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Prediction in a driven-dissipative system displaying a continuous phase transition
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Prediction in complex systems at criticality is believed to be very difficult, if not impossible. Of particular
interest is whether earthquakes, whose distribution follows a power-law (Gutenberg-Richter) distribution, are
in principle unpredictable. We study the predictability of event sizes in the Olmai-Feder-Christensen model at
different proximities to criticality using a convolutional neural network. The distribution of event sizes satisfies
a power law with a cutoff for large events. We find that predictability decreases as criticality is approached and
that prediction is possible only for large, nonscaling events. Our results suggest that earthquake faults that satisfy

Gutenberg-Richter scaling are difficult to forecast.
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I. INTRODUCTION

A subclass of driven-dissipative systems modeled by a
two-dimensional cellular automaton has been proposed to
understand the existence of power laws in many complex
systems. Examples include the Bak-Tang-Wiesenfeld sandpile
model [1], the Rundle-Jackson model [2], and the Olami-
Feder-Christensen (OFC) model [3]; the latter two models
have been used to gain insight into the nature of earthquakes.
Many earthquake fault systems display a power-law event
size distribution spanning many orders of magnitude. Such a
power-law distribution is known as Gutenberg-Richter scaling
in the seismology literature [4]. For example, the Gutenberg-
Richter scaling in Southern California (1984-2000) spans
about six orders of magnitude [5].

There has been substantial interest in forecasting or pre-
dicting earthquakes. However, it has been conjectured that
systems at criticality are inherently unpredictable [1]. That is,
events of different sizes that satisfy a scale-free distribution
are due to the same physical mechanism, and thus there are no
distinct precursors to distinguish one event from another [6].
The idea of unpredictability at criticality has been challenged
over the years. One school of thought [7] has proposed that
very large events are due to inherently different mechanisms
such as self-reinforcement, synchronization [8], and nucle-
ation [9], and they are thus in principle distinguishable from
smaller events. Some support for this proposal is the use of a
technique called the log-periodic-power-law fitting procedure;
it has been shown to successfully predict large, non-power-
law events, such as ruptures in materials [10,11] and the end
of financial bubbles [12,13].

In this paper, we address the question of predictability
near and at criticality by applying machine learning to the
OFC model. Previous work [14] has shown that predictability
in the OFC model decreases as the conservative limit (a
critical point) is approached. We find results consistent with
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Ref. [14] and investigate the predictability of events near
another critical point in the OFC model: the recently observed
noise transition critical point [15]. By using a convolutional
neural network (CNN), we find that the event sizes are more
difficult to forecast as the critical point is approached and that
only large events that do not satisfy power-law scaling can be
successfully predicted.

II. CRITICALITY IN THE OFC MODEL

The Olami-Feder-Christensen (OFC) model [3] is a modi-
fied version of the spring-block model first proposed by Run-
dle and Jackson [2], which is a simplification of the Burridge-
Knopoff model [16]. The nearest-neighbor OFC model that
we will consider consists of a two-dimensional lattice of linear
dimension L with each site initially assigned a random value
of stress o between the mean residual or and the failure
threshold or. We denote the stress on each site, the stress
grid, by the vector ¢ = (o4, ..., Oy=rxr)- The system is then
driven so that one site reaches of, a procedure known as the
zero velocity limit [2]. This site is said to fail, and its stress is
reduced to og + nr, where 1 is the magnitude of the noise and
r is a uniform random variable in the range [—1, 1]. A failing
site with stress o distributes stress (1 — A)(o — og — nr)/4
to its four nearest-neighbor sites, where X is the dissipation
parameter. The failure of one site can trigger other sites to fail,
thus creating an avalanche. The avalanche or event stops when
the stress of all sites is less than or. We denote the number of
failing sites, or the size of the event, by s. The system is then
driven again using the zero velocity limit. Periodic boundary
conditions are used.

