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We present a class of exponential integrators to compute solutions of the stochastic Schrodinger equations
arising from the modeling of open quantum systems. To be able to implement the methods within the
same framework as the deterministic counterpart, we express the solution using Kunita’s representation. With
appropriate truncations, the solution operator can be written as matrix exponentials, which can be efficiently
implemented by the Krylov subspace projection. The accuracy is examined in terms of the strong convergence
by comparing trajectories, and in terms of the weak convergence by comparing the density-matrix operators. We

show that the local accuracy can be further improved by introducing third-order commutators in the exponential.
The effectiveness of the proposed methods is tested using the example from Di Ventra et al. [J. Phys.: Condens.

Matter 16, 8025 (2004)].
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I. INTRODUCTION

The modeling of open quantum systems has been a subject
of immense interest for decades [1-3]. The primary focus is
on quantum systems coupled to the environment. While direct
computation based on the entire system is infeasible, reduced
models where the influence from the bath is implicitly incor-
porated have shown great promise. One remarkable approach
is the stochastic Schrédinger equation (SSE), which can be
formally derived from the Schrodinger equation for the entire
system by using a projection formalism [4], together with a
Markovian approximation. On the other hand, the dynamics of
the density-matrix follows a Liouville von Neumann equation
that agrees with the Lindblad equation [5]. Therefore, it can be
used as a computational approach to obtain the density matrix,
especially when the dimension of the problem is high. The
SSE has been used in quantum transport to study nonequi-
librium transport problems by Di Ventra and coworkers [6]
as well as the extension to time-dependent density-functional
theory [7,8]. A recent review [9] surveyed many of these
aspects.

This paper is primarily concerned with the numerical treat-
ment of the SSE. In the deterministic case, i.e., the time-
dependent Schrodinger equation (TDSE), many numerical
methods are available. Typically, due to the large number
of degrees of freedom in many practical applications, the
efficiency has been an important focus in selecting an ap-
propriate method. In addition, the time reversibility and the
unitary property of the evolution operator are also desired.
These considerations seem to deem classical Runge-Kutta
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methods unfavorable. Finally, since the timescale associated
with electron dynamics is often on the order of attoseconds,
there is a stringent limit on the size of the time steps. Although
many implicit methods can greatly mitigate this issue, the
implementation is often not straightforward. By a comparative
study of some existing methods, Castro et al. [10] demon-
strated that numerical methods can be constructed based on
the exponential representation of the solution operator. The
Krylov subspace method with Lanczos orthogonalization has
been the most efficient in terms of the overall computation
cost [10]. This technique approximates the matrix exponential
by projecting it onto a subspace [11], and the problem is re-
duced to computing the matrix exponential of a smaller matrix
which can be easily tackled by many existing methods [12].
Unlike the deterministic case, not many methods have been
developed, particularly for the SSE. Some of the subtleties in
treating stochastic models numerically have been explained in
Ref. [13]. The classical Euler-Maruyama and Milstein meth-
ods [14] are simple extensions of the Runge-Kutta methods
in solving stochastic models and, similar to the deterministic
case, they may not be well suited for SSEs. Many of the
standard higher-order methods [14] are quite involved in the
case of systems of equations with multiplicative noise. In this
paper, we propose to extend the framework of exponential
integrators for deterministic systems [10,15] to the SSE. We
first express the solution operator by using Kunita’s notation
[16] in the context of stochastic differential equations (SDEs),
where the operator in the exponential consists of an infinite
series of commutators and multiple stochastic integrals. With
truncations, we obtain approximations of the solution opera-
tor. We then show that, once the stochastic noise is realized,
the truncated operator represents deterministic Schrodinger
equations, and a matrix exponential can be used to represent
the solution. At this point, the Krylov subspace method can
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again be used. Since the Hamiltonian in this case is no longer
Hermitian, we use Arnodi’s algorithm [17] to obtain the
orthogonal basis.

We also studied the order of accuracy of the proposed
methods. We follow two tracks: strong convergence, where
the approximate solution is compared with the true solution
on a trajectory-wise basis, and the weak convergence, where
we study the accuracy in terms of the density matrix. This is
particularly important since physical observables, e.g., elec-
tron density and current, can be directly obtained from the
density matrix.

