimum number of MCS necessary to unfreeze the
nematic phase at high θ values, versus the length of the depositing
rod; L/k = 10.

IV. CONCLUSIONS

In the present paper the problem of excluded volume depo-
sition of rigid rods of length k unit cells over square lattices
is revisited. The following is a quick list of the main aspects
considered here, which complement previous treatments of
this very rich problem touching different aspects of statistical
physics. (a) Differently than what three of us did in Ref. [36],
we now use the improved algorithm defined in Ref. [32]
which is now combined with information theory techniques.
(b) Two new parameters (� and �) are defined to better
characterize the phases. (c) Mutability measurements done
on these new parameters yield better precision on the critical
coverage and more insight into the nature of the transitions.
(d) Shannon entropy is used in this problem, which allows us
to confirm previous critical behavior by an independent route.
(e) The combination of the values of the new parameters,
their mutability values, their Shannon entropy values, and
snapshot analysis as coverage increases gives a more general
and homogeneous picture valid for all k values. (f) This de-
scription allows us to propose that the triggering mechanism
producing the nematic transition is an ergodic breakdown
governed mainly by the value of k. We now review some of
these aspects in more detail.

Two new short-distance complementary order parameters,
� and �, are introduced and discussed in relation to the
ordered phases appearing in the system, particularly the high-
coverage one characterized by path or labyrinth patterns. This
is the phase at which the system arrives, regardless of the size
k, which allows us to interpret the low-coverage nematic phase
as an ergodicity breakdown present only when k � 7.

We found that parameter � is not able to evidence the
nematic transition at θ1. On the other hand, parameter �

evidences both the one at θ1 and the high-coverage transition
at θ2. In contrast, the conventional order parameter δ does

not indicate which phase is reached after the nematic phase
disappears.

The size of the lattice L influences slightly the values of θ1

and θ2: they both move to higher concentrations as L grows
for any given k. However, the tendencies are preserved, which
allowed us to establish the numerical study based on systems
sizes with L/k = 10.

In addition, the variabilities of the parameters were mea-
sured by two methods: mutability (dynamical information
theory method) and Shannon entropy (static distribution anal-
ysis). The study showed that, although � showed no evidence
of the nematic phase at θ1, its mutability ζ (�(θ )) presents a
maximum at these concentrations according to the k value.
Regarding parameter � both Shannon entropy and mutability
are able to recognize transitions at θ1 and θ2, although the
second is somewhat better defined.

Considering the critical coverage values θ1 and θ2 obtained
from the new parameters and their mutabilities, we found a
good agreement with previous results found in the literature.
Generally speaking θ1 tends to low values, eventually to
zero, whereas θ2 grows to eventually reach the value 1.0.
However, the high-coverage slow dynamics and its associated
unstable behavior make difficult any further numerical treat-
ment. So we can imagine that the nematic phase will be the
only one present when the depositing k-mer tends to infinite
length.

Simulation dynamics at high coverage, is still very slow
when we deal with large k-mers (k > 10). Changes involving
groups of rows are progressively more difficult as coverage
increases, leading to slower dynamics. This puts a limitation
on the size k we can reach for these simulations (kmax = 11).

Now the possibility is open to characterize k-mer deposi-
tions on other lattices using �(θ ) and ζ (�(θ )) as the most
appropriate parameters to detect the transitions associated
with well defined phases. The limiting cases k = 6 and k = 7
could be also studied thoroughly by these parameters over
a range of L values to better detect the borderline for the
nematic phase. This is pointing towards a phase diagram for
each lattice.
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