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Lattice Boltzmann model for weakly compressible flows
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We present an energy conserving lattice Boltzmann model based on a crystallographic lattice for simulation
of weakly compressible flows. The theoretical requirements and the methodology to construct such a model
are discussed. We demonstrate that the model recovers the isentropic sound speed in addition to the effects of
viscous heating and heat flux dynamics. Several test cases for acoustics and thermal and thermoacoustic flows
are simulated to show the accuracy of the proposed model.
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I. INTRODUCTION

The lattice Boltzmann (LB) method with its simplified ki-
netic description of hydrodynamics in terms of a sequence of
collision and free flight restricted on a D-dimensional lattice
provides a computationally efficient and easily parallelizable
alternative simulation methodology [1–3]. An LB model in its
standard formulation describes a weakly compressible flow
at a reference temperature T0. The pressure p and the mass
density ρ are related via the ideal equation of state p = ρθ0,
where θ0 = kBT0/m is the scaled temperature with kB as
the Boltzmann constant and m is the mass of the molecule.
These models are quite suitable for isothermal flows where the
relevant timescale is a few orders of magnitude higher than the
acoustic timescales and the object of interest is the velocity
or vorticity field. A consequence of kinetic equation with
an isothermal dynamics, as revealed by Chapman-Enskog
expansion, is that in the hydrodynamic limit, the stress tensor
is not traceless and is of form [1,4]

σαβ = η(∂αuβ + ∂βuα ), (1)

which implies that the bulk viscosity ζ = 2/3η, where η is the
shear viscosity. Even though this expression for bulk viscosity
is not realistic for any fluid, this is not of too much concern
as long as one is interested in the velocity dynamics in the
limit of vanishing Mach number Ma. This is due to the fact
that the divergence of the velocity field for low Mach number
is ∂κuκ ∼ O(Ma2) [5]. Thus, the method is routinely used
for incompressible hydrodynamic simulations both in low
Reynolds number creeping flow regime as well as for high
Reynolds number turbulent flow regime [1–3,6–9].

An extension of the lattice Boltzmann method (LBM) for
acoustics is relatively recent [5,10–15]. These works have
established the capability of LBM to correctly reproduce
fundamental acoustic phenomena and highlighted the low
dissipative behavior of the LBM. The starting point for acous-
tic modeling in isothermal LB is the fact that the pressure
fluctuation δp (linearized around no flow condition) for the
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method follows the wave equation [16]

∂2δp

∂t2
= c2

s ∇2δp, (2)

with the isothermal sound speed being cs ≡ √
∂ p/∂ρ|T =√

θ0. We remind that the sound wave is generated by com-
pression and expansion of air and is not an isothermal but
an adiabatic process. Thus, it is not surprising that neglecting
the rapidly fluctuating temperature field in a sound wave leads
to an incorrect value of the sound speed. The real isentropic
sound speed is cs = √

∂ p/∂ρ|s = √
γ θ , where γ is the spe-

cific heat ratio. However, in practice for simulating acoustic
waves, this incorrect sound speed is not of too much concern,
as dynamics can be corrected via rescaling of temperature. In
particular, Eq. (2) describes the correct acoustic dynamics at
temperature θ = θ0/γ .

However, a more elaborate description of the sound wave
in LB framework must start from the true evolution equation
for pressure fluctuation obtained by Navier-Stokes-Fourier
(NSF) equation linearized around no flow condition as [17]

[
− ∂2

∂t2
+ 


ρ0

∂

∂t
∇2

]
δρ + ∇2δp = 0, (3)

where δρ is the density fluctuation from the equilibrium
density ρ0 and 
 = 4η/3 + ζ . The thermodynamic equation
of state relates the density and pressure fluctuations with the
entropy fluctuation via the relation [18]

δρ = ∂ρ

∂ p

∣∣∣∣
s

δp + ∂ρ

∂s

∣∣∣∣
p

δs, (4)

where the entropy density fluctuation δs satisfies the relation
[16]

∂δs

∂t
= − 1

ρ0T0
∇αδqα, (5)

with the heat flux due to the temperature fluctuation δqα

obeying the Fourier’s law, i.e., δqα = −κ∇αδT where κ is the
thermal conductivity [19].
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Thus, the final evolution equation for the pressure fluctua-
tion obtained using Eqs. (3) and (4) is

[
− ∂2

∂t2
+ 1

ρ0



∂

∂t
∇2

](
∂ρ

∂ p

∣∣∣∣
s

δp + ∂ρ

∂s

∣∣∣∣
p

δs

)
+ ∇2δp = 0,

(6)
where the entropy fluctuation is governed by Eq. (5). For
short time dynamics, i.e., at timescales much less than the
momentum diffusion timescales, the dynamics can be con-
sidered to be isentropic and entropy fluctuations as well as
the viscous contribution can be ignored. This reduces Eq. (6)
to the wave equation as solved by an isothermal LB model
given in Eq. (2). However, a faithful simulation of acoustics
by LB models requires that for a linearized flow, the pressure
fluctuations obey Eq. (6), which in turn demands accurate heat
flux dynamics via Eq. (5). Hence, a model suitable for acoustic
simulations should have the following features:

(i) the right form of bulk viscosity and isentropic sound
speed;

(ii) correct heat flux dynamics to accurately capture the
dynamics of pressure fluctuations;

