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The free energy of a model of uniformly weighted lattice knots of length n and knot type K confined to
a lattice cube of side length L−1 is given by FL (φ) = − 1

V log pn,L (K ), where V = L3 and where φ = n/V
is the concentration of monomers of the lattice knot in the confining cube. The limiting free energy of the
model is F∞(φ) = limL→∞ FL (φ) and the limiting osmotic pressure of monomers leaving the lattice knot to
become solvent molecules is defined by �∞(φ) = φ2 d

dφ
[F∞(φ)/φ]. I show that, under very mild assump-

tions, the functions PL (φ) = φ2 d
dφ

[FL (φ)/φ]|n and �L (φ) = φ2 d
dφ

[FL (φ)/φ]|L are finite-size approximations
of �∞(φ).
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The comment by A. Y. Grosberg contains useful infor-
mation. However, some of this information is not relevant
in context of the original manuscript, which appeared in
Physical Review E [1]. The discrete nature of the lattice
makes determining the osmotic pressure of monomers in a
lattice knot confined to a cubical cavity or confining cube (see
Fig. 2 in Ref. [1]) sufficiently complicated that other ap-
proaches must be followed (and in particular since it is not
numerically feasible to work with lattices larger than 153).

Suppose the confining cube has side length L−1 so that it
contains V = L3 lattice sites (V is the volume of the cube).
The length of the lattice knot is n, and if each vertex in the
lattice knot is a monomer, then the monomer concentration
is φ = n

V in lattice units. The free energy per unit volume is
defined for rational values of φ by

FL(φ) = − 1

V
log pn,L (K ), (1)

where pn,L(K ) is the number of distinct lattice knots of type K ,
of length n, in a cube of volume V = L3. This, in particular,
is defined for rational values of φ = n

V , and as L → ∞ the
rational values of φ becomes dense in [0,1] so that the limit

F∞(φ) = lim
L→∞

FL(φ) (2)

exists under very mild assumptions for every rational φ on
[0,1]. Thus, F∞(φ) can be extended to a continuous function
on [0,1]. While it seems difficult to prove, it is expected,
and supported by numerical data, that F∞(φ) is a convex
function, and so is continuous and is differentiable almost
everywhere in [0,1]. By interpolating the function FL(φ), it
can be extended to a continuous and differentiable function of
φ on [0,1] as well, in which case Eq. (2) still applies, but now
for every φ ∈ [0, 1].

Thus FL(φ) converges to F∞(φ) and differs from it only by
finite-size corrections. Notice that F∞(φ) is only a function of
φ; that is,

FL(φ) = F∞(φ) + ε(n, L), (3)

where ε(n, L) is a function of n and L (and so of φ) and
limL→∞ ε(n, L) = 0 identically for any sequence of n [that is,
ε(n, L) = o(1)].

The limiting osmotic pressure is defined by

�∞(φ) = − lim
V →∞

d Ftot

dV
= φ2 d

dφ

[
1
φ

F∞(φ)
]
, (4)

where Ftot is the total free energy of the model. Using a
reasonable approximation to F∞(φ), e.g., a Flory-Huggins
formula, shows that �∞(φ) is a non-negative function of φ

(as argued in the Comment by Grosberg).
For finite L the derivative at fixed n,

PL(φ) = φ2 d

dφ
[FL(φ)/φ] |n, (5)

is identified as the finite size osmotic pressure in the Comment
by Grosberg (and the derivative to φ is taken by varying L (or
the volume V ) while fixing n. In particular, it is expected that

�∞(φ) = lim
L→∞

PL(φ). (6)

Define, similarly to the above,

�L(φ) = φ2 d

dφ
[FL(φ)/φ] |L. (7)

This corresponds to �wrong in the Comment by Grosberg [see
Eq. (3) therein]. Substitute Eq. (3) and simplify to see that

�L(φ) − �∞(φ) = n2 d

dn
[ε(n, L)/n] |L. (8)

Since ε(n, L) → 0 as L → ∞, it follows again, under mild
assumptions [namely, that ε(n, L) = o(1) and ε′(n, L) =
o(n−1)], that the right-hand side vanishes as L approaches
infinity (and so as n approaches infinity at fixed φ). This
results in

lim
L→∞

�L(φ) = lim
L→∞

PL(φ) = �∞(φ). (9)

In other words, both �L(φ) [Eq. (7)] and PL(φ) [Eq. (5)]
are finite-size approximations to the limiting osmotic pressure
�∞(φ), as should be expected.
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The function �L(φ) is numerically accessible, and it is
determined in the original paper [1]. PL(φ) is not well de-
fined in the lattice, in particular since a derivative to V
(or to L) is not easily defined or computed in the lattice.
Using finite differences to L involves relatively large changes
in volume which gives unreliable results or gives results
with strong correction terms with parity effects. Thus, it is
more prudent to compute �L(φ) as a finite approximation
to �∞(φ) using numerical derivatives on discrete data ob-
tained by varying the length of the lattice knot while keeping
L fixed.

The convergence of FL(φ) to F∞(φ) is shown in Fig. 4 of
Ref. [1], and these curves converge quickly to the limiting
free energy F∞(φ). When L = 15 the finite-size corrections
are small as seen, for example, in the collapse of �L(φ) to a
limiting curve in Fig. 5 of Ref. [1]. A physical interpretation
of �L(φ) is given following Eq. (3) in Ref. [1]. The numerical
results are plotted in Fig. 5 of that paper for unknots. Rescal-
ing the data for unknots in Fig. 7 shows that there is a regime
where the approximations are negative (this regime moves to
smaller concentration φ with increasing L, and vanishes, as
expected, in the limit L → ∞). These negative values arise in
finite-size corrections and is caused by entropic forces driving
monomers into or out of the lattice knot (keeping its length
near an equilibrium value). In the limit L → ∞ these results
are consistent with �∞(φ) � 0. Similar results are seen for
the trefoil and the figure eight knot.

The scaling of the negative interval uncovered in Figs. 7, 9,
and 10 is predicted by a scaling analysis involving the metric
exponent of lattice polygons in Ref. [1]. This supports the
notion that �L(φ) is a measure of the entropic forces that
drive the exchange of monomers between the solvent and the
lattice knot. Overall I am very confident in the prediction of
stable equilibrium lengths for the lattice knots simulated in
this study (for example, the lattice trefoil will have a stable
average length approximately equal to 3.94 L5/3 for values of
L which are not too small).

One final observation: In a strict sense the lattice model
is not athermal. The partition sum is pn,L(K ) [see Eq. (1) in
Ref. [1]] so that the state space has a uniform distribution;
that is, this model is at infinite temperature (since all states
have equal weight). On the other hand, athermal conditions
would hold if monomer-monomer interactions are energet-
ically indistinguishable from monomer-solvent interactions.
In this lattice model, the monomer-monomer interaction is a
hard-core repulsion, and the monomer-solvent interaction is
zero (that is, lattice sites are empty and do not interact with
monomers). In an athermal system the Flory interaction pa-
rameter χ = 0, and the numerical simulation in Ref. [2] shows
emphatically (and unsurprisingly) that χ > 0 numerically for
this model.
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