Some of the key steps in the construction of the algorithms
will be summarized as lemmas and theorems. They are pre-
sented in this manner not for the purpose of mathematical
rigor but to emphasize the mathematical tools and the gen-
erality of the formulation, and to clarify the setting under
which these methods can be used. It is our hope that interested
readers can adapt this approach to other quantum stochastic
models and construct useful computational methods.

The remaining part of this paper is organized as follows:
in Sec. II, we present the theory behind the construction of
the algorithms. We start by defining the solution operator for
the SSE, and then derive the exponential integrators as well
as the approximation schemes. We examine the accuracy and
the extension to nonlinear problems. In Sec. III, we present
the numerical results to demonstrate the effectiveness of the
exponential schemes.

II. THEORY AND METHODS

Assuming atomic units i =1 and m = 1, we consider a
SSE as follows:

dy(r,t) = (—iH — 3V*V)y(xr,0)dt + Vi (r, )dW,,
Y (r, 0) = ¥o. (1)

Here we have chosen to write the SDEs in the conventional
form [18], where solutions are interpreted in integral forms.
In (1), Y (r, t) is the wave function in an appropriate Hilbert
space. Typically the system has multiple orbitals, each of
which would satisfy an equation of this form, but it suffices
to describe the case with a single wave function. In equation
(1), H is a Hermitian operator for the Hamiltonian, and Vs
the bath operator. W, is the standard one-dimensional Wiener
process [18]. Formally £(z) = % can be interpreted as white
noise. In applications, the system could be coupled with
multiple environments; then there would a set of heat baths
Vo, corresponding to a set of stochastic noises {/,(¢)}. The
Markovian assumption embodies the following properties:

L,(t) =0,
Lo (t)p(t)) = 8q p8(t — 1),

where the overline indicates the stochastic average over an
ensemble of realizations of the Brownian motion. Finally, as
emphasized numerous times in the literature, the SSE (1) is
interpreted in the It0 sense [18].

In the followmg discussion, we generally assume that the
Hamiltonian A is linear. In the case where H is nonlinear, we
adopt the operator-splitting method (e.g., see Refs. [19,20]),
which separates the Hamiltonian into linear and nonlinear

2

parts. This will be discussed in detail in Sec. II C. Throughout
this paper, we also assume that the operators H and V have
been discretized spatially.

Before we present approximation schemes, we first discuss
how the exact solution can be represented.

A. Solution operators for general deterministic
and stochastic systems

We start by considering the deterministic case, i.e., where
the stochastic bath operator V = 0. Inspired by the idea
of the Koopman operator [21-23], we give a representation
of the solution in the form of an exponential operator. More
specifically, for a general n-dimensional autonomous dynam-
ical system,

x=F(x), x(0)=x, 3)
the Koopman operator U/(t) describes the evolution of an
observable A,

Ax(t) =U()A(Xp).
It can be expressed in an exponential form,
Ut)=e", L =F(xg) Vy,. 4

By applying this result to the deterministic Schrédinger
equation, we have the following formula:

Lemma II.1. When V = 0, the solution of the SSE (1) can
be represented by the exponential operator

Y (r, 1) = exp(D;)vo, (&)
where D, is a differential operator given by

R d
b, — _nH<¢0 e %) ©)

Here y* denotes the complex conjugate of .
Furthermore, due to the linearity of the SSE (1), the solu-
tion can also be expressed as a matrix or operator exponential,

Y (r,t) = exp(—itH)ypo. (7

The matrix exponential is defined by the Taylor series of the
exponential function.

A short derivation can be found in Appendix A. We should
point out that, in principle, the Koopman’s solution form (5)
holds for general nonlinear systems, and it can be regarded
as the foundation of operator-splitting algorithms, e.g., those
for classical molecular dynamics models [20] and quantum
mechanics models [20]. Although it is not directly relevant to
the discussions here, the Koopman operator can be applied to
functions of the state variable. For nonautonomous systems,
the Koopman operator can be extended by including the term
d,,, Where ty is the initial time. This bypasses the use of
time-ordered time evolution operators, and it has been used
in Ref. [20] to incorporate a time-dependent potential.
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Now we turn to the stochastic case. We first introduce
Kunita’s results for a general SDE [16]. More specifically,
we have:

