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Cascading failures in networks of heterogeneous node behavior

O. Smith,1,* J. Crowe,2 E. Farcot,1 R. D. O’Dea,1 and K. I. Hopcraft1
1School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom

2Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 3 October 2019; accepted 11 February 2020; published 26 February 2020)

Variability in the dynamical function of nodes comprising a complex network impacts upon cascading failures
that can compromise the network’s ability to operate. Node types correspond to sources, sinks, or passive
conduits of a current flow, applicable to renewable electrical power microgrids containing a variable number
of intermittently operating generators and consumers of power. The resilience to cascading failures of ensembles
of synthetic networks with different topology is examined as a function of the edge current carrying capacity
and mix of node types, together with exemplar real-world networks. While a network with a homogeneous
composition of node types can be resilient to failure, one with an identical topology but with heterogeneous
nodes can be strongly susceptible to failure. For networks with similar numbers of sources, sinks, and passive
nodes the mean resilience decreases as networks become more disordered. Nevertheless all network topologies
have enhanced regions of resilience, accessible by the manipulation of node composition and functionality.
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Naturally occurring examples of complex networks in-
clude, inter alia, transportation, economic, and social struc-
tures, biological systems, and power grids. When a dynamic
is imposed upon these structures, their ability to operate can
be compromised by a part of the network, be it an edge or
node, developing a fault which then spreads in a cascade
throughout the entirety [1,2]. Catastrophic events such as
blackouts in electrical grids [3], crashes in financial markets
[4,5], and the spread of congestion and overloads in the
Internet and transportation networks [6], can be described as
cascading failures. A threshold cascade model was introduced
in Ref. [7], in which a node in a network fails with probability
proportional to the number of adjacent failed nodes. It showed
that networks with heterogeneous degree distributions have
increased resilience. A flow-based cascade model, applied
to large-scale electrical grids and the Internet, was studied
in Refs. [8,9] and highlighted the vulnerability of networks
whose nodes possess heterogeneous capacities and bear a load
proportional to their degree. Selective pruning of a network
topology was shown to help arrest cascades in Refs. [10,11],
while a rewiring scheme to suppress cascades was considered
in Ref. [12]. Cascades have been studied on large-scale power
grid topologies in Ref. [13], and in Ref. [14] which showed
that large-scale cascades are most likely to be triggered by
edges in the vicinity of a network’s core. Cascades have
also been investigated using a continuous-time model [15],
oscillator networks [16,17], and in so-called interdependent
or multiplex networks [18,19].

These studies consider networks with fixed node types and
behavior; however, Ref. [20] showed that different node types
affect network efficiency and redundancy, which is allied to
resilience. This Rapid Communication will identify regimes
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of resilience to cascading failure in terms of such heterogene-
ity of node types, be they generators, consumers, or passive
carriers of flow. This is motivated by the increasing prolifera-
tion of small renewable energy resources in modern electrical
grids. Such microgrids possess a variable number of mutable
consumers and generators of power that are typically spread
throughout the networks, and these intermittent sources and
sinks generally have small output and consumption. This
contrasts with the rigid structure of traditional power grids
which contain a small number of large-capacity generators.
Understanding how this increased spread in location and
variability in node function affects the operation, stability, and
robustness of electrical networks is an important and ongoing
interdisciplinary problem [21–24] that we address.

We consider networks G = (V, E ), with n = |V| nodes and
m = |E | edges, wherein ns nodes are sources of flow, nd are
sinks, and the remaining np are passive or empty. Each edge
e ∈ E has a flow volume Fe, computed using the linearized dc
power flow equation [25]

Fe = 〈Ee, θ〉/xe. (1)

Here, xe is the reactance of edge e and E ∈ Rn×m is the
node-edge incidence matrix, with Ee its eth column. The inner
product is denoted by 〈·, ·〉 and θ ∈ Rn is the vector of node
voltage phases determined from

Lθ = P, (2)

where L = E diag(Y )ET is the weighted graph Laplacian and
Y ∈ Rm the vector with entries 1/xe. The flow injection vector
P ∈ Rn has entries

Pv =
⎧⎨
⎩

(1 + ζv )Ptot/ns, if node v is a source,
−(1 + ζv )Ptot/nd , if node v is a sink,

0, otherwise,
(3)

2470-0045/2020/101(2)/020301(5) 020301-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.020301&domain=pdf&date_stamp=2020-02-26
https://doi.org/10.1103/PhysRevE.101.020301


O. SMITH et al. PHYSICAL REVIEW E 101, 020301(R) (2020)

0 0.250

1

0

1

0 0.25

(a) (b)

/ /

FIG. 1. The mean fraction S of surviving edges as a function of
edge capacity α for ensembles of 200 Watts-Strogatz networks with
n = 50, K = 4, ns = 10, and nd = 40. (a) and (b) are for q = 0.1 and
1, respectively.

with Ptot the total power injected into the network and ζv a
random variable used to induce heterogeneity in source and
sink strength.