(iii) the correct specific heat ratio and the Prandtl number.
Many of these defects disappear if one works with an

energy conserving LB model [4]. For example, it was shown
in Ref. [4] that the unphysical bulk viscosity does not exist
in energy conserving models. It was further noted in subse-
quent works that the energy conserving LB models recover
the isentropic sound speed [20]. Energy conserving models
on lower order lattices such as D3Q27 are restricted to
very small temperature fluctuations as the heat flux shows
a significant departure from Fourier’s law. Early work was
done in Refs. [21,22] to incorporate temperature dynamics
in LB using energy conserving equilibrium [23], and the
notion of guided equilibrium to cancel the error terms in the
moments of discrete equilibrium [24,25]. In this work, we
use multispeed lattices without changing the collision. It is
known that multispeed models recover the heat flux dynamics
to a higher order of accuracy [26,27]. For example, recently
a higher-order body centered cubic (bcc) lattice model was
proposed for thermal dynamics [27]. In this work, we propose
another higher-order lattice Boltzmann model for acoustic
simulations and restrict ourselves to the specific heat ratio of
a monoatomic ideal gas and the Prandtl number to unity.

In particular, we propose an energy conserving multispeed
LBM with 41 discrete velocities in three dimensions that is
relevant for acoustics and weakly compressible flows. We list
the conditions on the equilibrium for the discrete velocity
models to recover the Navier-Stokes-Fourier equations as the
hydrodynamic limit. We also discuss the importance of the
cubic accuracy in recovering the Navier-Stokes hydrodynam-
ics. We develop the LB model based on recently proposed
crystallographic lattice Boltzmann framework using a bcc
lattice [6]. It was shown that the bcc lattice gives better spatial
accuracy in addition to more accuracy in the velocity space,
in comparison to a simple cubic (sc) lattice. We outline the
procedure for the development of the discrete equilibrium
using entropic formulation by a series expansion at the refer-
ence state with zero velocity and zero temperature variation.
First, the equilibrium at a rest state is derived for nonzero

variation in temperature, and a nonzero velocity equilibrium
is derived as a series expansion around the earlier reference
state. This expansion is more stable than a direct two variable
(Mach number and deviation from reference temperature)
expansion. Finally, we show the capability of the proposed
model to perform aeroacoustic, thermal, thermoacoustic, and
turbulent simulations by presenting a number of benchmark
simulations.

The paper is structured as follows: In Sec. II we describe
the lattice Boltzmann method briefly and define the restric-
tions on the discrete velocity model to recover isothermal
compressible hydrodynamics. This is followed by a derivation
of a compressible thermohydrodynamic model and constraints
for such a model in Sec. III. A brief description on recently
proposed class of crystallographic lattice Boltzmann models
and followed by the construction of a different LB model,
RD3Q41 model, with 41 velocities on a bcc lattice is given
in Sec. IV. An energy conserving equilibrium distribution
function is derived for the proposed RD3Q41 model in Sec. V.
We show the capability of this model for simulating acoustic
phenomena in Sec. VI, followed by a few test cases to
demonstrate its ability to simulate thermal flows in Sec. VII.
A nontrivial problem involving both thermal and acoustic
phenomena is presented in Sec. VIII. Further, in Sec. IX
we show that the proposed model is also advantageous for
multiphase flows on account of it being more accurate in the
velocity space. Finally, we simulate a few turbulent flows at
high Reynolds numbers like the Kida-Peltz flow, flow in a
rectangular channel, and flow past a sphere in Sec. X.

II. LATTICE BOLTZMANN METHOD

The lattice Boltzmann method (LBM) with its simplified
kinetic picture on a D-dimensional lattice provides a compu-
tationally efficient description of hydrodynamics [1,2]. In this
section, we briefly review the method and the basic motivation
behind its use for simulating hydrodynamics. In LBM, the ve-
locity space is discretized to a finite set C = {ci, i = 1 . . . Nd}
and one associates a discrete population fi ∈ f with each ci.
The discrete populations f (ci, x, t ) ≡ fi(x, t ) are considered
a function of location x and time t . The set C is chosen to
satisfy an appropriate set of symmetries needed to recover
hydrodynamics from the evolution equation of fi in the long
time limit [28]. The hydrodynamic variables such as the mass
density ρ, velocity u, and the energy E are defined as

ρ = 〈 f , 1〉, j ≡ ρu = 〈 f , c〉, E =
〈

f ,
c2

2

〉
, (7)

where the inner product between two functions of discrete
velocities φ and ψ is defined as

〈φ,ψ〉 =
Nd∑
i=1

φiψi. (8)

In a three-dimensional space (D = 3), the energy is that of the
ideal gas, i.e., E = (ρu2 + 3ρθ )/2.

A few higher-order moments which are relevant to the
hydrodynamic description are momentum flux as Pαβ =
〈 f , cαcβ〉, flux of momentum flux as Qαβγ = 〈 f , cαcβcγ 〉.
The fluctuating velocity ξ is defined as c − u and the heat
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flux as qα = 〈 f , ξαξ 2/2〉 and the flux of heat flux as Rαβ =
〈 f , ξ 2ξαξβ〉.