The OFC model is believed to approach criticality in the
conservative limit A — 0 [17,18]. Recently, it has been found
that even for A > 0, there exists a phase transition at a critical
value of the noise 1. =~ 0.07 [15]. This phase transition is
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TABLE 1. The correlation squared (R?) between the event size s
and the average stress (o), and the correlation square between s and
the spatial variance var, for different values of the noise 1. Due to
this correlation, we will normalize the stress grid before training the
machine.

n R(s, (o)) R(s,var,) 0 R(s,(0)) R*(s, var,)
0.03 0.48 7.40 x 1073 0.07 0.22 1.56 x 1073
0.04 0.42 2.00 x 1073 0.08 0.44 8.46 x 1072
0.05 0.52 5.00 x 1072 0.09 0.23 2.48 x 1072
0.06 0.49 1.2x 1072 0.10 0.11 2.81 x 1073

characterized by an event size distribution n, of the form

(D

ng ~ s " exp[—(s/s.)°1
with
se o< (n—ne)" %, )

and 7 = 1.04 £0.14 and o0 = 0.43 £ 0.03. The mean clus-
ter size y diverges as (n — nc);y, and the connectedness
length diverges as (n — n.)7" [19] with y =2.01 +0.14 and
v = 1.20 £ 0.13, consistent with the scaling relations y =
(3—71)/o and v = (t — 1)/do, where d = 2 is the spatial
dimension. Note that n; satisfies power-law scaling for s < s,
[15].

II1. SUPERVISED MACHINE LEARNING

Our goal is to predict the event size (the number of failed
sites) given the stress grid before stress has been added using
the zero-velocity limit and before the onset of an event. Table I
shows, at different values of the noise 7, the correlation
squared between the event size s and the average stress (o),
and the correlation square between s and the spatial variance

var,. There is a significant correlation between s and (o).
To force the CNN to learn higher-order features, we first
remove the correlations between the event size s and the first
and second moments of the stress grid. We normalize each
stress grid & by its average stress and the spatial variance.
That is, we rescale the stress o;, at site i for sample p to
Gy =(0;,—(0,.))/ /Vat,, where (0,)=1/N Y\ | 07, is the
mean stress per site of sample p and var, = Zf'v:1(0i,ﬂ -
(a,l))2 /N is the spatial variance of the stress. In the following,
all references to the stress will be to the rescaled stress, and we
will omit the tilde symbol. We will train the CNN regressor
using the rescaled stress grid ¢, sampled with quasiuniform
event sizes (see the Appendix).

To assess the performance of the machine, we show in
Fig. 1 the predicted event size § versus the true event size s.
The top row shows the event size distribution ng for differ-
ent values of n. The bottom row shows the predicted event
sizes versus the true event sizes. We see that for n < 5.,
the machine performs impressively at predicting events that
are larger than s, [see Fig. 1(a)]. For n > 7., the machine
performs less impressively [see Fig. 1(c)]. At n =n,, the
machine fails at predicting events of all sizes [Fig. 1(b)] and
yields a constant equal to the average event size s in order
to minimize the error. Similar behavior is observed for n # 1,
and below s.. Note that the “cutoff” in n; at n = 5, in Fig. 1(b)
is due to the finite-size effect.

In Fig. 2 we plot the testing error,

M
Err(log$, logs) = Z(log si —log§)2/M,  (3)

i=1

as a function of n. Here M is the number of samples in the
testing set. The reason for using log s instead of s in the error
function is because of the larger fluctuations in (§ — s) for
larger s and because we are interested in the relative error

LT TTIT U 10-15 TTT T T TTTm T T T T ]
102} °® (@) : c)
¢ 1074+ =
105 .
~ % 2o,
- o, | 107 { 9
o
Lol Luul sl vl O L RIS vl 1 gl ©
Forrrm T T s 5 C T T Ty T M T T T Ty
D e 4 -
10%E 4= ee . 10° e
E = 4 pgiard E E
g 1 % T ]
103% < 1 10k ¢ 4
3 3 10° o 3 E r i E|
<y 102 E E 102 E //' ] 10° E //' e
10! E //’I — 10! E /’/ _ 10! E // E
= / 3 E ," ! F b
4 E.~ — 3 £
10°¥ ;7 < ”C J 10°K ;7 nc _ IOOE: ’7 > ;7C_‘
L o AHAJ.IlA xmn.{z. Lol .mu.ld
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

