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Feedback control of surface roughness in a one-dimensional Kardar-Parisi-Zhang growth process
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Control of generically scale-invariant systems, i.e., targeting specific cooperative features in nonlinear
stochastic interacting systems with many degrees of freedom subject to strong fluctuations and correlations
that are characterized by power laws, remains an important open problem. We study the control of surface
roughness during a growth process described by the Kardar-Parisi-Zhang (KPZ) equation in (1 + 1) dimensions.
We achieve the saturation of the mean surface roughness to a prescribed value using nonlinear feedback control.
Numerical integration is performed by means of the pseudospectral method, and the results are used to investigate
the coupling effects of controlled (linear) and uncontrolled (nonlinear) KPZ dynamics during the control process.
While the intermediate time kinetics is governed by KPZ scaling, at later times a linear regime prevails, namely
the relaxation toward the desired surface roughness. The temporal crossover region between these two distinct
regimes displays intriguing scaling behavior that is characterized by nontrivial exponents and involves the
number of controlled Fourier modes. Due to the control, the height probability distribution becomes negatively
skewed, which affects the value of the saturation width.
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I. INTRODUCTION

Nonlinear stochastic processes are abundant in fields as
diverse as physics, economics, the life sciences, and engineer-
ing. In physics, some prominent examples encompass Brow-
nian particles, kinetic roughening of surfaces, and reaction-
diffusion systems, to name a few, yet all of the above find wide
and crucial applications in science and technology. Generic
scale invariance features prominently far from thermal equi-
librium: In such dynamical nonlinear stochastic interacting
systems with many degrees of freedom, one frequently ob-
serves strong fluctuations and correlations that are charac-
terized by power laws. Control of generically scale-invariant
systems, i.e., targeting for desired specific macroscopic prop-
erties, remains an important open problem.

Nonequilibrium growth processes of interfaces and kinetic
roughening of surfaces are of technological relevance in areas
ranging from thin films and nanostructures to biofilms and
diffusion fronts. In many of these processes the fluctuating
and roughening interface can be described on a mesoscopic
level by stochastic nonlinear partial differential equations, as
for example the celebrated Kardar-Parisi-Zhang (KPZ) [1] or
Kuramoto-Sivashinsky [2,3] equations. Examples of systems
described by KPZ growth exponents that would profit from
a control of their surface morphology include homoepitaxial
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GaAs surfaces [4], electrochemical deposition of copper [5] as
well as codeposition of nanostructured NiW alloy films [6],
growth of semiconductor thin films [7], or iron nitride films
deposited by dc magnetron sputtering [8]. Because of these
many areas of applications and technological importance,
various approaches have been discussed in the literature to
control these growth processes and achieve a predetermined
outcome as for example an a priori determined interface
width [9–13]. The simplest schemes essentially suppress the
nonlinearity, which results in the efficient control of a linear
stochastic differential equation. More subtle approaches aim
at retaining some of the nonlinear features, see, for example,
Ref. [13], but even these schemes ultimately lose the charac-
teristic defining scaling properties of the underlying stochastic
nonlinear growth process.

In this paper we present a control protocol that in contrast
both maintains distinguishing scaling features of the uncon-
trolled nonlinear stochastic process and enforces a desired
width for the kinetically roughening surface. Employing a
pseudospectral scheme with mixed implicit-explicit time in-
tegration, we show that the coupling between controlled and
uncontrolled Fourier modes yields a mix between nonlinear
and linear dynamics that results in remarkably nontrivial
crossover scaling properties during the roughening process.
We thus demonstrate that it is possible to precisely target a
desired value for the mean interface width for a growing,
roughening surface while preserving its rich and nontrivial
scale-invariant dynamics prior to saturation. It is important
to note that limiting the mean surface roughness necessitates
the introduction of a “mass” term, that is, a finite relaxation
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rate into the system, which ultimately destroys any salient
scale-invariant features. It is hence not obvious if and how the
universal KPZ scaling properties can be maintained during the
crossover time window prior to saturation. This open question
provides another motivation for our numerical investigation of
the time-dependent KPZ growth process subjected to nonlin-
ear feedback control.

