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Grid-based diffusion Monte Carlo for fermions without the fixed-node approximation
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A diffusion Monte Carlo algorithm is introduced that can determine the correct nodal structure of the
wave function of a few-fermion system and its ground-state energy without an uncontrolled bias. This is
achieved by confining signed random walkers to the points of a uniform infinite spatial grid, allowing them
to meet and annihilate one another to establish the nodal structure without the fixed-node approximation. An
imaginary-time propagator is derived rigorously from a discretized Hamiltonian, governing a non-Gaussian,
sign-flipping, branching, and mutually annihilating random walk of particles. The accuracy of the resulting
stochastic representations of a fermion wave function is limited only by the grid and imaginary-time resolutions
and can be improved in a controlled manner. The method is tested for a series of model problems including
fermions in a harmonic trap as well as the He atom in its singlet or triplet ground state. For the latter case,
the energies approach from above with increasing grid resolution and converge within 0.015 Eh of the exact
basis-set-limit value for the grid spacing of 0.08 a.u. with a statistical uncertainty of 10−5 Eh without an
importance sampling or Jastrow factor.
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I. INTRODUCTION

Stochastic algorithms [1–3] hold exceptional promise in
treating correlated electronic structures owing to their high
parallel efficiency, near-exact accuracy, scalability with the
problem size, and tiny memory footprints. Perhaps, the
most successful of such algorithms is diffusion Monte Carlo
(DMC) [2], but it is notoriously plagued by an uncontrolled
bias (the fixed-node error) arising from the fixed-node ap-
proximation [2,4,5] introduced as a practical solution to the
sign problem [6]. It amounts to using the nodal structure of
some trial wave function, which differs from the exact one,
thus causing the error.

The objective of this work is to eliminate the fixed-node
error from DMC [2]. This is achieved by confining the posi-
tively and negatively signed walkers on an infinite, uniform,
real-space grid, which can thus meet on a grid point and
then annihilate one another, establishing a nodal structure
without the fixed node or any other similar approximation.
The resulting nodal structure should converge at the exact one
in the limit of infinitesimally small grid spacing and imaginary
time step. A general stochastic propagation protocol on a
grid is derived in this work. Our method—grid DMC—is
distinguished from any of the previously developed fermion
quantum Monte Carlo approaches that enforce annihilation
by walker pairing, correlated dynamics, or other techniques
[7–13].

Casula et al. [14,15] were among the first to introduce
a real-space grid in DMC but for the different purpose of
implementing a nonlocal pseudopotential. Like their method,
our grid DMC relies on a finite-difference approximation to
the kinetic-energy operator on a grid. It also shares some
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algorithmic features with full configuration interaction quan-
tum Monte Carlo (FCIQMC), which propagates signed walk-
ers in a discretized space of the Slater determinants, the latter
ensuring the fermion antisymmetry of the wave function [16].
Grid DMC obeys a similar population dynamics as FCIQMC,
which is an interplay between propagation, branching, and an-
nihilation of walkers [17]. A correct nodal structure emerges
as the total number of walkers exceeds a critical value, Nc,
which is a function of the grid spacing, dimension of the con-
figuration space, and character of the target state. The value
of Nc determines the memory footprint, which is expected to
grow exponentially with the system size as a manifestation of
the sign problem [6].

Clearly, grid DMC is severely limited in its applicability
because of the exponential size dependence of Nc if one
insists on solving the Schrödinger equation essentially ex-
actly. In this work, we establish its feasibility just for two-
particle (Coulomb) systems in the three-dimensional (3D)
space with a view to ultimately realizing DMC-like stochastic
algorithms for two-electron theories such as second-order
Møller-Plesset perturbation (MP2) [18–21] or coupled-cluster
doubles (CCD) theory [22] in real space. Stochastic MP2
and CCD may be expected to be more scalable than their
deterministic counterparts (with respect to both the num-
ber of processors and problem size) and thus applicable to
large systems that do not lend themselves to local-correlation
speedup.