Theorem II.1 (Kunita 1980, Lemma 2.1). For an au-
tonomous SDE of the Stratonovich type,

dz; = a(z;)dt + b(z,) o dW;, ®)

the solution with an initial value z(0) =zy can be
represented as

z(t) = exp(D;)z0, 9)

where the differential operator D, is given by

L 1
D; = tXo + W X| + E(J(O‘l) — J1,0)[Xo, X1]

+ Z {Z*:CAJWAJ(Z)}XJ. (10)

J3< L ag
Here Xj and X are differential operators defined by

" " 9
Xo=) do, Xy =) bo, o= P (11)
i=1 i=1 0.1

In addition, Jo 1y and J(1 0y are Stratonovich stochastic inte-
grals defined respectively as

t
J(qu)i\/ SdWS,
0

t
J(l,o)ﬁ/ Wids. 12)
0

The notation [Xj, X;] is the usual Lie bracket defined by
XoX1 — X1Xo; J = (1, ..., jm) indicates multi-indices, and
X! =1[--1X;,X;]---X;,] are high-order commutators. The
rest of the notation has been defined explicitly in Kunita’s
work [16].

Note that, in this lemma, the stochastic equations are of the
Stratonovich type [18]. But SDEs of this type can be converted
from (and to) Itd SDEs. More specifically, for a general
n-dimensional Itd SDE

dz = a(t, z)dt + b(t, z)dW,, (13)

where a, z; € R", b € R™™, and W, € R"™. The corresponding
Stratonovich SDEs are given by [18]

dzy = a(t, z)dt + b(t, z;) o dW,. (14)

Here the modified drift term is defined componentwise by

n m

: ; 1 : bk
dt,9=dt,0-5) ) P95~ (15
J

j=1 k=1

Therefore, to use Kunita’s notation, we first need to switch
our Itd-type SSE (1) to the corresponding Stratonovich type,

dy(r,t)=[—iH — 3(V* + V)V]y(x, t)dt
+ Vy(r, 1) o dW,. (16)

Effectively, this introduces the additional drift term —%\721#.

Now we apply Kunita’s lemma [16] to (16) and, by direct
computation, we have the following corollary:

Corollary I1.1. The solution of equation (1) [or equiva-
lently (16)] can be represented as

Y (r.1) = exp(D)y(r, 0), (17
where the solution operator D, can be approximated by
Dy~ Dl =[—il —1V*+ VW]t + VW,  (18)
by keeping the first-order Stratonovich integrals, and
D, ~D'=[—iH—-LWV*+V)V] +VW,
+ Ho.n®) = Ja,0O1E IV, VIV +ilH, V]).
19)
by retaining the second-order Stratonovich integrals.
The truncation is justified on the grounds that the stochastic

integrals have decreasing variance [14]. Interested readers can
find the detailed derivation in Appendix B.

B. Exponential integrators

Based on the truncated Kunita notation of the solution
operator, one can construct numerical methods [19,24,25].
Here we focus on one-step methods, where the solution at the
next step is updated based only on the solution at the current
step [14]. The same procedure would be repeated at each time
step. In this case, it is enough to illustrate the methods within
one step, e.g., from ¢ = 0 to t = A¢, with At being the step
length. To this end, we first sample W; and write

AW =Wy, — W (20)

For later steps, we define AW, =W,  —W,, and simply
replace AW by AW, and apply the same procedure. In the
following context we also use ¥ (t,) =~ ¥, as the numerical
approximation of the state vector ¥ at time t,,.

With this notation, the first-order truncation, when applied
to the initial condition, becomes,

P

R U R 3
+{[iH—E(V*+V)V}At+VAW}1p*8

. PO IR . 3
D, = H—iH - z(V* +V)V:|At +VAW}¢—

21

PR

Since AW has been realized, the operator above can be
viewed as a deterministic operator, and in light of the Koop-
man’s notation (5), it generates a solution of the following
ordinary differential equations (ODEs):

%(p =[—iH - 3(V*+ V)V]pAr + VoAW,
T € [0, Af]. (22)

In particular, Lemma II.1 implies that the solution can be
written as an exponential,