Our manuscript is organized in the following way. Using
the one-dimensional KPZ equation as our test case, we first
discuss in Sec. II the pseudospectral scheme with mixed
time integration before explaining in Sec. III our nonlinear
feedback control protocol with periodic control actuators that
we use in order to achieve a steady state with a desired
surface width. In Sec. IV we present our numerical results and
show that this control scheme yields a mix of nonlinear and
linear dynamics that results in intriguing scaling properties
characterized by nontrivial scaling exponents. We conclude
and provide our outlook in Sec. V.

II. PSEUDOSPECTRAL SCHEME WITH
IMPLICIT-EXPLICIT TIME INTEGRATION

FOR THE KPZ EQUATION

In terms of the time-dependent local surface height func-
tion h(x, t ), the one-dimensional KPZ equation [1] is given by

∂h

∂t
= ν

∂2h

∂x2
+ λ

2

∣∣∣∣∂h

∂x

∣∣∣∣
2

+ ξ (x, t ), (1)

where ν is the diffusion constant, λ is the strength of the
nonlinearity, and ξ (x, t ) represents δ-correlated white noise
of strength σ , i.e., 〈ξ (x′, t ′)ξ (x, t )〉 = σδ(x − x′)δ(t − t ′). On
the right-hand side of Eq. (1), the first term smoothens the
growing interface, whereas the noise term tends to roughen it.
The nonlinear term describes growth enhancement induced by
local height gradients. For the study reported below we con-
sider finite systems of size L, for which we employ periodic
boundary conditions, h(x + L, t ) = h(x, t ).

The quantity of interest for our work is the mean surface
width or interface roughness

W (L, t ) =
√

1

L

∫ L/2

−L/2
[h(x, t ) − 〈h(L, t )〉]2dx, (2)

where 〈h(L, t )〉 = ∫ L/2
−L/2 h(x, t )dx/L denotes the mean height

at time t . In a finite system this quantity displays for many
growth processes the Family-Vicsek scaling behavior [14,15],

W (L, t ) = LαW (t/Lz ), (3)

with the dynamical exponent z and the roughness exponent α,
whereas the scaling function has the limits W (y) −→ 1 for
y −→ ∞ and W (y) ∼ yβ for y � 1. The exponent β is called
growth exponent and is given by β = α/z. It follows that the
time until saturation scales as Lz and that the saturation width
is proportional to Lα . For the KPZ equation in one space
dimension one has α = 1/2 and z = 3/2, thus verifying the
general Galilean (tilt) invariance scaling relation α + z = 2
[16]. The ratio of these values yields β = 1/3.

One characteristic of the one-dimensional KPZ equation
is that its stationary height fluctuations do not depend on the

nonlinearity in Eq. (1) [16–18], which allows us to obtain
exact expressions for stationary quantities. With the discrete
Fourier modes ĥ(k, t ), k = 2πm/L, and m = −L/2, . . . , L/2,
one computes the variance

lim
t→∞〈|ĥ(k, t )|2〉 = σ

2νLk2
(4)

and the stationary width [18]

lim
t→∞W (L, t ) =

√
σ

24ν
L1/2. (5)

It will be useful in the following to work with dimension-
less variables in terms of which the KPZ equation becomes

∂h

∂t
= ∂2h

∂x2
+ g

2

∣∣∣∣∂h

∂x

∣∣∣∣
2

+ η(x, t ), (6)

with the nonlinear coupling g = λ
√

σ/ν3 and the δ-correlated
Gaussian noise η(x, t ) with zero mean and unit variance. Var-
ious discretization schemes have been used for the numerical
investigation of the KPZ equation [19–22], and possible issues
with some of these schemes are well documented [23]. In
(discrete) Fourier space, Eq. (6) reads

∂ ĥ(k, t )

∂t
= −k2ĥ(k, t ) + Q(k, ĥ) + η̂(k, t ), (7)

where Q(k, ĥ) is the nonlinear term of the KPZ equation given
as a convolution sum,

Q(k, ĥ) = g

2

∑
q,q′

q q′ĥ(q, t )ĥ(q′, t ) δq+q′,k . (8)