!9 !g

FIG. 1. The event size distribution n; vs s (top row) and the true values of s vs the predicted § event sizes (bottom row) for (a) n = 0.04 < 7.,
(b) n = 0.07 = 1., and (c) n = 0.09 > n,. (bottom row). Perfect prediction is represented by the dashed diagonal line. The vertical dotted line
denotes s = s.. Note that the CNN successfully predicts event sizes only for s 2 s.. The cutoff in n, in (b) is a finite-size effect and does not fit

the form in Eq. (1).
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Err(log s, log §)

FIG. 2. The testing error of the predicted event sizes as a function

of the noise n with Err(log$, logs) = \/Zfil(log s; —log8;)? /M.
M is the number of samples in the testing set. The vertical dashed
line indicates the location of the critical noise 1, =~ 0.07 [15]. Note
the poorer predictability as the critical point (denoted by the vertical
dashed line) is approached.

rather than the absolute error. The peak at 7, indicates that
prediction is not possible in the OFC model at criticality using
only the stress grid and the CNN.

We next look at how the values of the dissipation parameter
A affect the predictability of the system as A — 0. No scaling
function has been found to fit the dependence of n; on X in the
nearest-neighbor OFC model. Nevertheless, we can determine
the cutoff s., as the value of s for which n, deviates from
a power law (see Fig. 3). As A decreases, the cutoff s, ;
increases. We observe that the onset of predictability is close
to s, and the trend persists for different values of A.

IV. VISUALIZING THE CNN

We next explore the features that the machine has learned
that allow it to successfully forecast the size of the nonscaling
events, and we discuss why the critical events are difficult to
forecast. We will use occlusion sensitivity analysis to identify
the regions of importance of the images that are used by the
CNN [20]. For example, the face of a dog is expected to
contain the most relevant features in determining the type of
animal. Hence, blocking the face of the dog should increase
the classification error of the CNN. We implement a similar
analysis by defining an occluded region in the stress grid and
sweeping the occluded region across the entire image to create
a map that shows the regions that are the most sensitive to the
occlusion. In this way, we associate the region that gives the
largest change in the predicted event size § with the region that
is most useful in predicting the size of the event.

Since we see in Fig. 1 that the CNN can only predict events
whose sizes are in the exponential cutoff region, we choose the
sample from the exponential cutoff region for visualization
(for details, see the Appendix). In Fig. 4 we visualize three
randomly chosen samples for which s > s. for (a) n < 7.,
(b) n = n., and (c) n > n.. In the top row we show the failure
maps, which correspond to the number of times that a site has
failed. In the second row we show the sensitivity maps from
the occlusion sensitivity analysis. Since we choose events of
size s > s., an occlusion that yields a decrease in the predicted
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FIG. 3. Top: the event size distribution n; for different values of
A. Bottom: the true values of s vs the predicted § event sizes for A =
0.01 (+), 0.02 (), and 0.03 (o). Note that the onset of predictability
occurs for s 2 s.;. The vertical dashed line indicates the estimated
value of the cutoff s, ; for different values of A.

event size § implies a worse prediction. For n # 7., the region
that gives the largest decrease in § if occluded coincides with
the failure region. We call the region with the largest decrease
in § if occluded the sensitive region. In the third row, we plot
the local average stress map. To determine this map, the local
average stress of a site is computed by averaging the stress
of sites within a square of linear dimension b = 10, centered
at that site. Note that the region of high local stress overlaps
with the failure and the sensitive regions. This consistency
is reasonable because regions with high local stress have a
greater probability of initiating and sustaining a larger event.

Among the 32 channels in the third layer of the CNN,
we chose the channel that is visually the most similar to the
structure of the failure region. We interpret the channel as the
high level feature learned by the CNN. We plot the channels
in the bottom row of Fig. 4. From these channels, we see that
the machine has learned the connection between the high local
stress and failure regions.