Typically, one works with the discrete in space and time
version of the kinetic evolution equation in the Boltzmann
Bhatnagar-Gross-Krook (BGK) form [29] as

fi(x + ci�t, t + �t )

= fi(x, t ) + 2β[ f eq
i (ρ(f ), u(f )) − fi(x, t )], (9)

where f eq
i represent discrete form of the Maxwell-Boltzmann

equilibrium, �t is the chosen time step, and β = �t/(2τ +
�t ) with τ as the mean free time. The dimensionless param-
eter β, bounded in the interval 0 < β < 1 with β = 1 as the
dissipationless state, physically represents the discrete dimen-
sionless relaxation toward the equilibrium. Here, the choice of
the discrete version of equilibrium distribution f eq

i is crucial
for recovering the correct hydrodynamic limit and different
formulations of lattice Boltzmann models differ mainly in
the choice of this discrete equilibrium [23,30]. A common
choice is to project the Maxwell-Boltzmann distribution on
the Hermite basis to get a computationally attractive polyno-
mial expression of the equilibrium as [31–34]

f eq
i (ρ, u) = wiρ

[
1 + uαciα

θ0
+ uαuβ

2 θ2
0

(ciαciβ − θ0δαβ )

]
,

(10)

where θ0 is some reference temperature associated with the
underlying lattice and wi are the weights chosen in such a way
that the mass and momentum constraints are ensured, i.e.,

Nd∑
i=1

f eq
i = ρ,

Nd∑
i=1

f eq
i ciα = jα. (11)

Furthermore, to get correct hydrodynamic limit for isothermal
low Mach number dynamics, it is essential to ensure that the
second moment of the discrete equilibrium is the same as that
obtained from the Maxwell-Boltzmann distribution, i.e.,

Peq
αβ =

Nd∑
i=1

f eq
i ciαciβ = ρuαuβ + ρθ0δαβ. (12)

The rationale for adding Eq. (12) can be understood by
writing first the kinetic equation in its partial differential form
(PDE) form (for �t → 0) [26,28,35] as

∂t fi + ciα∂α fi = − 1

τ

[
fi − f eq

i

]
, (13)

from which one can write the mass and momentum conserva-
tion laws as

∂tρ + ∂α jα = 0,

∂t jα + ∂βPαβ = 0. (14)

The evolution equation for the pressure tensor Pαβ using
Eqs. (12) and (13) as

∂t Pαβ + ∂γ Qαβγ = 1

τ
(ρuαuβ + ρθ0δαβ − Pαβ ), (15)

from which it is evident that in the limit of τ → 0, Pαβ →
ρuαuβ + ρθ0δαβ , and thus the zeroth-order hydrodynamic
equation describes the inviscid hydrodynamics as given by

the Euler equation. The Navier-Stokes hydrodynamics is re-
covered provided [32,36,37]

Nd∑
i

f eq
i ciαciβciγ = ρuαuβuγ + ρθ0(uαδβγ + uβδαγ + uγ δαβ ).

(16)

In most of the widely used lower-order lattice Boltzmann
models, the above condition is satisfied only only up to linear
order in velocity due to the absence of the cubic term in the
equilibrium represented by Eq. (10) [38].

Equation (10) along with Eqs. (11) and (12) imply that the
discrete velocity set and associated weights should satisfy

Nd∑
i=1

wi = 1,

Nd∑
i=1

wiciαciβ = θ0δαβ,

Nd∑
i=1

wiciαciβciγ ciζ = θ2
0 �αβγ ζ , (17)

where �αβγ ζ = δαβδγ ζ + δαγ δβζ + δαζ δβγ is the fourth-order
isotropic tensor and all odd-order moments, such as

Nd∑
i=1

wiciα = 0,

Nd∑
i=1

wiciαciβciγ = 0,

Nd∑
i=1

wiciαciβciγ ciκciζ = 0, (18)

are zero. These conditions are central to models for isothermal
incompressible hydrodynamics, and the procedure to con-
struct them is well understood [1]. It should be noted here
that in case of compressible hydrodynamics, moment chain
suggests that one needs to add O(u3) contribution in the
equilibrium distribution so that Eq. (16) is satisfied. This
condition on the third moment can be fulfilled only if the
discrete equilibrium distribution is of the form [35]

f eq
i = wi

(
1 + uαciα

θ0
+ uαuβ

2 θ2
0

(ciαciβ − θ0δαβ )

+ uαuβuγ ciγ

6 θ3
0

(ciαciβ − 3θ0δαβ )

)
. (19)

This adds further restriction on the weights as

Nd∑
i=1

wiciαciβciγ ciκciζ ciη = θ3
0 �αβγκζη, (20)

where �αβγκζη is the sixth-order isotropic tensor [28]. How-
ever, only very high-order on-lattice models are known to sat-
isfy such constraint in three dimensions [35,39]. In practice, it
is easier to satisfy the contracted version of Eq. (16),

Nd∑
i=1

f eq
i c2

i ciα = ρuαu2 + (D + 2) ρθ0 uα, (21)

which implies

Nd∑
i=1

wic
2
i ciαciβciγ ciκ = 7θ3

0 �αβγκ . (22)
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The above condition only ensures that the evolution equation
for the energy is correct to the leading order. The implications
of the recovered energy equation are that the bulk viscosity
and the sound speed are recovered accurately. The models
that lack the conditions given in Eqs. (21) and (22) have the
thermal conductivity dependent on the local velocity and local
temperature even at the lowest order. In this work, we will
consider Eqs. (21) and (22) as a requirement on higher-order
LBM.

III. COMPRESSIBLE THERMOHYDRODYNAMICS

In the previous section, the requirements for constructing
a model for isothermal compressible hydrodynamics and the
importance of the cubic accuracy in recovering the Navier-
Stokes hydrodynamics has been described. It is known that
on higher-order lattices such cubic accuracy can be imposed
[28,40]. However, typically, this has been done in an isother-
mal setting. A drawback of such models, though, is that the
isentropic speed of sound is not recovered and they also lack
the coupling between thermal and acoustic modes [20]. These
aspects have not gotten enough attention in the development
of new LB models.