Pseudospectral methods with explicit time integration
have been used successfully in the past for the Fourier
space KPZ equation (6) [24,25] and have been shown to
be superior to standard real-space discretization schemes.
The stability of the numerical integration can be further
enhanced by replacing the explicit scheme with a mixed
implicit-explicit method [26]. Mixed methods of time
integration are widely used in fluid dynamics, for example,
to solve Navier-Stokes equations [27,28], but they do not
seem to have found broad application yet in surface growth
processes. In these approaches, an implicit scheme is used
for the linear terms, whereas an explicit scheme is used for
the nonlinear contributions. This mixed treatment enhances
the stability of the numerical integration, permitting larger
time integration steps. We follow the scheme described in
Ref. [28], where the nonlinear and noise terms are treated
with a low-storage third-order Runge-Kutta scheme, whereas
the standard Crank-Nicolson scheme is used for the linear
diffusion term. We also employ the 3N/2 aliasing rule [24].

In our implementation the step from ĥ(t ) to ĥ(t + δt ) (for
these equations we do not explicitly write the dependence of
ĥ and Q on k) is done in three substeps:

ĥ1 = ĥ(t ) + δt{−k2[α1ĥ(t ) + β1ĥ1] + γ1Q(ĥ) + γ1η̂}
ĥ2 = ĥ1 + δt[−k2(α2ĥ1 + β2ĥ2) + γ2Q1

+ ζ1Q(ĥ) + (γ2 + ζ1)η̂]

ĥ(t + δt ) = ĥ2 + δt{−k2[α3ĥ2 + β3ĥ(t + δt )] + γ3Q2

+ ζ2Q(ĥ) + (γ3 + ζ2)η̂}, (9)
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FIG. 1. Family-Vicsek scaling (3) for the one-dimensional KPZ
equation for different linear system sizes L. A pseudospectral scheme
with implicit-explicit time integration has been used to solve the KPZ
equation (6) with dimensionless coupling constant g = 8. The data
result from averaging 4800 runs with different realizations of the
noise. The dashed line indicates a power-law increase with exponent
1/3, whereas the full vertical line indicates the theoretical value
1/

√
24 for the saturation width.

where Qi = Q(ĥi ) is the nonlinear term calculated at substep
i. The coefficients must satisfy the relation

γ1 + γ2 + γ3 + ζ1 + ζ2 = 1. (10)

Following Ref. [28], see the Appendix in that publication, the
coefficients take on the values

α1 = 29/96; α2 = −3/40; α3 = 1/6;

β1 = 37/160; β2 = 5/24; β3 = 1/6;

γ1 = 8/15; γ2 = 5/12; γ3 = 3/4;

ζ1 = −17/60; ζ2 = −5/12.

Figure 1 shows data obtained with this pseudospectral
scheme with implicit-explicit time integration. These data
have been obtained with the integration time step δt = 0.0075
and result from averaging 4800 runs with different realizations
of the stochastic noise. In all cases we start with a flat surface
at t = 0. From the data we obtain the correct values for the
different (1 + 1)-dimensional KPZ exponents, as verified in
Fig. 1 through the Family-Vicsek scaling (3) for systems
of different sizes L. In addition, at saturation L−1/2W (t ) is
given by the theoretical value 1/

√
24, indicated by the full

horizontal line.

III. FEEDBACK-CONTROLLED KPZ EQUATION

Due to its technological importance, the control of rough-
ening processes has been the subject of previous stud-
ies [9–13]. Focusing mostly on the Kuramoto-Sivashinsky

equation, various schemes have been proposed that control the
width during a growth process. In their interesting approach,
Gomes et al. [13] separate this equation into two parts, namely
a deterministic nonlinear and a stochastic linear equation.
Control actuator functions are then used in a first step to stabi-
lize the zero solution of the deterministic nonlinear equation,
whereas in a second step the roughness is controlled through
the appropriate control of the stochastic linear equation. In
contrast, for the scheme presented in the following, we do not
split the original growth equation into a linear and a nonlinear
equation.