This article is structured as follows: A detailed description
of our grid DMC algorithm is given in Sec. II. The results of
demonstrative calculations on fermions in a harmonic trap and
the He atom in the triplet or singlet ground state are reported in
Secs. III A and III B, respectively. A summary of the method
and an outline of the future work are given in Sec. IV. In
Appendices A and B, mathematical details of the algorithm
are given.
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II. THEORY AND ALGORITHMS

Let �(r1, . . . , rN , τ ) be the wave function of an N-particle
system satisfying the imaginary-time-dependent Schrödinger
equation with energy offset ω,

−∂�(r1, . . . , rN , τ )

∂τ
= (Ĥ − ω)�(r1, . . . , rN , τ ), (1)

where Ĥ is the Hamiltonian with a local, spin-independent
potential V (r1, . . . , rN ),

Ĥ = −1

2

N∑
i=1

∇2
i + V (r1, . . . , rN ). (2)

Equation (1) suggests that, starting from an arbitrary initial
wave function �(r1, . . . , rN ), one can reach the exact ground-
state wave function �(r1, . . . , rN ) by

�(r′
1, . . . , r′

N , τ ) =
∫

d{ri}G(r1, . . . , rN

→ r′
1, . . . , r′

N ; τ )�(r1, . . . , rN ), (3)

insofar as �(r1, . . . , rN ) is not orthogonal to �(r1, . . . , rN )
and ω is chosen to be equal to the exact ground-state energy.
G(r1, . . . , rN → r′

1, . . . , r′
N ; τ ) is the imaginary-time Green’s

function or propagator written as

G(r1, . . . , rN → r′
1, . . . , r′

N ; τ )

= 〈r′
1, . . . , r′

N | exp[−τ (Ĥ − ω)]|r1, . . . , rN 〉, (4)

where |r1, . . . , rN 〉 is a position eigenfunction.
In DMC [2,3], the imaginary-time propagation [Eq. (3)]

is interpreted as a branching random walk of the fictitious
particles in 3N-dimensional space. The transition probability
of the particles hopping from (r1, . . . , rN ) to (r′

1, . . . , r′
N )

in short time τ is approximated using the Suzuki-Trotter
expansion of the Green’s function [23]:

G(r1, . . . , rN → r′
1, . . . , r′

N ; τ )

≈ 〈r′
1, . . . , r′

N | exp{−τ (V − ω)/2}|r′
1, . . . , r′

N 〉

× 〈r′
1, . . . , r′

N | exp

(
τ

N∑
i=1

∇2
i /2

)
|r1, . . . , rN 〉

× 〈r1, . . . , rN | exp{−τ (V − ω)/2}|r1, . . . , rN 〉 (5)

=exp

{
−τ

(
V ({r′

i}) + V ({ri})

2
−ω

)} N∏
i=1

〈r′
i| exp

(
τ∇2

i

/
2
)|ri〉,

(6)

where the use has been made of the fact that |r1, . . . , rN 〉 is an
eigenfunction of exp{−τ (V − ω)/2}.

In this work, a particle is confined to a point in an infinite,
uniform, 3D grid with grid spacing δ. The Laplacian in the
kinetic-energy operator is approximated by a central three-
point finite-difference formula. In this ansatz, each factor
in the kinetic-energy part of the Green’s function, Eq. (6),
simplifies to

〈r′| exp(τ∇2/2)|r〉 ≈ 〈x′, y′, z′| exp(τ∇2/2)|x, y, z〉, (7)

= 〈x + nxδ, y + nyδ, z + nzδ| exp(τ∇2/2)|x, y, z〉, (8)

= pnx pny pnz , (9)

with

pn = 〈x + nδ| exp

(
τ

2

∂2

∂x2

)
|x〉, (10)

= 1

2π

∫ π

−π

cos(kn) exp

{
−2τ

δ2
sin2

(
k

2

)}
dk, (11)

where it should be understood that (x, y, z) and (x′, y′, z′) are
grid points and nx, ny, and nz are integer displacements. For
the derivation of Eq. (11), see Appendix A.

Evidently, pn is the non-Gaussian transition probability of
a particle hopping from a grid point to its nth nearest neighbor
(where n is a positive or negative integer) in an infinite, evenly
spaced, 1D grid. It satisfies the following properties expected
of such probability:

pn = δn0 for τ = 0, (12)

pn � 0, (13)

and
∞∑

n=−∞
pn = 1. (14)

The proofs of these identities can be found in Appendix B.
Equation (5) contains moves essentially corresponding to

an interchange of particles with the same spin, which should,
therefore, reverse its sign when applicable. This can be en-
coded by introducing a canonical order of the grid points
and associating the Green’s function with the parity of the
permutation that brings the sequence of the destination grid
points into a canonical order. In this work, we define a
canonical order as one with the increasing x coordinates first,
then with the increasing y coordinates, and, finally, with the
increasing z coordinates. Examples of sign-preserving and
sign-flipping moves are depicted in Fig. 1 for a simple case of
two same-spin fermions on a 2D grid. We note that a choice
of the ordering scheme does not affect simulation results and
is only a matter of convenience.