To understand why prediction is difficult at n = 7., we look
at the failure maps in the top row of Fig. 4. We see that the
failure regions become more diffuse at n = n. compared to
the more compact failure regions away from 1.. Although
the local average stress map and the failure map remain
qualitatively similar, the stress gradient between the high local
stress region and the surrounding background is much smaller
atn = 1.

More quantitatively, we define a high stress region as a
collection of nearest-neighbor sites whose local average stress
is above the cutoff o, [21]. We measure the radius of gyration
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FIG. 4. Top row: the number of times that a site has failed (failure map). Brighter colors represent more failures. Second row: the sensitivity
map from the occlusion sensitivity analysis. Darker regions are more sensitive to the occlusion of that region. Third row: local average stress
map. Darker colors represent higher stress. Bottom row: several channels (features) chosen from the third layer in the CNN. Note that the four
rows are structurally similar for (a) n = 0.04 < 5, and (c) n = 0.09 > n.. The three samples for each value of n are randomly chosen from the
tail region of the event size distribution from the testing set (see the Appendix).

R, of the largest high stress region in each sample, and we
define the density of the high stress region ¢ as the sum of
the local average stress within the area of radius R, divided by
nRé. The density of the high stress region ¢ decreases as 1, is
approached (see Fig. 5). The smaller density difference makes
it more difficult for the machine to obtain the appropriate
cutoff for the high stress region, thus making prediction more
difficult. Multiple failures occur when sites fail more than
once and are more prominent for very large events for n # 7.,
which is why the machine underestimates the event sizes of
very large events [see Figs. 1(a) and 1(c)].

V. DISCUSSION

Since we have normalized the stress grid by the average
stress before training the machine, the first and second mo-
ments of the stress grid do not contain information that can
be used by the CNN to predict event sizes. The fact that the
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FIG. 5. The density of the high stress region ¢ vs 1, — .. We
hypothesize that the decrease in predictability at 7. is due to the
decrease in the density of the high stress region because the CNN
has a more difficult time identifying the high stress region.

machine learns the association between the region of high
local average stress and the event size means that the machine
has learned the optimal cutoff that separates the high stress
regions from the low stress regions. This task becomes in-
creasingly difficult as the critical point is approached because
the high stress region becomes less distinguishable from its
background.

We have found evidence that events whose size distribution
satisfies a power law lack distinguishable features that allow
the machine to predict their size. This lack of distinguishable
features is related to the difficulty of distinguishing between
the fluctuations and the background at critical points [22].
For the large nonscaling events, there exists features that allow
the machine to successfully predict the event sizes. Similar
conclusions are found for the dissipation [17] transition. Our
results suggest that large nonscaling events are qualitatively
different from the smaller scaling events. This conclusion
agrees with the conjecture [6] that prediction is not possible at
a true critical point, where there is no deviation from a power
law for large events.

It is known that small, large, and very large events in
the long-range OFC model are due to different mecha-
nisms, namely fluctuations about the spinodal critical point,
failed nucleation, and arrested nucleation events, respectively
[9,23,24]. These different mechanisms suggest that very large
events are in principle distinguishable from other events. The
caveat is that all three types of events follow a power law,
albeit with different exponents. It would be interesting to see
if a machine can learn the difference between the different
scaling events. It is important to note that the failed and
arrested nucleation events, despite the fact that they satisfy
a power-law distribution, do not exhibit the same diffusive
nature as the smaller events (spinodal fluctuations) on the
Gutenburg-Richter scaling plot. This difference appears to be
what the CNN picks up.

Real earthquake forecast also utilizes temporal informa-
tion, which we have neglected in this work. An example of
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utilizing temporal information to predict “earthquakes” in a
laboratory setting can be found in Ref. [25].