Our starting point is the following controlled KPZ equation
on a finite one-dimensional domain of length L with periodic
boundary conditions:

∂h

∂t
= ∂2h

∂x2
+ g

2

∣∣∣∣∂h

∂x

∣∣∣∣
2

+
nc∑

n=−nc,n 
=0

bn(x)un(t ) + η(x, t ), (11)

with the 2nc time-dependent inputs un(t ) that can be manipu-
lated externally in order to change the dynamics in a desired
fashion, and the corresponding control actuator distribution
functions bn(x), which fix how the action coming from the
inputs un(t ) is distributed spatially. Commonly used control
schemes include point actuator or periodic controls. In this
work, we choose as actuators the periodic functions bn(x) =
exp (−i2πnx/L), and we treat the number of involved Fourier
modes nc as a parameter that we vary and control.

As in the previous Sec. II for the uncontrolled KPZ equa-
tion, we also use the pseudospectral method for the controlled
KPZ equation, which yields as starting point the following
coupled set of equations for the Fourier modes with wave
number k = 2πm/L:

∂t ĥ(k, t ) = −k2ĥ(k, t ) + Q(k, ĥ)

+
nc∑

n=−nc,n 
=0

b̂nmun(t ) + η̂(k, t ), (12)

with the same expression (8) for Q(k, ĥ), the Fourier trans-
form of the KPZ nonlinearity, whereas b̂nm represents the
term with k = 2πm/L from the Fourier series of the actuator
function bn.

Due to our choice for the actuator functions, b̂nm = δnm, so
that the L + 1 coupled equations (12) separate into two sets:

∂t ĥ(k, t ) = −λmĥ(k, t ) + η̂(k, t ) if 0 < |m| � nc, (13)

∂t ĥ(k, t ) = −k2ĥ(k, t ) + Q(k, ĥ)

+ η̂(k, t )if L/2 � |m| > nc, (14)

where for 0 < |m| � nc and k = 2πm/L the eigenvalues of
the controlled modes are given by

λkĥ(k, t ) = k2ĥ(k, t ) − Q(k, ĥ) − uk (t ). (15)
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In this setup the desired overall surface roughness is given
by W 2

d = limt→∞〈W 2(t )〉, with

〈W 2(t )〉 =
L/2∑

m=−L/2,m 
=0

〈ĥ2(k, t )〉

=
nc∑

m=−nc,m 
=0

〈ĥ2
c (k, t )〉 +

nc−1∑
m=−L/2

〈ĥ2(k, t )〉

+
L/2∑

m=nc+1

〈ĥ2(k, t )〉, (16)

where we use that k = 2πm/L with integer m. For the con-
trolled modes with 0 < |m| � nc, we readily obtain from
Eqs. (13) the terms

〈
ĥ2

c (k, t )
〉 = 1

2Lλm
(1 − e−2λmt ). (17)

We now assume that for the purpose of determining λm for a
given desired surface roughness, we can replace the solutions
of (15) by those from the corresponding linearized equations.
This yields for |m| > nc the terms

〈ĥ2(k, t )〉 = 1

2Lk2
(1 − e−2k2t ). (18)

Inserting (17) and (18) into (16) and taking the long-time limit
t −→ ∞, we obtain

W 2
d =

nc∑
m=−nc,m 
=0

1

2Lλm
+ L

4π2

L/2∑
m=nc+1

1

m2
, (19)

and, after choosing the same value λm = λ for each m:

λ = nc

L

1

W 2
d − L

4π2

∑L/2
m=nc+1

1
m2

. (20)

It is this value of λ that determines our manipulated inputs

uk (t ) = (k2 − λ)ĥ(k, t ) − Q(k, ĥ) (21)

in the controlled KPZ equations (12).
The integration scheme outlined in Sec. II can be applied

in a straightforward manner to integrate the controlled KPZ
equation (12) with the time-dependent inputs (21).

IV. NUMERICAL RESULTS

Previously proposed schemes to control the surface width
in a growth process [9–13] effectively aim at suppressing
the nonlinearities in the growth equations. As a result, the
time-dependent controlled surface width loses completely
the scaling properties that characterize a nonlinear growth
universality class such as KPZ. For example, the scheme
proposed in Ref. [13] results in a time-dependent increase of
the width with an exponent that is independent of the type of
nonlinearity in the uncontrolled equation. As we show in the
following, this is different in our scheme described in Sec. III,
which results in nontrivial scaling behavior of the controlled
surface width.