The foregoing equations admit a stochastic implementation
similar to DMC [2,3] with a major difference being in the
definition of random walkers and their (signed) transition
probabilities. Each walker represents a set of all particles, car-
rying a unit signed weight, c = ±1. The ith particle has spatial
coordinates that are on a point in an infinite, uniform grid with
a grid spacing of δ and spin label si = ±1/2 (in the case of an
electron) so that

∑N
i=1 si = Sz, where Sz is the total magnetic

spin angular momentum quantum number of the target state.
The walker weight c flips sign whenever an odd number of
permutations is needed to bring the particle coordinates into
a canonical order after a move. The calculation workflow is
similar to that of DMC and consists of the following steps:

(i) Initialization. An initial walker population is randomly
generated from some real trial wave function |�T (r1, . . . , rN )|
(which must not be confused with a trial wave function in the
fixed-node approximation) by the Metropolis algorithm [24],
exercising care to avoid Coulomb singularities. The initial
walker weights are assigned with the sign of �T . Factors pn

of Eq. (11) are computed as a function of n by numerical
integration and stored.
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FIG. 1. Examples of sign-preserving (left) and sign-flipping
(right) moves for two fermions (labeled “1” and “2”) with the same
spin on a 2D grid. The grid points are ordered in the increasing
x coordinates first and then in the increasing y coordinates so that
r1 < r2 in both cases before the walker moves. In the move shown on
the left, the coordinates of particles 1 and 2 are in a canonical order
after the move, preserving the sign of c. The move shown on the right
brings the coordinates of particles 1 and 2 into a noncanonical order
(i.e., r1 < r2 no longer holds), which needs to be permuted once to be
canonical ordered, causing a sign flip in c. In the case of N electrons
the new particle coordinates are sorted and the phase is determined
from the parity of associated permutation.

(ii) Propagation. Each walker performs a random walk.
This step is executed by looping over all particles (i =
1, . . . , N ) and displacing the grid coordinates of each parti-
cle relatively by (nx, ny, nz ) with a transition probability of
pnx pny pnz . The walker weight c = ±1 is then multiplied by
(−1)[P], where [P] is the parity of permutation P that brings
the sequence of the new particle coordinates into a canonical
order. [P] is calculated by examining permutations of the
like-spin particles separately for si = ±1/2 and, therefore,
[P] = [P1/2] + [P−1/2] since P = P1/2P−1/2.

(iii) Branching. For each walker, the old (r1, . . . , rN ) and
new (r′

1, . . . , r′
N ) sets of the particle coordinates are used

to calculate the branching factor, m = exp[−τ {(V ({r′
i}) +

V ({ri}))/2 − ω}]. The walker is subsequently replaced by
	m + ξ
 copies, where ξ is a random number sampled from
a uniform distribution on the interval [0,1] and 	x
 is the
greatest integer less than or equal to x.

(iv) Annihilation. The list of all walkers is sorted and
then searched for the members whose particles occupy the
identical set of grid points. An equal number of positively
and negatively signed walkers among them are annihilated,
leaving only a minimal number of like-signed walkers on each
set of grid points.

(v) Energy estimation. The energy offset ω is updated
as ω → ω + τ−1 ln(Nw/N ′

w ) to keep the number of walkers
approximately constant, where Nw and N ′

w are the sizes of the
old and new walker lists, respectively. The mean value of ω in
the limit of infinite propagation time T can be used to estimate
the ground-state energy,

Egr = 〈ω〉, (15)

which is known as the growth estimator [25]. A more desir-
able measure of energy according to statistical uncertainty
considerations is the projection estimator [16,26] defined as

follows:

Eproj =
〈∑

k ckĤ�T
(
r[k]

1 , . . . , r[k]
N

)
∑

k ck�T
(
r[k]

1 , . . . , r[k]
N

)
〉

(16)

as T → ∞, where ck and (r[k]
1 , . . . , r[k]

N ) are the weight and
grid points of the kth walker, and �T is any trial wave function
(which may differ from the one used in Step 1) having a
nonzero overlap with the exact wave function.