The coupling between thermal and acoustic modes requires
an accurate description of heat flux [41,42]. In particular, in
the limit of low Knudsen number, one most recover Fourier
dynamics. Hence, Navier-Stokes-Fourier dynamics should be
recovered as the first-order hydrodynamic description in the
compressible models with energy conservation.

The heat flux is given by Fourier law via Chapman-Enskog
analysis requires that the evolution for the energy flux

∂t qα + ∂βRαβ = 1

τ

(
qeq

α − qα

)
(23)

is correct at the leading order

∂
(0)
t qeq

α + ∂βReq
αβ = 1

τ

( − qneq
α

)
. (24)

Since only the trace of the equilibrium of the fourth-order mo-
ment in the Maxwell-Boltzmann form appears in the balance
equation of heat flux, we only need to ensure

Req
αβ

(u = 0) = 5ρθ2δαβ (25)

to get the evolution of heat flux at least to be quadratically cor-
rect in terms of �θ = θ/θ0 − 1, the dimensionless departure
of θ from θ0.

In order to ensure that Rαβ satisfy Eq. (25), we write the
equilibrium at u = 0 as

f̃i = wiρ

[
1 + �θ

2

(
c2

i

θ0
− 3

)
+ �2θ

8

(
c4

i

θ2
0

− 10
c2

i

θ0
+ 15

)]
.

(26)

The expected value of Req
αβ computed with this equilibrium

matches the required value

Req
αβ (u = 0) = 5ρθ2

0 δαβ (1 + 2�θ + �2θ ) = 5ρθ2δαβ, (27)

provided the model satisfies

Nd∑
i=1

wic
8
i = 945θ4

0 . (28)

This condition is not considered by some extensions of LBM
where the cubic moment is imposed [35,43], where as it is
considered in Ref. [27].

Thus, we look for LB models which satisfy Eqs. (17), (22),
and (28). These tensorial set of equations can be simplified
further for the class of discrete velocity models with the dis-
crete velocity set c which ensure isotropy and avoid preference
to any direction in particular. These discrete velocity sets
should have the properties of closure under inversion (if ci ∈ c
then −ci ∈ c) and closure under reflection [if ci(cix, ciy, ciz ) ∈
c, then all possible reflections of ci ∈ c] to ensure that any
vector ψ (c2) in the discrete case we have〈

ψ, c2n
x

〉 = 〈
ψ, c2n

y

〉 = 〈
ψ, c2n

z

〉
,〈

ψ, c2n
x c2m

y

〉 = 〈
ψ, c2n

y c2m
z

〉 = 〈
ψ, c2n

z c2m
x

〉
, (29)〈

ψ, c2n+1
x

〉 = 〈
ψ, c2n+1

y

〉 = 〈
ψ, c2n+1

z

〉 = 0,

where n and m are the natural numbers [28].
The above constraints on the discrete velocity set along

with Eqs. (17), (22), and (28) give us the following set of seven
equations as the constraints on the weights for the proposed
model as∑

wi = 1,
∑

wic
2
ix = θ0,

∑
wic

4
ix = 3θ2

0 ,∑
wic

2
ixc2

iy = θ2
0 ,

∑
wic

4
ixc2

i = 21θ3
0 ,∑

wic
2
ixc4

i = 35θ3
0 ,

∑
wic

8
i = 945θ4

0 . (30)

As reference temperature θ0 is not specified and is an
unknown, we have six more additional degrees of freedom.
Hence, to obtain an on-lattice model we need six energy shells
each with a weight wi to solve the system of equations exactly.
Furthermore, these weights should be positive.

IV. CRYSTALLOGRAPHIC LATTICE
BOLTZMANN MODEL

Historically, the lattice chosen for the LBM has been the
simple cubic (sc) lattice which demands that the grid is refined
near the solid body or in zones of extreme flow variations.
A recently proposed class of LBM models known as crys-
tallographic LBM show an important connection between
crystallography, optimal packing problem in the efficient dis-
cretization of PDE [6].

Based on this connection, it was argued that the optimal
spatial discretization is provided by a body centered cubic
(bcc) arrangement of grid points and not by a simple cubic
arrangement of grid points as used by conventional structured
grid based methods [6,27,44].

This lattice comprises of two simple cubic lattices dis-
placed by a distance of 0.5�x in each direction. Figure 1
depicts the building blocks and the links of a bcc lattice in
two dimensions for illustration purpose.

Another well known fact in the computer graphics litera-
ture is that the volume representation (or rendering) is better
on the bcc lattice [45]. As the bcc grid has more points at
the boundaries, it was also found to represent the boundaries
well. To illustrate the difference between sc and bcc lattices,
we show a depiction of a sphere and an ellipsoid on both sc
and bcc lattices with equal number of total lattice points in
Fig. 2.
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FIG. 1. Building block of a crystallographic lattice in two dimen-
sions: simple cubic links (blue) and body centered links (red) are
depicted here.

Additionally, this class of bcc lattices removes an important
artifact of sc lattices with velocity component unity (D3Q15,
D3Q27) of imposing an artificial closure on the third-order
moments where 〈

f , c3
α

〉 = c2〈 f , cα〉. (31)

This effect plays an important role in regimes where the
Knudsen boundary layer is important [46]. Like the traditional
sc grids, the bcc grid also preserves the ease of streaming
along the links while increasing the local accuracy.