Solutions of Eqs. (1) and (2) describe a flow where supply
and demand is matched, and this will be enforced throughout
a cascading failure, which proceeds as follows. A maximum
capacity α is assigned to each edge of the network and a
cascade is initiated by computing the equilibrium flow from
Eqs. (1) and (2) and removing the most heavily loaded edge,
then recalculating the flow Fe on each edge in this modi-
fied network. If Fe > α on any edge, that edge is deemed
overloaded and removed. This process continues until the
network attains a final equilibrium with all edges carrying a
flow �α. During this cascade the network may fragment into
separate connected components, and so the algorithm must
be recursively applied for each new connected component in
which conservation of flow must be ensured. Flow surplus or
deficit is prevented by adjusting the source and sink strengths.
We assume that sources and sinks alter their demand and
supply reciprocally. If a component contains n′

s sources, n′
d

sinks, and a flow supply surplus δ, then each source decreases
its output by δ/2n′

s and each sink increases its demand by
δ/2n′

d . If the component contains either no sources or no sinks
then the flow cannot be balanced and the entire component is
removed. Balancing of power by nonreciprocal source/sink
behavior is discussed later, together with other models for
initiating the cascade.

The network eventually attains a final state, with the frac-
tion of surviving edges relative to the original number denoted
by S . A value of S = 0 indicates an entire network failure;
S = 1 denotes complete resilience. To assess the resilience
of networks to failure, S is computed as a function of α,
as displayed in Figs. 1(a) and 1(b) for an ensemble of 200
random networks generated by the Watts-Strogatz method
[26]. These are of size n = 50, comprising ns = 10 and nd =
40 nodes, with locations chosen uniformly at random, and
chosen rewiring parameters q = 0.1, 1 characteristic of small-
world and Poisson networks, respectively. Both networks are
susceptible to substantial disruption for capacities α � 0.06
and are essentially robust for α � 0.2. Half of the network
survives at the critical value αc, for which S (αc) = 1/2. The
smaller αc is, the more resilient the network will be to failure.
Figure 1 shows that αc increases as the networks become
more Poissonian. To operate nontrivially the network must
initially contain some nonzero capacity α∗, and this is defined
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FIG. 2. (a) Periodic ring lattice with K = 2 containing ns =
2 sources and nd = n − 2 sinks with source separation d .
(b) S (α/α∗, d ) for K = 2. (c) S for K = 10. (d) ρ(K ) for periodic
ring lattices of different sizes, with composition ns = 1 and nd =
n − 1, showing the approximation K/(K − 1).

from the initial flow configuration F0 to be α∗ = max(F0). The
ensemble average values of α∗ are also shown in Figs. 1(a)
and 1(b).

The fraction of surviving edges S depends on network
size, topology, and both composition and location of the node
types. To gain insight into this dependence it is instructive
to consider an exemplar network of n nodes with a simple
ring structure, such as that illustrated in Fig. 2(a) that has
ns = 2, nd = n − 2, common degree K = 2, and shortest path
distance between the two sources d . The dependence of S on
the configuration space of α/α∗ and d is shown in Fig. 2(b),
within which distinct regions with defined boundaries can be
identified analytically [27], as overlaid in the figure. Crucially
for α/α∗ � 2, this network is resilient to cascading failures
independent of the relative location of the sources, whereas
for α/α∗ < 2 the network is less robust with resilience con-
ditional on the flow capacity and d . For networks of larger
degree K these conditional boundaries erode due to the mul-
tiple paths along which the flow can equilibrate, as shown
in Fig. 2(c). Nevertheless, the resilience boundary remains
robust, being independent of d and occurring where α/α∗ ≈
K/(K − 1) [27]. This can be understood by considering the
ring network with common degree K when ns = 1, nd =
n − 1, with initial flow apportioned equally across the K edges
emanating from the single source. These edges are the most
heavily loaded and so α∗ ≈ Ptot/K . When one of these edges
is removed to initiate a cascade, the flow is redistributed
among the K − 1 remaining edges connected to the source and
these must now supply flow to the rest of the network. Con-
sequently, αc ≈ Ptot/(K − 1) and therefore αc/α∗ ≈ K/(K −
1). This relationship holds for larger networks, as shown in
Fig. 2(d). The observed resilience boundary prompts defining
a metric ρ to be