Steps 2 through 5 are repeated (with each cycle counted as
one Monte Carlo step) until convergence. For a sufficiently
large number of walkers, Nw, the computational cost of a
Monte Carlo cycle is dominated by the annihilation step,
which exhibits Nw ln Nw scaling of computational complexity
owing to the need to sort the walker list. As will be shown
in the next section, another important implication of the
annihilation is the existence of the critical number of walkers,
Nc, required to obtain the correct nodal structure, which grows
exponentially with the dimension of the configuration space.
The value of Nc determines the memory footprint and limits
the application size. The lack of annihilation for a small
number of walkers, i.e., Nw < Nc, leads to node sampling
errors and introduces a nodal bias in the energy estimates [16].

III. RESULTS AND DISCUSSION

A Python program of grid DMC was written and made
available online [27]. The transition probabilities pn were cal-
culated (with a maximum error of 10−10) using the Clenshaw-
Curtis adaptive quadrature implemented in the GNU scientific
library [28]. Displacements with the probabilities smaller than
10−8 were discarded. Statistical errors in the energies were
evaluated using the blocking analysis [29] as implemented in
PYBLOCK module [30].

A. Fermions in a harmonic trap

Consider a system of four noninteracting spin-1/2 particles
with a unit mass confined in a 1D harmonic trap charac-
terized by a potential, V = ∑4

i=1 x2
i /2, where xi is the ith

particle coordinate. It lends itself to analytical solution of
the Schrödinger equation with the exact energy, E = ∑4

i=1
(ni + 1/2) in atomic units (a.u.) or Hartree (Eh), where ni is
the ith quantum number of the 1D harmonic oscillator which
is a non-negative integer. States with the total spin quantum
number S = 0, 1, and 2 were studied by grid DMC with a grid
spacing of δ = 0.1 a.u. and an imaginary time step of τ = 0.1
a.u. The initial particle positions were sampled from a uniform
distribution on a 6.0-a.u. interval centered at the origin. An
ensemble of ∼107 random walkers was propagated over 5000
Monte Carlo steps. The energy was evaluated by the growth
estimator. Table I compiles the results.

The S = 0 ground state has a pair of particles with opposite
spins occupying the n = 0 one-particle harmonic-oscillator
level and another such pair occupying the n = 1 level, having
the exact energy of 4.0 Eh. The S = 1 ground state has two
particles with opposite spins in the n = 0 level and one
particle with the same spin each in the n = 1 and 2 levels,
whereas the S = 2 ground state has one particle with the same
spin each in the n = 0, 1, 2, and 3 levels. The correct nodal
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TABLE I. Growth-estimator energies (statistical uncertainties in
parentheses) in Eh of the S = 0, 1, and 2 states of the system with
four noninteracting spin-1/2 fermions with a mass of 1 a.u. in a 1D
harmonic trap.

S Grid DMCa Gridb Exactc

0 3.99458(4) 3.99625 4.0
1 4.99168(4) 4.99374 5.0
2 7.98292(5) 7.98622 8.0

aA grid spacing of 0.1 a.u. and an imaginary time step of 0.1 a.u.
bCentral three-point finite-difference method with a grid spacing of
0.1 a.u.
cAnalytical results.

structure of the four-particle wave function naturally emerges
in these grid DMC calculations. In DMC with the fixed-node
approximation, the wave function in each nodal pocket has
the correct shape, but not throughout the whole space even
after adjusting the sign of each pocket. In contrast, the wave
function obtained in grid DMC has the correct shape in the
whole space.

The grid DMC energies are accurate within 0.006, 0.01,
and 0.02 Eh of the exact values of the S = 0, 1, and 2 states,
respectively. They are many orders of magnitude greater than
the statistical uncertainty of ∼5 × 10−5 Eh, and so they are bi-
ases. The main sources of the biases are the nonzero grid spac-
ing and finite time step. When the deterministic calculations
were performed using the same grid (i.e., the diagonalization
of the discretized Hamiltonian on a uniform grid spanning
6 a.u. using the central three-point finite-difference formula
with δ = 0.1 a.u.), their energies are within 0.002-0.004 Eh of
the grid DMC results. These remaining biases are attributed
to the finite time step.