¢(At) = exp(—iAtH)e(0), (23)
where
U =H— i(V*—i—V)V—i—iﬂV. (24)
2 At
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Using (23) we construct the follow exponential scheme,
V1 = exp(—iAtH) . (25)

We later refer to this scheme as Scheme I. The matrix expo-
nential in (23) will be treated by using Krylov subspace pro-
jection method together with the Arnoldi’s method [15,17]. In
general, this algorithm yields

AR V,H,V,,, (26)

where m is the dimension of the Krylov subspace, H,, €
C™™ is a Hessenberg matrix, and V,, € CN*m consists of m
orthonormal column vectors. Thus the matrix exponential is

J

—_

Pl = H—iﬁ -

where AU = %(J(o,l) — J(1,0)) is a Gaussian random variable

. . 3
[14] with mean zero and variance Al—tz.

Once AW and AU are realized, the solution corresponds
to that of the following ODEs:

3 PO (A .
a—w = [—iH — E(V* + V)V]l/fAt +Vy AW
T

+ (%[\7*, VIV +i[H, A])wAU, T € [0, Ar].
(29)
An exponential scheme can then be constructed accord-
ingly:
Vur1 = exp(—i A )Y, (30)
where the matrix #y; is given by

Fin =0 — S0 V)V iS00
2 At
+ i£<l[‘7*, VIV +ilH, V]). (31)
Ar \2

We later refer to this scheme as Scheme II. Scheme II has one
more term in the exponential than Scheme I.

The higher-order Stratonovich integral terms from Kunita’s
expansion are complicated. But we discovered that, by incor-
porating two more commutator terms in our truncation, we get
better convergence results with respect to the density-matrix
operator. This will be referred to as Scheme III. It is as
follows:

Vi1 = exp(—i AtH) Y, (32)

where

o\ o\ | NN AN
Hu = Hu+ iAt(ﬁ[V, V= VIVi+ é[V, (H, V]]>. (33)

. IN . | BN SN
(V*—I—V)V}At—i—VAW—i—AU(E[V*,V]V—i—i[H,V])}w—

2
-7y 1 7 % T\ % 1 Tk Y10 T *
+ IH_E(V +V)ViAt + VAW 4+ AU E[V,V]V—l[H,V] v

approximated by
exp(A)v = V,, exp(Hy)e, 27

where e; is the first unit vector in C™.

Since m is relatively small, exp(H,,) is much easier to
compute than the original matrix exponential and can be com-
puted by any of the current methods that computes a matrix
exponential [12]. In our numerical experiment (Sec. III), even
m = 3 is adequate.

We should note that, although we only take the first-order
terms in the exponent in Scheme I, this method is different
from the Euler-Maruyama method. In fact, a direct expansion
yields the term %(Vb)bAWZ, which appears in the Milsteins
scheme, a first-order method (rather than 0.5 order).

Similarly, we construct an integrator by the truncation of
the solution operator D, up to the second-order Stratonovich
integral,

3
oY

3
ay’

(28)

(
C. The extension to nonlinear stochastic Schrodinger equations

In the discussion above we have assumed that the Hamil-
tonian is linear and independent of time. The extension to
nonlinear problems, e.g., those that resemble the Kohn-Sham
equations in the time-dependent density-functional theory
[26,27] with an external potential, is straightforward. Fol-
lowing Watanabe and Ksukada [20], we can separate the
Hamiltonian as

H = Hy + Hi (1), (34)

where H is the linear part and H,(¢) contains the nonlinear
contribution. We assume that the nonlinearity appears in the
potential as a local operator. Then, a one-step can method be
constructed by using an operator-splitting method [20],

At At .
Va1 = €xp 731" exp —17H1 exp(—iAtHp)

WAV At
X exp —17H1 exp 78,n Y. 35)

The operator 9;, operates on quantities that explicitly depend
on the time variable. The exponential associated with the
linear Hamiltonian was discussed in the previous section. On
the other hand, the exponential for the nonlinear part, due to
the fact that H, is diagonal, is also straightforward. The error
associated with the splitting, which can be analyzed by using
the B%ker-Campbell-Hausdorff (BCH) formula [28], is locally
O(A?r).

