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The free energy of a model of uniformly weighted lattice knots of length n and knot type K confined to
a lattice cube of side length L—1 is given by Fy(¢) = —% log pn.r(K), where V = L* and where ¢ = n/V
is the concentration of monomers of the lattice knot in the confining cube. The limiting free energy of the
model is Fy(¢p) = lim;_, o, F1(¢p) and the limiting osmotic pressure of monomers leaving the lattice knot to
become solvent molecules is defined by Iy (¢) = ¢>2£ [Foo(@)/@]. 1 show that, under very mild assump-

tions, the functions Py (¢) = ¢z£ [FL(¢)/@]l, and T, (¢p) = d)Zﬁ [FL(¢)/¢]l. are finite-size approximations

of Ieo ().
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The comment by A. Y. Grosberg contains useful infor-
mation. However, some of this information is not relevant
in context of the original manuscript, which appeared in
Physical Review E [1]. The discrete nature of the lattice
makes determining the osmotic pressure of monomers in a
lattice knot confined to a cubical cavity or confining cube (see
Fig. 2 in Ref. [1]) sufficiently complicated that other ap-
proaches must be followed (and in particular since it is not
numerically feasible to work with lattices larger than 15%).

Suppose the confining cube has side length L—1 so that it
contains V = L3 lattice sites (V is the volume of the cube).
The length of the lattice knot is n, and if each vertex in the
lattice knot is a monomer, then the monomer concentration
is ¢ = § in lattice units. The free energy per unit volume is
defined for rational values of ¢ by

1
FL(¢) = _Vlogpn,L(K)» (D

where p, 1 (K) is the number of distinct lattice knots of type K,
of length n, in a cube of volume V = L3. This, in particular,
is defined for rational values of ¢ = %, and as L — oo the
rational values of ¢ becomes dense in [0,1] so that the limit

Fa(9) = lim FL(@) @

exists under very mild assumptions for every rational ¢ on
[0,1]. Thus, Fs(¢) can be extended to a continuous function
on [0,1]. While it seems difficult to prove, it is expected,
and supported by numerical data, that F,(¢) is a convex
function, and so is continuous and is differentiable almost
everywhere in [0,1]. By interpolating the function F7(¢), it
can be extended to a continuous and differentiable function of
¢ on [0,1] as well, in which case Eq. (2) still applies, but now
for every ¢ € [0, 1].

Thus F7(¢) converges to Fy,(¢) and differs from it only by
finite-size corrections. Notice that Fi,(¢) is only a function of
¢; that is,

FL(¢) = Foo(¢) + €(n, L), 3)
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where €(n, L) is a function of n and L (and so of ¢) and
lim;_, » €(n, L) = 0 identically for any sequence of # [that is,
e(n,L) = o(1)].

The limiting osmotic pressure is defined by

Moo(@p) = — lim. ddiv =0’ [ sFe@)]. @
where F, is the total free energy of the model. Using a
reasonable approximation to Fi.(¢), e.g., a Flory-Huggins
formula, shows that I1.,(¢) is a non-negative function of ¢
(as argued in the Comment by Grosberg).
For finite L the derivative at fixed n,

d
PL(¢) = ¢*—— [FL($)/9] | )

d¢
is identified as the finite size osmotic pressure in the Comment
by Grosberg (and the derivative to ¢ is taken by varying L (or
the volume V') while fixing n. In particular, it is expected that

Mo(9) = lim PL(9). (6)
Define, similarly to the above,
d
M(¢) = ¢2% [FL($)/¢] .- (7

This corresponds to ITyong in the Comment by Grosberg [see
Eq. (3) therein]. Substitute Eq. (3) and simplify to see that

d
ML(¢p) — Muo(g) = nz% le(n, L)/n]|y. (8)

Since €(n, L) — 0 as L — oo, it follows again, under mild
assumptions [namely, that €(n,L) =o0(1) and €'(n,L) =
o(n~")], that the right-hand side vanishes as L approaches
infinity (and so as n approaches infinity at fixed ¢). This
results in

Jlim T1,(¢) = lim PL(¢) = Mac(@). ©)

In other words, both I1.(¢) [Eq. (7)] and P.(¢) [Eq. (5)]
are finite-size approximations to the limiting osmotic pressure
[T (¢), as should be expected.
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The function IT;(¢) is numerically accessible, and it is
determined in the original paper [1]. P.(¢) is not well de-
fined in the lattice, in particular since a derivative to V
(or to L) is not easily defined or computed in the lattice.
Using finite differences to L involves relatively large changes
in volume which gives unreliable results or gives results
with strong correction terms with parity effects. Thus, it is
more prudent to compute I1;(¢) as a finite approximation
to Il (¢) using numerical derivatives on discrete data ob-
tained by varying the length of the lattice knot while keeping
L fixed.

The convergence of Fy (¢) to Foo(¢) is shown in Fig. 4 of
Ref. [1], and these curves converge quickly to the limiting
free energy Fio(¢). When L = 15 the finite-size corrections
are small as seen, for example, in the collapse of I1;(¢) to a
limiting curve in Fig. 5 of Ref. [1]. A physical interpretation
of I, (¢) is given following Eq. (3) in Ref. [1]. The numerical
results are plotted in Fig. 5 of that paper for unknots. Rescal-
ing the data for unknots in Fig. 7 shows that there is a regime
where the approximations are negative (this regime moves to
smaller concentration ¢ with increasing L, and vanishes, as
expected, in the limit L — o0). These negative values arise in
finite-size corrections and is caused by entropic forces driving
monomers into or out of the lattice knot (keeping its length
near an equilibrium value). In the limit L — oo these results
are consistent with ITo.(¢) > 0. Similar results are seen for
the trefoil and the figure eight knot.

The scaling of the negative interval uncovered in Figs. 7, 9,
and 10 is predicted by a scaling analysis involving the metric
exponent of lattice polygons in Ref. [1]. This supports the
notion that IT;(¢) is a measure of the entropic forces that
drive the exchange of monomers between the solvent and the
lattice knot. Overall I am very confident in the prediction of
stable equilibrium lengths for the lattice knots simulated in
this study (for example, the lattice trefoil will have a stable
average length approximately equal to 3.94 L°/3 for values of
L which are not too small).

One final observation: In a strict sense the lattice model
is not athermal. The partition sum is p, 1 (K) [see Eq. (1) in
Ref. [1]] so that the state space has a uniform distribution;
that is, this model is at infinite temperature (since all states
have equal weight). On the other hand, athermal conditions
would hold if monomer-monomer interactions are energet-
ically indistinguishable from monomer-solvent interactions.
In this lattice model, the monomer-monomer interaction is a
hard-core repulsion, and the monomer-solvent interaction is
zero (that is, lattice sites are empty and do not interact with
monomers). In an athermal system the Flory interaction pa-
rameter x = 0, and the numerical simulation in Ref. [2] shows
emphatically (and unsurprisingly) that y > 0 numerically for
this model.
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