The proposed model has 41 velocities with five different
energy shells and is referred to as RD3Q41 model hereafter.
Figure 3 shows the building blocks of the RD3Q41 model. The
weights are derived by imposing the constraints from Eq. (30).
It has one zero-velocity shell, two sc shells, one face centered
cubic (fcc) shell, and two bcc energy shells. To satisfy the
isotropy conditions up to machine precision, we exploit them
to numerically calculate the weights. For example,

∑
i wi = 1

gives

w0 =1 − 6wsc−1 − 6wsc−2 − 12wfcc−2 − 8wbcc−1 − 8wbcc− 1
2
.

(32)

The energy shells and corresponding velocity sets with
weights for this model are given in Table I.

FIG. 2. A representation of a sphere and an ellipsoid with equal
number of total lattice points 2N3 points on sc (left) and N3 points
on bcc (right) lattices.

V. DISCRETE ENTROPIC EQUILIBRIUM

The entropic formulation of the LBM restores the thermo-
dynamic consistency embedded in the Boltzmann description.
In this method, one starts with a discrete H function typically
in the Boltzmann form

H =
Nd∑
i=1

fi

(
log

fi

wi
− 1

)
, (33)

and construct equilibrium as its minimizer under the con-
straints of local conservation laws [4,23,30,47–51]. Typically,
the equilibrium is constructed in an isothermal setting which
lacks energy conservation. In higher-order LBM, energy con-
servation is included in deriving the thermal entropic equilib-
rium distribution.

In this section, we briefly derive the energy conserving
equilibrium for the case of small temperature variation around
reference temperature θ0 using the entropic LBM. It should be
reminded that in the case of entropic lattice Boltzmann model,
for every discrete velocity model, one finds the Lagrange mul-
tiplier with a high degree of accuracy to preserve the positive
form of equilibrium [52]. This is typically done numerically.
To analyze the hydrodynamic limit of LBM, we derive the
series form of the equilibrium. This allows us to calculate the
closed-form expression for the moments. These expressions
for the moments are relevant for analyzing the errors in the
hydrodynamic limit.

Following Refs. [4,27], we consider energy conserving
equilibrium and include energy in the set of constraints to
obtain the equilibrium distribution which minimizes entropy
[Eq. (33)] as

f eq
i = wiρ exp

( − α − βκciκ − γ c2
i

)
, (34)

where α, βκ, γ are the Lagrange multipliers associated with
mass, momentum and energy, respectively [4,23]. The ex-
plicit expression can be obtained by inverting the following
relations: 〈

f eq
i , {1, ciα, c2}〉 = {ρ, ρuα, ρu2 + 3ρθ}. (35)

However, other than a few special cases such as the D1Q3
model and its higher dimension extensions D2Q9 and D3Q27,
the explicit solutions are not known [4,23]. The system of
equations in Eq. (35) are not explicitly invertible, therefore,
we choose a reference state with mean velocity uα = 0 where
βκ = 0. Thus, the system of equations simplifies as

exp(−α0)
Nd∑
i=1

wi exp
( − γ 0c2

i

){
1, c2

i

}
= {1, 3 θ} ≡ {1, 3 θ0(1 + η)}, (36)

where α0 and γ 0 are Lagrange multipliers corresponding to
the state u = 0. However, even for u = 0, explicit solutions
for other Lagrange multipliers are not known for most of
the models [4]. Therefore, at uα = 0 itself we chose another
reference state θ = θ0 for which it is trivial to check that the
solution is α0(θ = θ0) = 0 and γ 0(θ = θ0) = 0.

Following the procedure of Ref. [27], a perturbative se-
ries around this reference state can be built by expanding
the Lagrange multipliers around α(0) and γ (0) in powers
of the smallness parameter η = θ/θ0 − 1 (denoting smallness
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FIG. 3. Energy shells of the RD3Q41 model: sc-1(red), fcc-1(blue), bcc-1(light green) shown on a regular lattice and sc-2(orange), bcc-
1
2 (dark green).

of the temperature deviation). The explicit solution is evalu-
ated up to O(η3) as

f̃i = wiρ

[
1 + η

2

(
c2

i

θ0
− 3

)
+ η2

8

(
c4

i

θ2
0

− 10
c2

i

θ0
+ 15

)
+ η3

48

(
c6

i

θ3
0

− 21
c4

i

θ2
0

+ 105
c2

i

θ0
− 105

)]
.

The equilibrium distribution at nonzero velocity is derived
by expanding the Lagrange multipliers in ε (representing
smallness of the velocity scale) and the expression for discrete
equilibrium accurate up to O(ε3) is obtained to be

f eq
i = f̃i

{
1 + uαciα

θ
− u2

2θ
(1 − A1) + 1

2

(uαciα

θ

)2

+ 1

6

(uαciα

θ

)3
− u2c2

i

6θ2
A1

+ u2uαciα

6θ2
A2 − u2c2

i uαciα

6θ3
A1

}
, (37)

where M2 and M ′
2, the error terms with respect to

zero velocity equilibrium moments, and A1 and A2

are

M2 = −0.807 953�3θ

(
θ0

θ

)2

,

M ′
2 = −[0.520 459�2θ + 1.410 17�3θ ]

(
θ0

θ

)2

,

A1 = 5/2M2

1 + 5/2M2
,

A2 = 5A1(1 − M2) − (3 + M ′
2 − 5M2), (38)

with �θ = θ − θ0. The equilibrium moments for this model
are

Peq
αβ = ρθδαβ + ρuαuβ (1 − M ′

2)

+ u2

2
δαβ

[
4M ′

2 − 5M2 −
5
3 M2 + 25

6 M2
2

1 + 5
2 M2

]
,

qeq
α = 5θuα (1 − M2) + 1

6
u2uα

[
5A2(1 − M2)

− 7A1(1 − M3) + 7(3 + 2M ′
3 − 5M3)

]
,

TABLE I. Energy shells and their corresponding velocities with weights for RD3Q41.

