Reply to "Comment on 'Osmotic pressure of compressed lattice knots'"

E. J. Janse van Rensburg

Department of Mathematics & Statistics, York University, Toronto, Ontario, Canada M3J 1P3

(Received 2 December 2019; published 9 January 2020)

The free energy of a model of uniformly weighted lattice knots of length *n* and knot type *K* confined to a lattice cube of side length L-1 is given by $F_L(\phi) = -\frac{1}{V} \log p_{n,L}(K)$, where $V = L^3$ and where $\phi = n/V$ is the concentration of monomers of the lattice knot in the confining cube. The limiting free energy of the model is $F_{\infty}(\phi) = \lim_{L \to \infty} F_L(\phi)$ and the limiting osmotic pressure of monomers leaving the lattice knot to become solvent molecules is defined by $\Pi_{\infty}(\phi) = \phi^2 \frac{d}{d\phi} [F_{\infty}(\phi)/\phi]$. I show that, under very mild assumptions, the functions $P_L(\phi) = \phi^2 \frac{d}{d\phi} [F_L(\phi)/\phi]|_n$ and $\Pi_L(\phi) = \phi^2 \frac{d}{d\phi} [F_L(\phi)/\phi]|_L$ are finite-size approximations of $\Pi_{\infty}(\phi)$.

DOI: 10.1103/PhysRevE.101.016502

The comment by A. Y. Grosberg contains useful information. However, some of this information is not relevant in context of the original manuscript, which appeared in Physical Review E [1]. The discrete nature of the lattice makes determining the osmotic pressure of monomers in a lattice knot confined to a cubical cavity or confining cube (see Fig. 2 in Ref. [1]) sufficiently complicated that other approaches must be followed (and in particular since it is not numerically feasible to work with lattices larger than 15^3).

Suppose the confining cube has side length L-1 so that it contains $V = L^3$ lattice sites (V is the *volume* of the cube). The length of the lattice knot is *n*, and if each vertex in the lattice knot is a monomer, then the monomer concentration is $\phi = \frac{n}{V}$ in lattice units. The free energy per unit volume is defined for rational values of ϕ by

$$F_L(\phi) = -\frac{1}{V} \log p_{n,L}(K), \qquad (1)$$

where $p_{n,L}(K)$ is the number of distinct lattice knots of type K, of length n, in a cube of volume $V = L^3$. This, in particular, is defined for rational values of $\phi = \frac{n}{V}$, and as $L \to \infty$ the rational values of ϕ becomes dense in [0,1] so that the limit

$$F_{\infty}(\phi) = \lim_{L \to \infty} F_L(\phi) \tag{2}$$

exists under very mild assumptions for every rational ϕ on [0,1]. Thus, $F_{\infty}(\phi)$ can be extended to a continuous function on [0,1]. While it seems difficult to prove, it is expected, and supported by numerical data, that $F_{\infty}(\phi)$ is a convex function, and so is continuous and is differentiable almost everywhere in [0,1]. By interpolating the function $F_L(\phi)$, it can be extended to a continuous and differentiable function of ϕ on [0,1] as well, in which case Eq. (2) still applies, but now for every $\phi \in [0, 1]$.

Thus $F_L(\phi)$ converges to $F_{\infty}(\phi)$ and differs from it only by finite-size corrections. Notice that $F_{\infty}(\phi)$ is *only* a function of ϕ ; that is,

$$F_L(\phi) = F_{\infty}(\phi) + \epsilon(n, L), \qquad (3)$$

where $\epsilon(n, L)$ is a function of *n* and *L* (and so of ϕ) and $\lim_{L\to\infty} \epsilon(n, L) = 0$ identically for any sequence of *n* [that is, $\epsilon(n, L) = o(1)$].

The limiting osmotic pressure is defined by

$$\Pi_{\infty}(\phi) = -\lim_{V \to \infty} \frac{dF_{\text{tot}}}{dV} = \phi^2 \frac{d}{d\phi} \left[\frac{1}{\phi} F_{\infty}(\phi) \right], \qquad (4)$$

where F_{tot} is the total free energy of the model. Using a reasonable approximation to $F_{\infty}(\phi)$, e.g., a Flory-Huggins formula, shows that $\Pi_{\infty}(\phi)$ is a non-negative function of ϕ (as argued in the Comment by Grosberg).