In order to study the efficacy of the walker annihilation,
we performed a series of runs with varying walker ensemble
sizes. The simulation results are given in Fig. 2. The left
panel shows that the energies converge at the correct limits,
provided that the annihilation events are sufficiently frequent

FIG. 2. Left: The energy evaluated by the growth estimator, E ,
as a function of the average number of walkers, 〈Nw〉, for the S = 0,
1, and 2 ground states of the four noninteracting fermions in a 1D
harmonic trap. Right: The number of walkers, Nw , as a function of the
Monte Carlo steps, NMC. The energy onset, ω, was held fixed at 4.25,
5.25, and 8.25 Eh for the states with S = 0, 1, and 2, respectively.

FIG. 3. The number of walkers, Nw , as a function of the Monte
Carlo steps, NMC, in grid DMC for two spin-1/2 fermions in a 3D
harmonic trap in the triplet ground state for several grid spacings δ.
The energy onset was held fixed at ω = 4.5 Eh and imaginary time
step τ = 0.1 a.u.

or, equivalently, the number of walkers exceeds a threshold
value Nc, which varies with the character of the target state.
The lack of a sufficient number of annihilation events causes
the underestimation of the energies. The rate of convergence
tends to decrease for higher spin states, in which particles
occupy one-particle levels with more nodes. The population
dynamics presented in the right panel, obtained by holding
ω fixed (a production run adjusts ω), is reminiscent of that
obtained in FCIQMC [16], similarly exhibiting pronounced
plateaus signaling that Nw has reached Nc. The plateaus occur
because of the competition between the spawning and walker
annihilation [17].

The dependence of Nc on the grid spacing was further
analyzed for two spin-1/2 fermions in a 3D harmonic trap in
the triplet ground state (Fig. 3). Due to the higher dimension
of the configuration space, Nc is orders of magnitude larger
than in the 1D system and exhibits a steep growth with
decreasing δ. A least-squares fit suggests that Nc ≈ 339 δ−5.99.
In general, one could expect Nc ∝ δ−nd , where n is the number
of particles and d is the dimension of the one-particle config-
uration space.

B. The He atom in the 3S and 1S states

The grid DMC algorithm for a system with charged par-
ticles requires some modifications to avoid the Coulomb
singularities. In contrast to continuous DMC, random walks in
a discretized space have a nonzero probability of exact particle
coalescence, leading to divergent branching factors. To avoid
this, we placed the He nucleus at coordinates (δ/2, δ/2, δ/2),
where δ is the grid spacing, and furthermore barred the
random walks that result in electron-electron coalescence.
Various grid spacings δ in the range of 0.01 to 0.16 a.u. were
tested, while an imaginary time step of 0.005 a.u. was used in
all calculations.

For comparison, we also performed grid DMC calculations
for the 3S state with the fixed-node approximation using the
exact nodal structure [31] as well as for the nodeless 1S ground
state [32]. The nodal constraint was imposed by killing walk-
ers attempting to acquire a sign inconsistent with that of a trial
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TABLE II. Projection-estimator energies, E (statistical uncer-
tainties in parentheses) of the He atom in the 3S and 1S states obtained
by grid DMC (with an imaginary time step of 0.005 a.u.) with and
without an exact nodal constraint. δ is the grid spacing, 〈Nw〉 is
the average number of walkers, and w is the proportion of walkers
having the correct sign.

State Method δ / a.u. 〈Nw〉 w / % E / Eh

3S Grid DMC 0.16 3.5 × 107 97.9 −2.12695(1)
3S Grid DMC 0.16 7.0 × 107 98.3 −2.12687(1)
3S Grid DMC (fna) 0.16 104 100 −2.1278(8)
3S Grid DMC 0.08 6.16 × 108 96.7 −2.16126(1)
3S Grid DMC 0.08 6.25 × 108 96.8 −2.16169(1)
3S Grid DMC (fna) 0.08 104 100 −2.1612(15)
3S Grid DMC (fna) 0.04 104 100 −2.1698(8)
3S Grid DMC (fna) 0.02 104 100 −2.1724(10)
3S Grid DMC (fna) 0.01 104 100 −2.1739(7)
3S Grid DMC (fna) 0b 104 100 −2.1741
3S Exactc . . . . . . . . . −2.1753
1S Grid DMC 0.16 104 100 −2.8355(22)
1S Grid DMC 0.08 104 100 −2.8867(14)
1S Grid DMC 0.04 104 100 −2.8984(14)
1S Grid DMC 0.02 104 100 −2.9032(16)
1S Grid DMC 0.01 104 100 −2.9029(15)
1S Grid DMC 0b 104 100 −2.9035
1S Exactc . . . . . . . . . −2.9037

