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Comment on “Osmotic pressure of compressed lattice knots”
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In a recent paper, E. J. Janse van Rensburg has presented computational data enumerating the conformations of
closed circular self-avoiding lattice polymers with knots confined in a cubic box, and claimed to have observed a
negative osmotic pressure in the system. The purpose of this comment is to state that osmotic pressure by a self-
avoiding polymer, knotted or otherwise, is positive, which means a polymer pushes confining walls outwards,
and the statement of the opposite is a mistake.
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Confinement of a polymer chain is a traditional subject in
polymer physics textbooks [1–4], and it is of a considerable
practical importance [5,6]. Also, a self-avoiding walk on a
cubic lattice is a classical model of a polymer chain [7,8].
Combining the two, maximally compact lattice chains (of
some L3 monomers confined in a L × L × L cube, exactly
enumerated for up to L = 4 [9,10]) has a rich track record
of providing useful insights into the protein folding prob-
lem [11–13]. Adding a new twist to this story, E. J. Janse
van Rensburg in his paper [14] presented large-scale Monte
Carlo data on confined closed circular polymers with knots.
Specifically, he obtained accurate estimates of pN,L(K ): the
number of closed self-avoiding paths on a cubic lattice with
N � L3 monomers, fully confined within a cube of size L up
to L � 15, and having the topology of the knot K (specifically,
knots K = 01, 31, 41 in standard knot theory notations were
examined). Interpreting FK (N, L) = − ln [pN,L(K )] as the free
energy, the data should allow for complete thermodynamic
characterization of the model. For instance, how do confined
polymers press on the confining walls, and how does this
pressure depend on the knot type?

Because of the beauty and importance of the question, I
am writing this note to make a statement that, contrary to
the conclusions of the work [14], polymer osmotic pressure
in this system is always positive: a polymer exerts force in the
outward direction on the confining walls. It is true for any knot
K . The opposite claim of finding a negative polymer osmotic
pressure is an error.

The argument rigorously proving my statement is actually
very simple: obviously pN,L+1(K ) � pN,L(K ), because every
state of a polymer realizable in a smaller cube of size L is also
realizable in the larger cube L + 1, meaning FK (N, L + 1) −
FK (N, L) � 0. Since osmotic pressure is the partial derivative
of free energy with respect to volume V = L3 at constant N ,

� = −
(

∂F

∂V

)
N

, (1)

and as long as we are willing to accept “differentiation” with
respect to volume changing in discrete steps for a lattice
model, we conclude that the osmotic pressure is positive. The

argument above and the conclusion of � > 0 are valid for any
system size, finite or arbitrarily large.

This completes the main point of the present note: osmotic
pressure exerted by the self-avoiding polymer chain of any
size is positive, meaning that polymer pushes walls outwards,
irrespective of the knot type.

In what follows, I will try to provide also a physical
explanation of positivity of osmotic pressure, as well as track
down the misconception that could lead to the erroneous
conclusion of the negative osmotic pressure in the work [14]
based on methods of the previous work [15].

First of all, identifying FK (N, L) = − ln [pN,L(K )] as the
free energy requires that p includes all translated and ro-
tated copies of any particular conformation that fit in the
confining volume. Further, the fact that p is the number
of (equally weighted) permissible states means that we are
talking about athermal polymer model, in which monomer-
monomer, monomer-solvent, and solvent-solvent contacts all
have the same statistical weights (what is meant by “solvent”
here, as usual, is monomer-free lattice sites). In other words,
the only forces operating in the system (apart from monomer-
monomer bonds of the chain) are the repulsion forces respon-
sible for self-avoidance. The system with only repulsive forces
of course produces positive outward pressure on the confining
walls.