100 102 104
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101

W
(t)

Wd= 8
Wd= 6
Wd= 5
Wd= 4
uncontrolled

102 103 104 2

5

10

Wd= 8
Wd= 4

FIG. 2. Time-dependent surface width as obtained from the con-
trolled KPZ equation (11) with nc = 6 for different desired saturation
widths Wd . The system parameters here are L = 512, g = 8, and
δt = 0.0075. Also displayed for comparison are data for the uncon-
trolled case with the same parameter values. The inset shows that
the approach to the steady state is similar for both the uncontrolled
and controlled growth processes. The dashed black lines represent
the same data as in the main figure for the uncontrolled system, only
shifted so that the steady-state plateaus coincide with those for the
controlled data. The data for the controlled cases are an average over
at least 8000 runs with different realizations of the noise.

We start the discussion of our numerical results with Fig. 2
that shows the time evolution of the width W (t ) for different
target saturation values Wd and a fixed number of control
actuators, nc = 6. Inspection of the main panel reveals the
appearance of several distinct temporal regimes during this
controlled stochastic nonlinear dynamics. In the very early
time regime, the controlled surface width follows the width of
the uncontrolled KPZ surface, indicated by the dashed black
line in the figure, before the growth of the width is slowed
down dramatically. This remarkable behavior results from the
interplay between nonlinear dynamics for the majority of the
Fourier modes with linear dynamics for the remaining 2nc

modes. This is followed by a regime of faster surface growth
where the curves approaching different Wd finally separate
prior to saturating at their target values. As depicted in the
inset, this final approach to saturation looks very similar to
the crossover to the steady state for the uncontrolled KPZ
equation.

We emphasize that the behavior shown in Fig. 2 differs
drastically from that obtained from the scheme in Ref. [13],
where the dynamics is separated into a linear and a non-
linear equation, with the solution of the nonlinear equation
set to zero at each integration step. Consequently, the linear
evolution dominates the roughness, yielding scaling exponent
values that are independent of the specific nature of the
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nonlinearity. In contrast, in our scheme the nonlinearity con-
tinues to impact the evolution of the roughness significantly
until ultimately the targeted surface width has been reached.

The variety of multiple temporal regimes in the controlled
growth process is reminiscent of the appearance of different
regimes in competitive growth models [15]. Examples in-
clude the random deposition–random deposition with surface
relaxation (RD-RDSR) model [29], where the deposition of
particles happens with probability p, respectively 1 − p, fol-
lowing the RDSR, respectively, RD, rules, which results in a
crossover between these two distinct regimes before the sys-
tem settles into its steady state, or the restricted solid-on-solid
(RSOS) model [30] that displays a crossover from a random-
deposition to a KPZ regime, followed by the final crossover
to saturation. For this type of competitive growth systems,
a generalized scaling law has been demonstrated [15]. Using
rescaled variables Wn = W/W1 and tn = t/t1, where t1 and W1

are the (system parameter-dependent) time and surface height
at the crossover location between the first two regimes (e.g.,
between random deposition and KPZ for the RSOS model),
the following scaling relation yields a complete data collapse
for such competitive growth models:

ln(Wn)/ξ = F [ln(tn)/ξ ], (22)

where ξ = ln(W2/W1) is the logarithm of the ratio between the
steady-state value W2 and the surface width W1 at the crossover
separating the two early-time regimes, while F represents
a scaling function that only depends on the scaled variable
ln(tn)/ξ .

The behavior of the controlled surface width in our scheme
is in fact more complex than those encountered in compet-
itive growth models, displaying four distinctive dynamical
regimes. For that reason we consider the following general-
ization of Eq. (22):

ln(Wn)/ξ a = F [ln(tn)/ξ b], (23)

where the exponents a and b should be determined from
optimal data collapse. Whereas in our case W2 is given by the
target saturation width Wd , for t1 and W1 we choose the values
of t and W at the point where the data for different Wd start to
separate. We have checked that the values of the exponents a
and b we obtain from the best data collapse do not depend on
this specific choice as long as t1 and W1 are taken inside the
region where the change from slower to faster growth takes
place. We then obtain the excellent data collapse shown in
Fig. 3 with the values a = 1 and b = 2/3 for the exponents. At
this point we cannot provide an explanation why the exponent
b, which equals 1 in the competitive growth models [15], takes
on the value 2/3 during controlled KPZ surface growth. It is
worth noting, though, that we obtain the same value for this
exponent when we change the number of controlled Fourier
modes.