aFixed-node approximation using the exact nodal structure.
bExtrapolation by a least-squares fitting of the fixed-node results to a
quadratic function of δ.
cExact nonrelativistic energies due to Pekeris [33].

wave function �T having the exact nodal structure. Namely,
the walker weight ck was set to zero if ck�T (r[k]

1 , r[k]
2 ) < 0.

With the assistance of the exact nodal structure, grid DMC
calculations with the fixed-node approximation need only
10 000 walkers to converge.

The first six rows of Table II list the results of grid DMC
calculations with and without the exact nodal constraint using
two grid spacings: δ = 0.16 or 0.08 a.u. In both cases, the con-
vergence with respect to the number of walkers was ensured
by repeating the calculation with different walker ensemble
sizes and checking the stability of the energy estimates. Addi-
tionally, the average fraction (w) of walkers with the correct
sign (i.e., with the same sign as �T ) was recorded to quantify
the accuracy of the nodal structure. The closer the values of
w to 100%, the more accurate the nodal structure of the grid
DMC result without the fixed-node approximation.

With a coarse grid of δ = 0.16 a.u., convergence is
achieved with 3.5 to 7 × 107 walkers (the number identified
as Nc) with 97.9 to 98.3% accurate nodal structure. The
corresponding energies (−2.1269 Eh) have minuscule statis-
tical uncertainties of 10−5 Eh, but suffer from a much greater
bias of 1 mEh from the one with the exact nodal constraint
(−2.1278 Eh). This bias is clearly due to an inexact nodal
structure and may be called a nodal bias. The grid DMC result
with the exact nodal constraint is too high as compared with
the exact energy (−2.1753 Eh) [33] by 48 mEh, which must be
ascribed to a combination of nonzero grid spacing and finite

FIG. 4. The energies of the He atom in the 3S (left) and 1S (right)
states obtained by grid DMC with the exact nodal constraint as a
function of the grid spacing (δ). Statistical errors are shown with ver-
tical bars. Horizontal dashed lines indicate the exact nonrelativistic
energies [33]. Quadratic fit of the grid-DMC energies are drawn with
solid curves.

time step. As will be shown below, a majority of this bias is
due to the grid spacing and may be called a grid bias.

Halving the grid spacing to δ = 0.08 a.u. increases Nc by
an order of magnitude to 6 × 108. The proportion of walkers
with the correct sign deteriorates slightly to 96.7 to 96.8%
instead of improves. Interestingly, however, the nodal bias in
the energies seems to be compressed to 0.5 mEh, although this
value is obscured by the statistical uncertainty of a similar size
in the grid DMC calculation with the exact nodal constraint.
Nevertheless, it may be concluded that grid DMC can achieve
97–98% accurate nodal structure a priori with a submilli-
hartree nodal bias in the energy for two fermions in the 3D
space. Before an extrapolation to δ = 0 limit (see below), it
achieves the energy (−2.1613 to −2.1617 Eh) of the He atom
in the 3S state within 15 mEh of the exact nonrelativisitc value
[33] without the Jastrow factor or importance sampling.

Further halving the grid spacing to δ = 0.04 a.u. might
elevate the estimated value of Nc to 3.8 × 1010, approaching a
hardware memory limit.

The remainder of the calculations in Table II were per-
formed with the exact nodal constraint for the 3S and 1S states
with different grid spacings (δ) to estimate a grid bias. Only
10 000 walkers were necessary to converge the energies within
a few millihartrees. They are plotted as a function of δ in
Fig. 4.