D. The accuracy of the exponential integrators

Now we discuss the accuracy of our schemes as Ar — 0.
Unlike the deterministic case, the convergence of numerical
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methods for stochastic models can be formulated in both the
strong and weak sense [14].

Strong convergence. The strong convergence of these
schemes is summarized as follows:

Theorem I1.2. Let {1 be the exact solution of model (1)
at time 7. Let &TA’ be the approximation by the exponential
integrator discussed above at time 7', with time discretization
At. Then

[UA — yr| < KiAtY (36)

holds, where the constants K;, K, do not depend on At. Here
y = 1 for Scheme I, and y = 1.5 for Scheme II.

Following the idea in the proof of Theorem 2.1 in Ref. [29],
we can verify the accuracy by comparing the schemes to the
stochastic Taylor expansion and utilizing Lemma 5.7.3 and
Theorem 10.6.3 in Ref. [14].

Weak convergence. Following the notations in Kleoden
and Platern [14], the weak convergence is in the sense of
averages. As we alluded to in the introduction, a primary
quantity of interest in open quantum systems is the density
matrix. In the stochastic case, the density matrix is defined as
the following ensemble average [8]:

p) = [ @O) (Y (@)l (37

In general, the analysis of the weak convergence relies on
the Dynkin’s formula and the Kolmogorov backward equation
[14]. However, for the SSE (1), one can actually write down an
exact equation for the density matrix, known as the Lindblad
equation [30]:

idp = [H, p] = S(V*Vp+pV*V —2VpV").  (38)

This can be derived from SSE (1) by using the Itd’s
formula [18].

With the Lindblad equation, one can expand the density
matrix at time ¢ = f, as a power series in At. Meanwhile, all
our schemes can be written in terms of ODEs (with random
coefficients) and the corresponding approximate density ma-
trix can also be expanded in the same manner. With direct
comparison, we obtain the order of local consistency error,
summarized as follows:

Theorem I1.3. If p is the exact density matrix and pr, P,
o are the approximations from Schemes I-III, respectively,
then we have

p(AL) — pr(At) = O(AL?),
p(At) — pu(At) = O(Ar?),
p(At) — pui(At) = O(AL). 39)

This suggests that Schemes I and II have order 1 weak
convergence while Scheme III is second order. Surprisingly,
Scheme II, which has higher strong order, does not have better
convergence in terms of the density matrix. This problem is
addressed by adding another term to the exponential integra-
tor, and which hence leads to Scheme III. See Appendix C for
details.

III. NUMERICAL RESULTS

We consider the example used by Di Ventra et al. [8] to
demonstrate the performance of the proposed methods. The
underlying Schrodinger equation, describing the dynamics of
a one-dimensional gas of excited bosons confined in a har-
monic potential and in contact with an external bath, is given
in atomic units (a.u.) (A = m = 1 throughout this section),

dyr(x,t) = —i 1d2+1 2x% 4 gn(x, t) ) (x, t)dt
Yx,t)=—1i o Ao 2ma)ox gn(x, W(x,
1. .
—3 Vi (x, t)dt + Vi (x, t)dW;. (40)

Using the same treatment as in Di Ventra et al. [8], we first
pick g = 0 and we choose the Hilbert space spanned by the
basis set {¢; : j =1, ..., d}, consisting of the eigenfunctions
of the quantum harmonic oscillators. The projection makes
the Hamiltonian diagonal, and we choose d = 20. To test
our schemes, we conducted simulations over the time interval
t € [0, 1], with step size At = 1073. We also take the same
bath operator,

0 1 1 1
R o o0 o o --
0 0 0 O
where § is interpreted as a coupling constant.

Before we discuss the convergence results, we should
mention that our schemes have shown good numerical stabil-
ity. We computed the system with the bath operator defined
above for different step sizes, and our schemes are stable for
At < 1073, while the Euler-Maruyama method is stable only
for At < 107°.

First we examine strong convergence. In Fig. 1 we compare
the following error:

e(t) = 1Y (&) = Y@, (42)

from the numerical methods. The expectation is approximated
by an average over 100 runs. Here in our test, the exact
solution ¥ is computed by the 1.0 order Milstein scheme
performed with a much smaller time step (8t = 1072A1).
We observe that Scheme II, with expected 1.5 order strong
convergence, exhibits a much smaller error than Scheme I,
which has 1.0 strong order.