Shells Discrete velocities (ci) Weight (wi)

0 (0, 0, 0) 0.1 975 697 820 320 461

sc-1 (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 0.04 743 040 745 116 578

sc-2 (±2, 0, 0), (0, ±2, 0), (0, 0, ±2) 0.00 165 687 664 501 576

fcc-1 (±1,±1, 0), (±1, 0, ±1), (0, ±1, ±1) 0.00 651 175 327 832 464

bcc-1 (±1, ±1, ±1) 0.00 454 087 801 154 440

bcc- 1
2 (±0.5, ±0.5, ±0.5) 0.04 917 980 624 482 672
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Req
αβ = 5θ2δαβ (1 − M3)

−5u2θ

2
δαβ

1

1 + 5
2 M2

−35u2θ

6
δαβ

(
1 − 1

1 + 5
2 M2

)

+7u2θ

2
δαβ (1 + 4M ′

3 − 5M3)

+7uαuβθ (1 − M ′
3), (39)

where

M3 = − [0.692 53�2θ − 2.499 25�2θ ]

(
θ0

θ

)3

,

M ′
3 = − 3.18168

(
θ0

θ

)3

× (0.093 474 3�θ + 0.636 954�2θ + �3θ ). (40)

The Peq
αβ , qeq

α , and Req
αβ moments of the equilibrium dis-

tribution have errors of the order O(u2η2), O(uη3), and
O(η2), respectively, and match with the moments of the
Maxwell-Boltzmann distribution up to high accuracy. Thus,
model accurately recovers linearized Navier-Stokes-Fourier
hydrodynamics.

In the upcoming sections, we validate the accuracy and
robustness of the proposed RD3Q41 model by simulating
various canonical flows related to acoustics, compressible,
turbulent, multiphase, and thermal flows.

VI. ACOUSTICS

In the previous sections, the RD3Q41 model has been
shown to recover the full Navier-Stokes-Fourier equations as
its macroscopic limit. In this section, we select a few well-
studied benchmarking problems related to the propagation of
an acoustic pulse.

As a first example, we present an isothermal simulation of
propagation of a two-dimensional (2D) acoustic pulse. The
third direction has two lattice points, and periodic boundary
conditions are imposed. An axisymmetric density pulse is
initialized at the center of a uniform fluid of size [−1, 1] in
both x and y directions as

ρ(x, y, t = 0) = ρ0[1.0 + ρ ′(x, y, t = 0)], (41)

where

ρ ′(x, y, t = 0) = εe−αr2
, ε = 0.001, α = ln(2)

b2
,

b = 0.1, r =
√

x2 + y2. (42)

A small value of ε is chosen to keep the amplitude of the
acoustic perturbation small. For low amplitudes of density
fluctuations and low viscosity, the exact solution of the density
fluctuation is given by the analytical solution of the linearized
Euler equations [53,54] as

ρ ′(x, y, t ) = ρ0 × ε

2α

∫ ∞

0
exp

(−ξ 2

4α

)
cos(csξ t )J0(ξr)ξ dξ,

(43)

-4

-2

0

2

4

6

8

-1 -0.5  0  0.5  1

x 10-4

ρ'
 

y

t*=10
t*=50
t*=100
t*=125

FIG. 4. Density fluctuations along the center line in isothermal
case (solid line) at different time steps compared with analytical
solution (points).

where J0 is the Bessel function of the first kind of zero order
[55].

An excellent match is observed upon comparing density
fluctuations along the centerline from isothermal simulation
using our model and from the analytical solution at various
time steps (t∗) as shown in Fig. 4. This confirms that the
linearized acoustics are captured accurately in an isothermal
setting.

To show that the ratio of sound speeds in a thermal to
isothermal model is

√
γ , we perform thermal simulation of

the same setup and compare the pressure fluctuations at times
(t∗) with that obtained from an isothermal simulation at times
t = √

γ × t∗. The specific heat ratio γ for the current model is
5/3. The pressure fluctuation p′ is defined as the deviation of
pressure from rest condition as p′ = p − ρ0θ0. It can be seen
from Fig. 5 that the profiles match very well, confirming that
the ratio of speed of sound is

√
γ and energy conserving LB

model indeed recovers the correct isentropic sound speed.

A. 3D acoustic spherical pulse source

We demonstrate the utility of the present model in three
dimensions (3D) via a simulation of a spherical pulse source.
An acoustic pulse is initialized in the center of the domain of
size [−1, 1] in x, y, and z directions as

ρ(x, y, z, t = 0) = ρ0[1.0 + ρ ′(x, y, z, t = 0)], (44)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-1 -0.5  0  0.5  1

x 10-4

p'
 

y

t*=7
t*=52
t*=100
t*=121

FIG. 5. Comparison of pressure fluctuations along the center line
at time t∗ from a thermal simulation (solid line) and isothermal
simulation (points) at time

√
γ × t∗.
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-4
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-1 -0.5  0  0.5  1

x 10-4
p'

 

y

t*=10
t*=25
t*=50
t*=75

FIG. 6. Density fluctuations due to a 3D spherical pulse source
along the y axis at (x, z) = (0.5, 0.5) from LB simulation (line) and
exact solution (points).

where

ρ ′(x, y, z, t = 0) = εe−αr2
, ε = 0.001, α = ln(2)

b2
,

b = 0.03, r =
√

x2 + y2 + z2. (45)

The exact solution for the density fluctuation is given as
[56]

ρ ′(x, y, t ) = ε

2α
√

πα

∫ ∞

0
exp

(−ξ 2

4α

)
sin(ξr)

ξr
ξ 2dξ . (46)

The density fluctuations from the LB simulation and the
exact solution are plotted at a few time steps (t∗) along the y
axis at (x, z) = (0.5, 0.5) in Fig. 6 and they show an excellent
agreement.