For both states, the plots underscore the slow convergence
of the energies to the exact nonrelativistic energies [33].
The slow convergence can be attributed to the inherent in-
efficiency of a uniform grid in describing electron-nuclear
and to a lesser extent electron-electron cusps [19], which
may, therefore, be alleviated by the Jastrow or other explicit-
correlation factor. Interestingly, the grid acts to suppress the
fluctuations in the branching factor by preventing the walkers
from closely approaching the nucleus and give rise to the order
of magnitude smaller statistical errors as compared to similar
continuous DMC calculations [8]. Note that the bias appears
to decrease monotonically and seemingly quadratically with
δ in the range from 0.16 to 0.01 a.u. For finer grids, the
character of convergence is hard to discern as it is masked by
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statistical uncertainties. A least-squares fitting of the energies
to a quadratic function of δ can extrapolate the energy of each
state at δ = 0 that is within 1 mEh of the respective exact
value. This also suggests that the bias is nearly entirely due
to a nonzero grid spacing and much less to a finite time step.

IV. SUMMARY AND OUTLOOK

We developed a grid-based quantum Monte Carlo al-
gorithm for a many-fermion wave function with arbitrary
nodal structure without invoking the fixed-node approxima-
tion. To this end, the original continuous DMC formulation
was mapped onto its lattice counterpart by representing the
Hamiltonian and corresponding Green’s function on an infi-
nite uniform spatial grid using a central finite-difference ap-
proximation for the kinetic-energy operator. We showed that
the associated propagator is similar to that of the continuous
DMC and reduces to it in the limit of zero grid spacing, yet
describing a non-Gaussian branching and annihilating random
walks of fermions. A key component of the formalism is
the definition of a canonical order of particle coordinates,
which allows the algorithm to unambiguously encode the
antisymmetry of the many-fermion wave function.

Through a few key applications, we demonstrated that our
grid DMC algorithm converges at the correct nodal structure
a priori provided that a total number of walkers exceeds a
critical value Nc. The latter determines the memory footprint
of the method and restricts its applicability only to low-
dimensional problems with smooth potentials. Nevertheless,
the correct nodal structure and energy of the He atom in the
3S state can be determined by this method with accuracy
of 97–98% and 99.4%, respectively, without an importance
sampling or Jastrow factor. The number of walkers needed for
convergence was 107 to 109, not exceeding 17 GB of memory
if 64-bit integers were used to store the walker coordinates on
a grid. The remaining bias in the energy seems to be nearly
entirely caused by the grid spacing and can be effectively
removed by extrapolation [34].

This opens the possibility of realizing practical, scalable,
DMC-like stochastic algorithms for two-electron theories,
such as MP2 and CCD, which are more widely used in
quantum chemistry and solid state physics than exact diag-
onalization (FCI). A stochastic MP2 algorithm analogous to
variational Monte Carlo (VMC) was developed in our group
[35] including a Jastrow factor [36], relying on the fact that
the MP2 energy is a one-shot evaluation of a high-dimensional
integral. It would be desirable to have a stochastic algorithm
of more accurate CCD [37], whose energy is no longer a one-
shot evaluation, but which requires the determination of two-
electron excitation amplitudes having fermion antisymmetry
by solving the amplitude equations with an iterative algo-
rithm. We believe that a stochastic route to solving such equa-
tions resembles DMC (not VMC) and may be developed on
the basis of this work, which should also encompass a DMC-
like MP2 algorithm via Sinanoǧlu’s formulation [21,34].

We note that grid DMC is applicable to an infinite lattice
of electrons described by the Hubbard Hamiltonian having
the nearest-neighbor hopping and diagonal interaction terms.
Only a slight modification of Eq. (11) is needed to account
for the periodic boundary conditions. For example, in the case

of a one-dimensional Hubbard model [38] with N sites and
hopping integral t , Eq. (11) is adjusted to

pn = 1

N

N−1∑
l=0

cos

(
2π l

N
n

)
exp

[
2τ t cos

(
2π l

N

)]
. (17)

The detailed analysis of the algorithm’s performance for such
models is beyond the scope of the present study and will be a
subject of future research.
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APPENDIX A: DERIVATION OF EQ. (11)

We approximate the second derivative in the kinetic-energy
operator by the central three-point finite difference:

−1

2

∂2

∂x2
exp(ikx)

≈ −1

2

exp[ik(x + δ)] + exp[ik(x − δ)] − 2 exp(ikx)

δ2

= −1

2

exp(ikδ) + exp(−ikδ) − 2

δ2
exp(ikx)