Next we examine the weak convergence in terms of the
density matrix. In particular, we compare the first entry of
the density matrix, which is the square of the coefficient of
the ground state when projecting the state vector to the basis
of the eigenvectors of the Hamiltonian. We find that, due to
the fact that the bath operator 1% (41) satisfies [V*VIV,V]=
[[H,V],V] =0, Schemes II and III are identical. Therefore,
we pick another bath operator V;, as follows:

0 1 1 1
0o 0 0 O
ZE] EREE O (43)
o 0 0 0 o0
1 1 1 0

013312-5
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L Vg
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'
J
P
Q = . s s s &
0 0.2 0.4 0.6 0.8 1
t

FIG. 1. A comparison of the strong order accuracy of Schemes I
and II. The dashed red line depicts the error from Scheme I, and the
solid gray line shows the error from Scheme II. The linear case g = 0
is considered.

We consider the error of the first entry of the density

matrix py; = Wz from Schemes I, II, and III. The results are
displayed in Fig. 2. We approximated the expectation using
100 runs. Again the exact density matrix p is computed by the
Milstein scheme with a much smaller time step. We observe
that Scheme II has a moderate improvement over Scheme I,
and Scheme III offers significantly better accuracy. This can
be attributed to the higher-order weak convergence property
that we demonstrated in the previous section.

In Mora [31], an exponential scheme called the Euler-
exponential for SSE (1) is proposed, which has weak 1.0 order
convergence. It can be written as

Yt = Plexp [(—iH — JVV)At)(y" + VAW Y™}, (44)

——Scheme |
+=== Scheme Il
=e—Scheme llI

[Boo = Pool

FIG. 2. The error in the py entry of the density-matrix: Scheme I
(solid red upper line), Scheme II (dotted gray line), Scheme III (solid
black lower line).

x107°

18-
===+ Scheme Il
=e—Scheme lIl
—Euler Exponential Scheme

= =Scheme |
16 -

14 -

12+

10~

[Poo = ool
®

2 I . 1 I 1 . I I I
0 0.01 0.02 0.03 0.04 0.85 0.06 0.07 0.08 0.09 0.1

FIG. 3. A comparison with the Euler-exponential scheme (solid
blue line) constructed by Mora [31], Scheme I (dashed red line), II
(dotted gray line), and III (solid black line with circles).

where P is the projection to the unit ball to ensure the norm-
preserving property. As a comparison, Fig. 3 depicts the error
from the Euler-exponential method (the blue solid line on top),
compared with our schemes. Our schemes yield significantly
smaller error than the Euler-exponential method.

Now we consider the nonlinear case, and we pick g = 1 in
(40). As discussed in Sec. II B, we adopted the symmetric
splitting scheme. The exact solution is computed by the
Euler-Maruyama method with a much smaller time step §t =
103Atr. We approximate the expectation using 100 runs.
From Figs. 4 and 5, we make similar observations as in Figs. 1
and 2.

Now we test the errors as a function of two important
parameters of this method, i.e., time step size At and coupling
constant §. We compare our solution to the exact solution (the
wave function approximated by the Euler-Maruyama method

-3
15 x10 ‘ '
===Scheme | ‘_,--..“
===Scheme | _‘,‘
«*
.'-O
o?
*
1 ".0'5..' 4
R
‘l"'
> Q.
| avat®
& D
= o
Q
05F o J
L
&

‘0
~

L4

o

y

0 1 1 i L
0 0.02 0.04 0.06 0.08 0.1

t

FIG. 4. A comparison of the strong order of Schemes I and II
in the nonlinear case: g = 1. Scheme I (dotted red line), Scheme II
(solid gray line).
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35 %1078

==Scheme |
=== Scheme Il
3r =e—Scheme Il |

[Poo = Pool

0 0.01

0.02 0.03 0.04 0.05
t

0.06 0.07 0.08 0.09 0.1

FIG. 5. The error of the entry p;; of the density matrix in the
nonlinear case: g = 1. Scheme I (solid red upper line), Scheme II
(dotted gray line), Scheme III (solid black lower line).

on the much smaller time step of At = 107) of the quantum
system, and the error is measured in the L*° norm in the
time interval [0,1], i.e., [le(t)|lz~(0,1) from (42). We take the
ensemble size of 100, enough for the Monte Carlo errors to be
negligible.