B. Acoustic pulse reflecting off a planar wall

We now demonstrate the capability of the model to simu-
late the interaction of acoustic waves with simple boundaries.
The interaction of an acoustic wave in a mean flow of Mach
number Ma = 0.5 with an inviscid planar wall is simulated.
A domain of length [−100L, 100L] and [0, 200L] is chosen
along the x and y axes. An acoustic pulse is initiated at t = 0
as

p′ = A exp

(
− ln(2)

[
x2 + (y − 25)2

25

])
, (47)

with u = 0.5cs, v = 0, and A = 10−4. This setup is identified
as an effective test case to check the wall boundary conditions
and an analytical solution for the pressure fluctuations is given
in Ref. [57] as

p′ = A

2α

∫ ∞

0
exp

(−ξ 2

4α

)
cos(ξ t )[J0(ξη) + J0(ξζ )]ξ dξ,

(48)

where α = ln(2)/25, η =
√

(x − Ma × t )2 + (y − 25)2, and
ζ =

√
(x + Ma × t )2 + (y − 25)2. We choose four lattice

points per L for this simulation. Pressure fluctuations nor-
malized with A obtained from the current simulation and
the analytical solution after a time of 50tc at y = 24L show
an excellent match in Fig. 7. Contours of these normalized
pressure fluctuations at the initial time and after 50tc are

-0.05

 0

 0.05

 0.1

-100-80 -60 -40 -20  0  20  40  60  80  100

p'

x/L

FIG. 7. Pressure fluctuations normalized with A at y = 24L after
50 convection times (LB: line, analytical: points).

shown in Fig. 8. The convection time tc here is defined as
L/cs.

C. Acoustic scattering off a rigid cylinder

The acoustic scattering off a rigid cylinder is one of the
benchmark problems identified as a simplified model to find
the sound scattered by aircraft fuselage produced by the
propeller [58]. The fuselage was approximated as a circular
cylinder and the source of sound reduced to a point source.
Presence of a curved boundary also makes this a natural
extension to the previous test case for validating the wall
boundary conditions.

A cylinder of diameter D0 is placed at the center of a
domain of length [−15D0, 15D0] in both x and y directions.
At a distance of 4D0 from the center of the cylinder along the

 0

 20
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 80

 100

 120

 140

 160

 180

-100 -50  0  50  100
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L

x/L
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 0
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 0.15
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 0.25

FIG. 8. Contours of pressure fluctuations normalized with A at
t = 0 (up) and t = 50 convection times (bottom).
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p′

tcs/D

FIG. 9. Time evolution of pressure fluctuations normalized by
p0A at points r = 5D0 and θ = 90◦, 135◦, and 180◦ from top to
bottom (LBM: solid line, analytical: points).

x axis, a Gaussian acoustic pulse is initialized at t = 0 as

p′ = A exp

(
− ln(2)

[
(x − 4)2 + y2

0.22

])
, (49)

where A = 10−4. The analytical solution for this test case is
given as [59]

p′ = Re

{∫ ∞

0
[Ai(x, y, ω) + Ar (x, y, ω)]ωe−iωt dω

}
. (50)

The Ai and Ar stand for the amplitudes of incident and
reflected waves given by

Ai(x, y, ω) = 1

2b
e−ω2/(4b)J0(ωrs), (51)

where rs =
√

(x − 4D0)2 + y2, J0 is Bessel function of zero
order, and

Ar (x, y, ω) =
∞∑

k=0

Ck (ω)H (1)
k (rω) cos(kω), (52)

with

Ck (ω) = 1

2π
exp{−ω2/(4b)} εk[

H (1)
k

]′

×
∫ π

0
J1(ωrs0)

r0 − 4 cos(θ )

rs0
cos(kθ )dθ,

where ε0 = 1, εk = 2 for k �= 0, r0 = 1
2 and rs0 =√

0.25 + x2
s D2

0 − xsD0 cos(θ ) while H (1)
k is the Hankel

function of first order [55].
Pressure fluctuation profiles normalized with p0A from

times t = 6 to 10 convection times at three points A(r =
5D0, θ = 90◦), B(r = 5D0, θ = 135◦), and C(r = 5D0, θ =
180◦) are shown in Fig. 9. The convection timescale is de-
fined based on the diameter of the cylinder and speed of
sound as D0/cs. The points and time interval are chosen such
that only the acoustic wave reflected off the cylinder passes
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FIG. 10. Isocontours of pressure fluctuations normalized by p0A at t = 1.6, 4.0, 6.0, and 10.0 convection times where D is the direct
wave and R is the wave reflected off the surface of the cylinder.
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through these points. The pressure fluctuation profiles show
a good agreement with the exact solution demonstrating the
capability of the current model for solving computational
aeroacoustics problems with nontrivial boundary shapes.