For finite *L* the derivative at fixed *n*,

$$P_L(\phi) = \phi^2 \frac{d}{d\phi} \left[F_L(\phi)/\phi \right]|_n, \tag{5}$$

is identified as the finite size osmotic pressure in the Comment by Grosberg (and the derivative to ϕ is taken by varying L (or the volume V) while fixing n. In particular, it is expected that

$$\Pi_{\infty}(\phi) = \lim_{L \to \infty} P_L(\phi).$$
 (6)

Define, similarly to the above,

$$\Pi_L(\phi) = \phi^2 \frac{d}{d\phi} \left[F_L(\phi)/\phi \right] |_L.$$
(7)

This corresponds to Π_{wrong} in the Comment by Grosberg [see Eq. (3) therein]. Substitute Eq. (3) and simplify to see that

$$\Pi_L(\phi) - \Pi_\infty(\phi) = n^2 \frac{d}{dn} \left[\epsilon(n, L)/n \right] |_L.$$
(8)

Since $\epsilon(n, L) \to 0$ as $L \to \infty$, it follows again, under mild assumptions [namely, that $\epsilon(n, L) = o(1)$ and $\epsilon'(n, L) = o(n^{-1})$], that the right-hand side vanishes as L approaches infinity (and so as *n* approaches infinity at fixed ϕ). This results in

$$\lim_{L \to \infty} \Pi_L(\phi) = \lim_{L \to \infty} P_L(\phi) = \Pi_\infty(\phi).$$
(9)

In other words, both $\Pi_L(\phi)$ [Eq. (7)] and $P_L(\phi)$ [Eq. (5)] are finite-size approximations to the limiting osmotic pressure $\Pi_{\infty}(\phi)$, as should be expected.

The function $\Pi_L(\phi)$ is numerically accessible, and it is determined in the original paper [1]. $P_L(\phi)$ is not well defined in the lattice, in particular since a derivative to V (or to L) is not easily defined or computed in the lattice. Using finite differences to L involves relatively large changes in volume which gives unreliable results or gives results with strong correction terms with parity effects. Thus, it is more prudent to compute $\Pi_L(\phi)$ as a finite approximation to $\Pi_{\infty}(\phi)$ using numerical derivatives on discrete data obtained by varying the length of the lattice knot while keeping L fixed.

The convergence of $F_L(\phi)$ to $F_{\infty}(\phi)$ is shown in Fig. 4 of Ref. [1], and these curves converge quickly to the limiting free energy $F_{\infty}(\phi)$. When L = 15 the finite-size corrections are small as seen, for example, in the collapse of $\Pi_L(\phi)$ to a limiting curve in Fig. 5 of Ref. [1]. A physical interpretation of $\Pi_L(\phi)$ is given following Eq. (3) in Ref. [1]. The numerical results are plotted in Fig. 5 of that paper for unknots. Rescaling the data for unknots in Fig. 7 shows that there is a regime where the approximations are negative (this regime moves to smaller concentration ϕ with increasing L, and vanishes, as expected, in the limit $L \rightarrow \infty$). These negative values arise in finite-size corrections and is caused by entropic forces driving monomers into or out of the lattice knot (keeping its length near an equilibrium value). In the limit $L \rightarrow \infty$ these results are consistent with $\Pi_{\infty}(\phi) \ge 0$. Similar results are seen for the trefoil and the figure eight knot.

The scaling of the negative interval uncovered in Figs. 7, 9, and 10 is predicted by a scaling analysis involving the metric exponent of lattice polygons in Ref. [1]. This supports the notion that $\Pi_L(\phi)$ is a measure of the entropic forces that drive the exchange of monomers between the solvent and the lattice knot. Overall I am very confident in the prediction of stable equilibrium lengths for the lattice knots simulated in this study (for example, the lattice trefoil will have a stable average length approximately equal to $3.94 L^{5/3}$ for values of *L* which are not too small).

One final observation: In a strict sense the lattice model is not athermal. The partition sum is $p_{n,L}(K)$ [see Eq. (1) in Ref. [1]] so that the state space has a uniform distribution; that is, this model is at infinite temperature (since all states have equal weight). On the other hand, athermal conditions would hold if monomer-monomer interactions are energetically indistinguishable from monomer-solvent interactions. In this lattice model, the monomer-monomer interaction is a hard-core repulsion, and the monomer-solvent interaction is zero (that is, lattice sites are empty and do not interact with monomers). In an athermal system the Flory interaction parameter $\chi = 0$, and the numerical simulation in Ref. [2] shows emphatically (and unsurprisingly) that $\chi > 0$ numerically for this model.

E.J.J.v.R. is grateful for support from NSERC (Canada) in the form of a Discovery Grant (RGPIN-2019-06303).

[1] E. J. Janse van Rensburg, Phys. Rev. E 100, 012501 (2019).

[2] E. J. Janse van Rensburg, J. Phys. A 53, 015002 (2019).