= 2

δ2
sin2

(
kδ

2

)
exp(ikx), (A1)

where δ is the grid spacing. The transition probability or
Green’s function for the kinetic-energy operator on a uniform
1D grid then becomes

pn = 〈x + nδ| exp

(
τ

2

∂2

∂x2

)
|x〉

= δ

2π

∫ π/δ

−π/δ

exp[−ik(x + nδ)] exp

(
τ

2

∂2

∂x2

)
exp(ikx) dk

≈ δ

2π

∫ π/δ

−π/δ

exp(−iknδ) exp

[
−2τ

δ2
sin2

(
kδ

2

)]
dk, (A2)

= 1

2π

∫ π

−π

exp(−ik′n) exp

[
−2τ

δ2
sin2

(
k′

2

)]
dk′, (A3)

which is identified as Eq. (11). Note that the integration
domain [−π/δ, π/δ] is the first Brillouin zone under the
periodic boundary condition with lattice constant δ.

The eigenvalue of the discretized kinetic-energy operator
reduces to the correct continuous-space limit as δ → 0:

lim
δ→0

2

δ2
sin2

(
kδ

2

)
= k2

2
. (A4)
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FIG. 5. Comparison of pn [Eq. (11) or (A3)] versus Gaussian
function [Eq. (A6)] with τ = 0.015 and δ = 0.1.

Expanding the exponent in Eq. (A2) around δ = 0,
2
δ2 sin2 ( kδ

2 ) = k2

2 + o(δ2), and applying stationary phase argu-
ments to discard higher order terms in δ [39], we find

lim
δ→0

pn = δ

2π

∫ ∞

−∞
exp(−iknδ) exp

(
−τk2

2

)
dk, (A5)

= δ√
2πτ

exp

(
−n2δ2

2τ

)
, (A6)

which is a Gaussian function dictating diffusion in a continu-
ous space. Therefore, taking the limit δ → 0 in grid DMC, we
recover the usual continuous DMC [2,3].

Figure 5 plots the transition probability pn [Eq. (11) or
(A3)] and its δ = 0 limit (a Gaussian function) [Eq. (A6)] as
a function of n. The transition probability on a grid differs
visibly from the Gaussian function in the δ = 0 limit espe-
cially for small n. Specifically, dividing the space into bins
slightly increases the probability of staying in the same bin at
the expense of decreasing the probability to hop to the nearest
or second nearest neighbors. For a greater displacement, the
two plots converge because δ becomes small relative to the
displacement, making the saddle point approximation asymp-
totically exact. At every n, pn is found non-negative.

Equation (11) can, in principle, be generalized for any sym-
metric finite-difference formula. However, for such a higher-
order formula, pn is usually no longer positive for all n unless
δ2 � τ (in which case the space is effectively continuous). It
is also to be observed that our approach is not immediately ex-
tensible to an importance sampling transformation as usually
performed in the context of DMC [5] because it breaks the
Hermitian and translational symmetry of the kinetic-energy
operator by introducing a drift term proportional to the first
derivative of the wave function.

APPENDIX B: PROOFS OF EQS. (12)–(14)

A proof of Eq. (12) is trivial.
We have

pn = 1

2π

∫ π

−π

cos(kn) exp

[
−2τ

δ2
sin2

(
k

2

)]
dk

= 1

2πn
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[
−2τ

δ2
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(
k′

2n

)]
dk′,

where k′ = kn. It then follows for n → ±∞

pn ≈ 1
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exp

(
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2τ

)
� 0. (B2)

Equation (B2) implies that pn and pn+1 are non-negative for a
sufficiently large |n|.

In the meantime, a recursion relationship for pn can be
derived with integration by parts. For n �= 0,
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which can be rearranged to yield

pn−1 = 2nδ2

τ
pn + pn+1. (B4)

This proves Eq. (13) for all n by mathematical induction:
Starting from a sufficiently large n that renders both pn and
pn+1 non-negative, n is decremented down to zero (vice
versa for negative n). The foregoing also implies that pn is
monotonically decreasing with n � 0.

Equation (14) can be proven with the Fourier transform of
Dirac’s δ function,

∞∑
n=−∞

pn =
∫ π

−π

[
1

2π

∞∑
n=−∞

cos(kn)

]
exp

[
−2τ

δ2
sin2

(
k

2

)]
dk

=
∫ π

−π

δ(k) exp

[
−2τ

δ2
sin2

(
k

2

)]
dk = 1. (B5)
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