ρ = αc

α∗
≡ S−1(1/2)

max(F0)
, (4)
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FIG. 3. Variation of ρ in ensembles of 2000 random networks.
(a) ρ̄(K̄ ) in Watts-Strogatz networks of size n and rewiring parameter
q, with ns = 2, nd = n − 2. The dashed line is K̄/(K̄ − 1). (b) P(ρ )
in random networks with (ns, nd , np) = (30, 30, 0). (i) q = 0.1 and
(ii) q = 0.6. Both are fitted to lognormal(μ, σ 2) with μ = 1.18, 1.63,
and σ = 0.25, 0.26, respectively, and confirmed with Kolmogorov-
Smirnov tests. (iii) and (iv) are for scale-free networks with m0 = 3,
m = 4, respectively.

which gauges the relative increase in edge capacity required
to survive a cascade. The smaller the value of ρ, the more
resilient is the network.

For ensembles of random networks ρ does not take a single
value but rather is a random variable. The approximation for
ρ when ns = 2, nd = n − 2 is replaced by ρ̄ ≈ K̄/(K̄ − 1),
where K̄ is the mean degree that depends on n and q as
shown in Fig. 3(a). For Watts-Strogatz networks the proba-
bility density P(ρ) is log-normal with a mean value ρ̄ that
scales with network size n but with a similar standard devia-
tion σ ≈ 0.255 across the full range of rewiring parameters
q ∈ [0, 1] that encompass small-world to Poisson network
topologies. This data collapse is illustrated in Fig. 3(b)(i,ii) for
q = 0.1, 0.6, respectively; Fig. 3(b)(iii,iv) shows P(ρ) for two
scale-free networks that have a power-law degree distribution
with initial node degrees m0 = 3, 4, which are generated using
the Albert-Barabasi preferential attachment method [28]. The
range of ρ is smaller than that found for Watts-Strogatz
networks, thereby indicating a greater resilience, and this
agrees with earlier studies predicated on random edge removal
[29,30]. When ns ≈ nd the distribution is bimodal, with the
larger component of the distribution corresponding to when
the edge initiating the cascade is connected to a hub. Networks
grown by preferential attachment, such as social networks and
the Internet, possess a scale-free structure, whereas electrical
grids and road/rail transportation networks do not because
their structures are often dictated by geographical constraints.
This Rapid Communication is concerned chiefly with elec-

trical grids, so from here networks generated by the Watts-
Strogatz procedure shall provide the structural substrate on
which general results regarding resilience to failures can be
deduced.

To explore the dependence of ρ on the composition of node
types, note that the condition ns + nd + np = n constrains the
space of possible node configurations to a triangular simplex
as illustrated in Fig. 4(a). The length of an edge of the simplex
is the size n of the network and any point on the triangle rep-
resents a network with a unique node-type composition; the
dot in the figure represents (ns, nd , np) = (5, 10, 5). Selecting
a network with given (q, K, n), and node types according to
(ns, nd , np) that are located uniformly at random, the mean
resilience ρ̄ is calculated from 200 realizations and its value
projected onto the corresponding location on the simplex.

Figure 4(b) shows ρ̄ for regular lattices (i.e., q = 0) with
n = 100, K = 4. The largest values of ρ̄ and therefore the
lowest resilience are located down two edges of the simplex,
corresponding to networks with large numbers of sinks and
very few sources, or vice versa. This means that the few source
(or sink) nodes must generate (or absorb) the flow, and so
incident edges must carry large flow volumes, making the
network susceptible to failure. Resilient networks are spread
throughout the interior region, which agrees with the intuition
that a mix of node types has a high degree of redundancy and
is therefore resilient because of the multiple flow paths such
networks contain.

As q increases and the network structure becomes more
random the morphology of ρ̄ changes, the trend being shown
in Figs. 4(c)–4(e). A band of greatest ρ̄ broadens from the
edges, moving into the interior region, until for q ≈ 0.12 the
largest values of ρ̄ are found in the interior of the simplex.
This represents an inversion in the resilience measure, coun-
terintuitively showing that for networks in this regime of q
a more heterogeneous mix of node types give less resilience
than does a network with a few large suppliers of power. This
behavior of ρ̄ continues progressively until q = 1 (a Poisson
network), where ρ̄ has largest values in the center of the
simplex and lowest values along two edges. In all cases the
morphology of ρ̄ is symmetric about the centerline, reflecting
the reciprocity between sources and sinks.