The numerical error will depend on the choice of the
step size. Figure 6 depicts the error of the wave functions
from the numerical schemes, including Schemes I, II, and III,
for various choices of time step size At. We compared the
accuracy with the backward Euler-Maruyama (BEM) method,
since the explicit Euler-Maruyama method is only stable with

100 . —

107"

Error

== Scheme |
== Scheme Il
=@=Scheme Il
== BEM

1072 107"
At

103

FIG. 6. A comparison of error from Schemes I, II, III and the
Euler-Maruyama method with various choices of step size. The error,
measured as the L norm in the time interval [0,1] of the local error
(42), is shown on log scales.

=+=Scheme |
=#=Scheme Il
=0=Scheme Il
=-=EM

100+

Error

102 107 10° 10’
J
FIG. 7. A comparison of error of Schemes I, II, III and the Euler-
Maruyama method for different choices of coupling constant. § = 0
corresponds to the bath-free case. The error, measured as the L*™
norm in the time interval [0,1] of the local error (42), is shown on
log scales.

much smaller step sizes. The slopes of the lines confirm
the orders of convergence discussed in the previous section.
Among these methods, the error from Scheme III decreases
the fastest with step size.

In the SSE, the parameter § represents the coupling co-
efficient, which would arise when deriving the SSE from
the entire system by using perturbative expansions [4]. In
particular, the case with § = 0 represents a bath-free scenario,
and the SSE becomes deterministic. Fig. 7 depicts the nu-
merical error from the four methods with different choices
of the coupling coefficient 5. We find that the error tends
to decrease with weaker coupling, and reaches a minimum
when § = 0. This is the consequence of the fact that the error
bounds of the stochastic numerical schemes involve higher-
order stochastic integrals, which would disappear and only
deterministic terms from the Taylor expansion affect the error.
In this case, Schemes I, II, and III are still more accurate than
the Euler-Maruyama method.

One of the crucial properties of the SSE is mass conserva-
tion. This implies that ||y (z)||? should remain constant. To test
this property, we implemented the exponential integrators on
a long time period and compare it with the Euler-Maruyama
method. We choose the following bath operator:

0O 1 1 1
10000

Vv, =
=10

Do : : (45)
0O 0 0 0 O
1 1 -~ 1 0

We pick the time step At = 10#, ensuring that the Euler-
Maruyama method is stable under this setting. We evolve the
system for 10° steps up to 7 = 10. The ensemble average is
approximated by averaging over 1000 runs, and doing a larger
ensemble size did not result in noticeable changes. We depict
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FIG. 8. The ensemble average of the norm of state vector (total
mass). Scheme I (solid red line); Euler-Maruyama (dotted gray line).

the squared norm from the two methods in Fig. 8. The norms
from Schemes II and III are very close to Scheme I so we
omit them in the figure. We observe that the Euler-Maruyama
method causes the norm to increase quite quickly, while the
norm from Schemes I, II, and III seems to decrease, but it
remains much closer to 1.

IV. SUMMARY AND DISCUSSION

In this paper we proposed exponential integrators for the
stochastic Schrodinger equation based on Kunita’s represen-
tation [16], which can be efficiently implemented by using
the Krylov subspace method. Our schemes I and II have
been verified to have order 1.0 and order 1.5, respectively,
in the sense of strong convergence. We also discussed their
convergence in terms of the density matrix. This analysis also
suggests that the accuracy can be improved by adding two
commutators in Scheme II. The nonlinear case is addressed
by adopting an operator-splitting method [19,20,24], where
the linear and nonlinear parts are treated separately.