To compute osmotic pressure, the author rewrites its defi-
nition (1) according to

� = −
(

∂F

∂V

)
N

= φ2

(
∂FV /φ

∂φ

)
N

, (2)

with FV = F/V free energy per unit volume, and φ = N/V .
Unfortunately, the author neglected to indicate that the deriva-
tives in this last formula must be taken at constant number
of monomers. Indeed, this is because osmotic pressure of a
polymer is related to the force exerted by the polymer on the
walls, which are permeable for the solvent and not permeable
for the polymer. This is important, for the following reason.
The very common rewriting of the pressure definition (2) is
harmless in the usual statistical physics applications because
of the thermodynamic limit: for a very large system, free
energy per unit volume, FV , depends only on the intensive
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properties, such as φ = N/V , but not on extensive variables,
such as N and V separately. For a finite system, such as the
ones considered here, this is not the case; accordingly, while
the standard definition (1), or its rewriting (2) with fixed N ,
still produces correct result for the pressure, an attempt to
perform a derivative while allowing N to change, for instance,
keeping constant volume V , leads to erroneous results:

�wrong = φ2

(
∂FV /φ

∂φ

)
V

�= �. (3)

Although the above statement is obvious mathematically, it
might be useful to appreciate its physical meaning by a simple
illustrative calculation (even if for a system that does not
pretend for being literally an analog of a lattice knot). Suppose
there are some N noninteracting particles (ideal gas) confined
in a box of volume V , and in addition there is also one special
particle that is attached by some spring to an immobile point
in the middle of the box. Assuming the spring is tight, this
special particle never touches container walls and thus does
not contribute anything to the pressure. If the free energy of
the special particle on the spring is g, then (Helmholtz) free
energy of the whole system is F = Fid + g, where Fid is the
ideal gas free energy. Clearly, then FV /φ = kBT ln φ + g

V φ
.

As expected, the first (ideal gas) term is a function of φ only,
while the second term is not. Although this second term is
irrelevant in thermodynamic limit, it might not be negligible
for a finite system. Nevertheless, the correct formula (1) or (2)
produces the right result for the pressure, � = kBT φ, while
differentiation with respect to φ at constant V , as in (3), gives
�wrong = kBT φ − g/V , which may indeed be negative—but it
is not a pressure.

Trying to explain his claim of negative polymer osmotic
pressure, the author says, for instance [14]: “At negative
osmotic pressure the lattice unknot will add length. Similarly,
at positive osmotic pressure the lattice unknot will shed length
and become smaller.” Leaving for now aside the (very valid!)
question of how to realize physically a polymer which adds
and sheds monomers while maintaining its ring structure and
even its topology, I note here that exchange of particles is

controlled by chemical potential, not by osmotic pressure.
To this end, since a lattice model is “incompressible,” in the
sense that N + Ns = V , where Ns is the number of “solvent
molecules,” or empty lattice sites, inside the confinement
volume, polymer osmotic pressure (1) is equal to the chem-
ical potential of a solvent (assuming that lattice volume per
site is set to unity): � = −(∂F/∂V )N = (∂F/∂Ns)N = μs.
However, if adding or losing monomers is an issue, then we
should introduce the chemical potential of monomers. That
can be defined in two ways, as μ = (∂F/∂N )Ns

or μex =
(∂F/∂N )V ; the former corresponds to adding or removing
monomers by simultaneously changing volume, while the
latter describes exchanging one monomer for one solvent
molecule (based on the fact that every monomer occupies
just one lattice site; see Ref. [8] for a more general lattice
model). Formally, one can say that similarly to � = μs, also
μ = �s: the chemical potential of monomers μ is equal to
osmotic pressure of solvent. Is osmotic pressure of a solvent
a meaningful quantity? Although mathematically possible to
define, physically osmotic pressure of a solvent would require
a membrane that is permeable for monomers and impermeable
for a solvent—something quite difficult to imagine in the
real physical world. And in any case none of the chemical
potentials are equal to �wrong (3).

Thinking beyond the paper [14], it would be interesting to
check the conjecture that in the thermodynamic limit osmotic
pressure is insensitive to one single knot buried somewhere in
the middle (somewhat like free energy FV was getting insen-
sitive to the added special particle in my illustrative example
above). If this conjecture is correct, then the osmotic pressure
dependence on knots is intrinsically a finite-size effect. At the
same time, one could also consider a thermodynamic limit of
a different kind, in which a composite knot of, say, M trefoils
is taken, with M → ∞ together with N → ∞ and V → ∞
while N/V = const and M/N = const. This and many other
open questions emphasize the interest of the problem.

To conclude, it would be very interesting to find out how
the polymer osmotic pressure of compressed knots depends on
the knot type. The lattice model is a sufficiently good tool for
that purpose. However, we know in advance that this pressure
is positive for any knot.
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