The inversion in the behavior of ρ̄ with q can be gauged
by determining the value of �ρ = ρ̄left − ρ̄center, where ρ̄left

and ρ̄center are the values of ρ̄ at the bottom left and center
of the simplex, respectively. For regular lattices �ρ > 0,
whereas for Poisson networks �ρ < 0. Figure 5(a) shows that
for networks with n = 60, �ρ(q) decreases monotonically,
the inversion occurring at the value of q where the network
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FIG. 4. (a) A sketch of the node configuration space simplex. The black dot represents a configuration of (ns, nd , np) = (5, 10, 5). (b)–(e)
ρ̄ projected onto the simplex for networks of size n = 100, K = 4, and with q = 0, 0.2, 0.4, and 1, respectively.
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(b)(a)

FIG. 5. (a) �ρ(q) for n = 60. (b) �ρ(q, n) where the dashed line
is the locus of the inversion �ρ = 0. All data points averaged over
200 realizations.

transitions from approximate order to the small-world regime.
Figure 5(b) shows the dependence of �ρ with q and n; �ρ =
0 is shown by the line and denotes the locus of the inversion,
which is approximately independent of network size.

The preceding results consider homogeneous flow injec-
tion [i.e., ζv = 0 in Eq. (3)] and edge capacity, recipro-
cal source-sink behavior, and cascades triggered by the re-
moval of the most heavily loaded edge, which serve as a
model for overloading failure. The impact of varying these
model choices, and thus introducing several different types
of heterogeneity, will now be considered. Cascades may be
triggered by other unpredictable events such as lightning
strikes or software failures and, moreover, generator output
and consumer usage will vary. The behaviors and symmetry
properties highlighted above persist if the cascade is initiated
with a probability proportional to its initial load [27] and/or
if the flow injection is perturbed by normally distributed noise
with zero mean and the standard deviation selected to model
generator variability, while still preserving node type in all
realizations that we consider. These behaviors also persist
for sources and sinks with gamma distributed strengths; see
Ref. [27]. Unlike Refs. [8,10], this Rapid Communication has
considered networks whose edge capacities are homogeneous.
This choice is motivated by smaller-scale power networks that
form our primary motivation, and whose dominant source
of heterogeneity is node behavior rather than edge capacity.
Nonetheless, the impact of edge capacity heterogeneity is in-
vestigated by perturbing α with Gaussian noise. These results,
shown in Ref. [27], demonstrate that the features observed in
the homogeneous case persist. However, for networks wherein
source-sink reciprocity is broken, the morphology of the sim-
plex plots is likewise no longer symmetric. This is illustrated
in Ref. [27] for the case when only sink nodes have the ability
to adjust their flow output to match supply and demand.

The resilience of the Austrian national grid is considered
in Fig. 6(b). This network comprises n = 67, m = 85, and
K̄ = 2.53, where each node represents a subnetwork of node
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FIG. 6. (a) Power grid topology of Austria, constructed using
data from Ref. [31]. (b) ρ̄ for this grid projected onto the node
configuration simplex. Each pixel is an ensemble average over 100
source-sink locations.

types and edges at both meso- and microscales that are un-
resolved by the data of Ref. [31]. Figure 6(b) shows ρ̄ with
each pixel entry averaged from 100 realizations of node-type
location and with the sources and sinks assumed to have
reciprocal strengths. The resilience landscape is characteristic
of a state intermediate of those shown in Figs. 4(c) and 4(d)
[27] includes two real-world examples of power grids which
conform to the archetypes in Fig. 4.

This Rapid Communication has considered how the
resilience of networks to cascading failures is affected by
the composition of node types in addition to their topology.
For the case of grids comprising a few large generators,
Fig. 3(a) shows that the resilience can be approximated by
K̄/(K̄ − 1), where K̄ = K̄ (q, n). For the case of renewable
energy electrical grids, the resilience is found using simplexes
of the type shown in Fig. 4. Here, the appropriate node
types correspond to locations of passivity, generation, or
consumption of power, and these functions will mutate
diurnally in response to changes in demand [24]. Crucially,
although networks of a given topology with a homogenous
node type composition can be resilient to failure, this is no
longer the case for a network of the same topology but with
a heterogeneous composition of node types. Regular lattices
and ordered networks are most resilient when the number
of node types are similar. This changes as the network’s
structure becomes increasingly disordered, with the least
resilient configurations becoming those with similar numbers
of node types. Despite this trend, there still exist regimes of
resilience with a range of node-type compositions that can be
accessed for highly randomized network structures.
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