Figure 4 illustrates how the surface width W (t ) for a
fixed target saturation width Wd depends on the number of
controlled modes 2nc. The most notable effect is that the
crossover from the slow- to the fast-growth regime happens
earlier for larger nc. In addition, the exponent governing the
quick growth before the crossover to saturation increases in
magnitude, e.g., taking the value 0.36 for nc = 16, whereas for
nc = 64 its value is 0.41. This increase toward the value 0.5

-8 -4 0 4 8

ξ-2/3 ln tn

-2

-1

0

1

ξ-1
 ln

 W
n

Wd=8
Wd=6
Wd=5
Wd=4

FIG. 3. Generalized scaling of the time-dependent surface width
obtained from the controlled KPZ equation for different saturation
widths Wd , see Fig. 2 for the unscaled data. The system parameters
are L = 512, g = 8, nc = 6, and δt = 0.0075. The data are the aver-
age of an ensemble of at least 8000 runs with different realizations
of the noise.
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100 102 104 106
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2/3  t

1
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n c1/
4
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FIG. 4. Time-dependent surface width for various numbers 2nc

of controlled modes when the target saturation width is chosen to
be Wd = 4. The scaled data shown in the inset reveal a systematic
crossover behavior. The system parameters are L = 512, g = 8, and
δt = 0.0075. The data are the average of an ensemble of at least 8000
runs with different realizations of the noise.
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FIG. 5. Scaling of the deviations from the target saturation with
Wd = 4, where data for systems with different numbers 2nc of
controlled modes are shown. The system parameters are L = 512,
g = 8, and δt = 0.0075. The data result from an ensemble average
over at least 8000 runs with different realizations of the noise.

reflects the fact that for a larger number of controlled Fourier
modes, the contribution of the linear dynamics becomes en-
hanced. As revealed in the inset, appropriate rescaling of time
and surface width allows the collapse of the data obtained
for various nc on a single master curve in the intermediate
temporal regime prior to the inception of the fast growth and
saturation. Again, this remarkable data collapse is achieved
with nontrivial scaling exponents, whose actual values we
cannot yet predict or explain.

Our scheme allows us to control the final roughness of a
stochastically growing surface while retaining some of the
complexity of the original nonlinear growth process, but of
course it is still an approximate method. The most conse-
quential step is the omission of nonlinear contributions that
results in the expression (18) for the uncontrolled modes. As a
result of this approximation, the steady-state surface width in
fact exhibits small but systematic deviations from the target
saturation width Wd . These deviations can be regarded as
forming three different regimes depending on the number of
control actuators. In the first regime, with nc/N < 1/4, this
deviation does not depend on the strength g of the nonlinearity.
Instead, a dependence on nc/N in the form of a simple scaling
behavior is observed after some transient time:

W 2 − W 2
d =

(
nc

N

)1/2

Z (Wd ), (24)

as shown in Fig. 5. For larger values of nc/N , the strength
of the nonlinearity does affect the amount the steady-state
surface width deviates from the target value. Moreover, while
a scaling ansatz like (24) still holds to a good approximation,
the scaling exponent is found to deviate from the value 1/2, in-
creasing for 1/4 < nc/N < 1/2, while decreasing in the range
1/2 < nc/N < 1. When nc/N −→ 1, the dynamics becomes

100 102 104 106

nc
5/3  t

-0.4

-0.2

0

0.2

γ

nc= 4
nc= 8
nc= 16
nc= 32
nc= 64

100 102 104

t
-0.4

-0.2

0

0.2

γ

nc=250

FIG. 6. Data collapse when plotting the skewness γ as a function
of rescaled times n5/3

c t . Data for systems with different numbers
2nc of controlled modes are shown; the inset depicts the unscaled
data. The system parameters are L = 512, g = 8, Wd = 4, and
δt = 0.0075. The data result from an ensemble average over at least
8000 runs with different realizations of the noise.

entirely linear and no deviations from the target value are
observed anymore.