In our numerical tests, we have found that our exponential
schemes have better stability property, when compared with
the Euler-Maruyama and Milstein’s methods. They are also
much better at preserving the square norm (mass) of the
wave function. Overall, these schemes are good alternatives
in the computation of the stochastic Schrodinger equation.
Meanwhile, unlike some of the methods for deterministic
Schrodinger equations, these methods do not exactly pre-
serve the norm. It is still an open challenge to find a norm-
preserving integrator.
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APPENDIX A: THE PROOF OF THEOREM II.1

Proof. We can actually use Theorem II.2 to prove this
lemma. V =0 gives the deterministic case. Since the Itd
formula [18] is defined for real-valued equations, a simple
idea is to separate the state vector into real and imaginary

parts,

G-L e w

where u and v are respectively the real and imaginary part of
¥ (x, t). Theorem II.2 gives the following representation to the

solution of (A1):
u | u
|:v,] - P (Dt)[v]’ (A
where
ad d
D, =tHv— —tHu—. (A3)
ou v

By taking f(u, v) = u + iv = i, we have,
Y(x,t) =expD . (A4)
According to the chain rule [20],
B oy 0 oy* 9 0 0
vy oy

ou ay oy | ayr

9

u  ou oy
(AS5)
a RV oy* 9 .0 .0
_——= =]1— — l—,
ov av oY ov 0y* oy oy*
and a substitution into (A3), one gets
a d .0 .0
D; =tHv| — + —tHuli— —1i ,
oy 9y Yy oy
= ’tH(-i-’)8 + (—itH)( +')a
=—itH(u+ iv o i u—+iv e
d a
=—iH|Vy— —y*—). A6
it (vt = v ) (A6
For the second part, since H is linear and 33/* v =0,
1T 3 . 0\
exp(D)yr = gﬁ[—zm(w@ —y aw*)] v
= exp(—itH)y. (A7)
|

APPENDIX B: PROOF OF COROLLARY I1.3

Proof. We first rewrite the equation as

T R T A R

where
M:=3(V*+V)V. (B2)

Theorem II.2 gives the following representation to the

solution of (B1):
U | _ ~ U
[vtj| =exp Dy, [v}’ (B3)

where D, is expressed as a Magnus expansion. If we take the
truncation of the first two terms, we have

e R e
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To be concise, we let
A= —Mt+VW,,
(B5)
B :=Ht.

As a result, the truncated operator can be written in a more
compact form,

=3 O A Bllu . _ i _ i
D’_|:—B Ai||:”:| V_(Au+Bv)au+( Bu+Av)av.
(B6)

Following the same idea in Theorem II.1, we get

D= (A B)i 0 Bu+A 9 '8>
= s+ g) + s an i i

=(A— iB)l//% + A+ iB)I/f*az*. B7)
Since #w = 0, we have
Y (x, 1) = exp(D})y = exp {[— iH — $(V* + V)V ]t

+ VW . (B8)

Similarly, if we include the third term of the expansion of
D, in (B3), i.e.,
A= —MJg) + VJ(l) + %{J(o,l) - J(LO)}[V’ M, (B9Y)
B :=HlJg) + 3{Jo.1) — Ja.o}lV. H],

we have
wH(x, 1) = exp (D})w
=exp{[—iH — SV +V)V]t + VW,
+ 1o = Ja.0) 3V VIV +i[H, V1) } .
(B10)

This verifies the claim. |

APPENDIX C: THE PROOF OF THEOREM I1.5
Proof. We can write the equation for the density matrix,

9 p = exp(AAL + BAW + CAU)p,, exp(A*Ar + B*AW
+ C*AU), (CD)

from the exponential integrators. We can expand the exponen-
tial, and using

AW AW = At, (C2)
we have

3:p(0) = Ap(0) + p(0)A* + Bp(0)B* + 5BBp(0)

+ 1p(0)B*B* := Lp(0). (C3)
This agrees with the first derivative of the density-matrix
computed from the Lindblad equation. Since the AU term
does not contribute to the O(At) term, we have 0,0(0) =
0; 01(0) = 9,pu(0).
From the Lindblad equation, we can also compute the
second derivative of the density-matrix:

9, p(0) = LLp(0). (C4)
We can expand it with some lengthy calculation:
00 = AAp + pA*A* + 2ApA* + ABpB* + BApB*
+ApB*B* + BpB*A* + BpA*B* + BpB*A*
+ 5ABBp + 3BBAp + 5 pA*B*B* + 5 pB*B*A*
+ {BBBBp + BBBpB* + 3BBpB*B* + BpB*B*B*
+ 1pB*B*B*B". (C5)

This is the same as 9, pr(0). Thus we have 9, 0(0) =
0 prr (0). n
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