The connection between the OFC model and real earth-
quake faults is complicated. The complications involve not
only the values of the exponents such as 7 and o, but also
the relation between the noise-induced critical point in the
model and the possible existence of such a critical point in
real faults. The stress transfer range in real earthquake faults
is governed by the long-range elastic force. For OFC models
with long-range stress transfer, the values of o and 7 in
the conservative limit A — 0 are different from those in the
nearest-neighbor model [15]. We have investigated the noise
transition in the next- and next-next-nearest-neighbor OFC
model, and we observed qualitatively the same behavior; that
is, the machine is unable to predict the size of the events that
satisfy a power law. We also found that as the stress transfer
range increases, the value of the critical noise, 7., approaches
zero. The values of T and o in this limit will be determined in
future work.

In real earthquake faults, the geometry of the fault changes
the exponents t and o in ways that are not well understood.
The results in Ref. [ 18] indicate that there is a relation between
the spinodal critical point in the OFC model and scaling in real
faults, but the relation is not conclusive.

We note that the OFC model is a cellular automaton
with no dynamics and no real friction force. The effect of a
more realistic dynamics and a velocity weakened friction was
studied in the long-range Burridge-Knopoff model [26]. It was
found that the dynamics of the long-range Burridge-Knopoff
model is much richer than that in the OFC model. It would be
of much interest to apply machine learning to the long-range
Burridge-Knopoff model.

Our main purpose has been to investigate the role of a
critical point, indicated by the existence of scaling, on the
possibility of forecasting with the aid of machine learning.
This possibility is of great interest to the earthquake commu-
nity because several investigators have conjectured that if the
statistical distribution of earthquakes is generated by a critical
point, or self-organized criticality, forecasting would not be
possible. This work adds some evidence that this conjecture is
correct. The addition of other characteristics that would lead
to a stronger connection to real earthquake faults is something
we are pursuing. However, our main result—that forecasting
in the vicinity of a critical point, even with the assistance
of machine learning, does not appear to be possible—has
implications beyond the area of earthquake forecasting. One
such area that we are actively pursuing is whether we can
forecast the occurrence of nucleation events in metastable
states near the spinodal critical point.
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APPENDIX: SAMPLING METHOD
AND CNN ARCHITECTURE

After discarding the transient (10° plate updates), we run
the OFC model for an additional 107 plate updates and record
the event sizes and the random number seed. We then con-
struct the event size distribution and randomly choose five
samples from each bin of the distribution (or the number of
samples in that bin if there are fewer than five samples) and
record the time of events in each bin. We then rerun the simu-
lation using the same random number seed and save the stress
grids at the recorded times. This procedure ensures that the
number of samples in each bin remains the same for different
values of the noise. This sampling method is more desirable
than random sampling because the data sampled in this way
are more “balanced,” that is, the machine does not overlearn
samples of any particular event size. We divide the data into
a training set (63% of the data), a validation set (7% of the
data), and a testing set (30% of the data). The validation set is
used to early-stop the training process to prevent overfitting.
The total amount of data varies from 20500 to 164951 for
different values of the noise. We find that the performance
of the machine remains qualitatively the same if we use the
same amount of data for different values of the noise, but the
performance of the machine still depends on the noise.

The architecture of the CNN consists of eight alternating
layers of convolutional layers and maxpooling layers (four
layers each). The depths of the convolutional layers are 8,
16, 32, and 64, each with a filter of size 5 x 5. We used
zero padding on the boundaries to ensure the same size
after each convolution. The output of the last maxpooling
layer is connected to a fully connected neural network with
one hidden layer of 25 nodes. All layers use relu (rectified
linear unit) as the activation function except for the last layer,
which uses a linear activation function. Dropout [27] with
dropout rate = 0.1 is applied to the layer immediately before
the fully connected layer. The particular choice of activation
functions and structures is standard in the machine learning
literature. A thorough discussion of the advantages of this
particular CNN architecture can be found in Ref. [28].

The samples shown in Fig. 4 are drawn from the testing
set, that is, the last 30% of the data. Specifically, the samples
in Fig. 4 are drawn from populations of size (a) 10997, (b)
49 485, and (c) 6150.
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