Additional insights can be gained from the skewness of the
height probability distribution,

γ =
〈(

h − 〈N〉
W 2

)3
〉
. (25)

Whereas for the uncontrolled KPZ equation the surface fluc-
tuations are Gaussian with vanishing skewness, for the con-
trolled KPZ growth process deviations from Gaussianity are
to be expected. These deviations will of course disappear for
nc/N −→ 1, when the dynamics becomes fully linear.

The time-dependent skewness γ (t ) displays interesting
features, as illustrated in Fig. 6. We first note, see the inset,
that for a small number of controlled modes with nc/N < 1/4,
the skewness changes sign as time progresses, being positive
at early times before subsequently becoming negative and
approaching a plateau value that characterizes the steady state.
As shown in the main panel, an approximate data collapse is
obtained in the regime nc/N < 1/4 if time is rescaled with
nc according to n5/3

c t . For larger values of nc/N the pattern
changes, as demonstrated in the inset of Fig. 6. The skewness
now is negative from the start; no acceptable scaling can
be achieved anymore, and the magnitude of its steady-state
value increases and approaches zero for the limiting case
nc/N −→ 1. Comparison of the behaviors of γ (t ) in Fig. 6
and of the deviations from the target surface width in Fig. 5
allows us to establish a direct connection of the properties of
the height probability distribution with both the time evolution
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and the steady-state properties of the surface width obtained
from the nonlinear feedback controlled KPZ equation.

V. CONCLUSION

Targeting specific macroscopic properties through external
feedback control for complex cooperative nonlinear stochastic
dynamics constitutes a largely open problem which entails
fundamental issues that are both important from a basic
theoretical as well as application viewpoint. For example,
controlling the overall roughness of a surface during a non-
linear stochastic growth process is of obvious technological
importance. In this paper we have presented an approach that
crucially differs from previously discussed control schemes.
Whereas other schemes basically aim at suppressing as much
as possible the nonlinear character of the underlying growth
process in order to force a desired width on the fluctuating
surface, our protocol, which accounts for the coupling be-
tween controlled and uncontrolled Fourier modes, allows us to
target the desired surface roughness while maintaining many
nontrivial scaling aspects of the underlying nonlinear growth
process.

In this work we focus on the one-dimensional KPZ equa-
tion as a paradigmatic example, but our scheme can of course
be generalized to other nonlinear stochastic growth processes
like the Kuramoto-Sivashinsky equation. Using a robust pseu-
dospectral third-order Runge-Kutta scheme with mixed time
integration, we have explored both the transient and steady-
state surface fluctuations upon choosing periodic functions
as actuators. A particular emphasis of our investigation has
been the impact of changing the number of controlled Fourier
modes.

Targeting with our scheme to a desired steady-state value
the overall interface width yields intriguingly complex tem-
poral behavior. We may even force the surface to have
either a smaller or larger roughness than that of the un-
controlled growth process with the same system parameters.

Interestingly, this can be achieved by retaining much of the
scale-invariant complex dynamics of the underlying KPZ
growth process, as revealed by the nontrivial scaling prop-
erties of our data. An important parameter is the number of
actuator functions used in the control scheme, as it determines
the mix and relative weight between nonlinear and linear dy-
namics. Various different crossover regimes can be identified,
as increasing the number of actuator functions pushes the
system’s dynamics further away from the uncontrolled KPZ
dynamics and closer to a fully linear relaxation kinetics. These
different regimes are also encoded in the height probability
distribution, as we have shown by investigating its skewness.

Our work provides an obvious starting point for numerous
possible future investigations. We have focused here entirely
on a numerical study, but it will be worth exploring whether
some of the observed scaling properties, specifically, the val-
ues of the various crossover scaling exponents, can be under-
stood through an analytical treatment. The scheme presented
here can, as already mentioned, be applied and extended to
other situations, including the experimentally more relevant
(2 + 1)-dimensional KPZ equation. Finally, other related con-
trol schemes can be imagined and constructed that might
display different properties in the transient and/or steady-state
regimes.
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