Isocontours of pressure fluctuations normalized by p0A
are shown in Fig. 10 at times t = 1.6, 4.0, 6.0, and 10.0
convection times. The contours also show the direct wave
D and the acoustic waves reflecting off the surface of the
cylinder R.

VII. THERMAL FLOWS

In this section, we demonstrate the efficacy of the RD3Q41
model for simulating thermal flows by studying two test cases:
a Couette flow with a temperature gradient (where the viscous
heat dissipation becomes crucial) and heat conduction in a 2D
cavity.

A. Viscous heat dissipation

We consider the steady state of flow induced by a wall
at y = H moving with a constant horizontal velocity U0 and
maintained at a constant elevated temperature T1. The lower
wall at y = 0 is kept stationary at a constant temperature T0

(T1 > T0).
This setup is well suited to validate the effect of viscous

heat dissipation. Each layer of fluid drags the layer below it
due to friction, which results in the mechanical energy being
converted to thermal heating and, therefore, the heat produced
affects the temperature profile in bulk. The analytical solution
for the temperature profile for this setup is [60]

T − T0

�T
= y

H
+ Ec

2

y

H

(
1 − y

H

)
, (53)

where �T = T1 − T0 is the temperature difference between
the two walls and Ec = U 2

0 /(cp�T ) is the Eckert number that
represents the ratio of viscous dissipation to heat conduction
with cp = 5

2 as the specific heat at constant pressure.
Simulations were performed for Ec = 0.5, 2.0, 5.0 with

U0 = 0.02 and �θ calculated according to respective Eckert
numbers. The walls were maintained at temperatures θ0 +
0.5�θ and θ0 − 0.5�θ . Kinetic boundary conditions as de-
scribed in Refs. [27,61] have been applied at the walls, and
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FIG. 11. Mean planar temperature profiles obtained from
RD3Q41 at steady state (symbols) compared to the analytical solu-
tion (lines).

FIG. 12. Setup for the 2D cavity heated at the top.

periodic boundary conditions are used in the other two direc-
tions. Figure 11 compares the temperature profiles obtained
analytically and via simulations and they are found to agree
well.

B. 2D cavity heated at the top

In this setup, the fluid is confined in a rectangular cavity
bounded with stationary walls on all four sides. The height of
the cavity is W , and its length is L. The top wall is maintained
at temperature (T1), and the other three walls are maintained
at temperature T0 (T1 > T0) (see Fig. 12). The temperature
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FIG. 13. Steady-state temperature profiles at sections along x
axis (left) and y axis (right). The symbols are the solution form the
RD3Q41 model while the lines represent the analytical solution.
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profile for this setup at the steady state is given by

T − T0

T1 − T0
= 2

π

∞∑
n=1

(−1)n+1 + 1

n
sin(nπx)

sinh(nπy)

sinh(nπH/L)
.

(54)

Kinetic boundary conditions as described in Ref. [61] have
been applied at the top and bottom walls and periodic bound-
ary conditions are applied in the z direction. The temperature
profiles along the constant x = 0.1, 0.2, 0.5 and constant y =
0.25, 0.5, 0.75 are shown in Fig. 13 and can be seen to match
well with the analytical solution.

These two test cases prove that the thermal transport phe-
nomenon is modeled correctly in the RD3Q41 model.

VIII. THERMOACOUSTICS

In the previous sections, we showed that the current model
accurately predicts acoustic and thermal phenomena individ-
ually. We now demonstrate the capability of the RD3Q41
model in simulating flows involving both thermal and acoustic
phenomena.

A simple example is when a compressible fluid confined
between two walls is heated rapidly on one end, it sets up a
convective current [62–64]. The heated wall creates a pressure
wave which reflects back and forth in the medium until it gets
dissipated by viscosity. These pressure waves are called ther-
moacoustic waves because of the acoustic nature of the origin
of these waves. It is understood that this thermally induced
motion is known to enhance the heat transfer in the medium
by addition of convective mode to the conductive mode of
heat transfer [62]. The convective mode slowly dissipates
due to the dissipation of the pressure wave, and conduction
becomes the only mode of heat transfer [65]. The many
time and length scales present in the system along with the
compressible nature of the fluid makes numerical modeling of
thermoacoustic convection a challenging problem.

The setup consists of a fluid column of length L enclosed
between two walls. It is initially at a uniform temperature
of T0, as shown in Fig. 14. At times t > 0, the bottom
wall is maintained at temperature T0 while the top wall is
rapidly heated to a temperature T0 + �T . Kinetic boundary
conditions, as described in Ref. [61], have been applied at the
walls. The compression and rarefaction of the thermoacoustic
waves due to rapid heating create a fluctuating velocity in the
domain which results in a significant increase in the rate of
heat transfer relative to pure conduction.

The thermoacoustic waves can be predicted by linearized
NSF equations too, but the wave speeds predicted are slower

Ttop

T0

Tbottom

y = 0

y = L

y

FIG. 14. A schematic of the setup for thermoacoustic convection.
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FIG. 15. Nondimensional temperature, density, and pressure at
a few intermediate times scaled by diffusion time. (LBM: points;
solution of NSF equations: lines).

than the speeds obtained by solving the NSF equations
with the nonlinear term included [66]. Navier-Stokes-Fourier
(NSF) equations including the nonlinear term are solved
as described in Ref. [62] to compare the evolution of the
nondimensional temperature, density, and pressure obtained
from the RD3Q41 model at a few intermediate times scaled
by diffusion time. Diffusion time is defined as L2/ν, where
ν is kinematic viscosity of the fluid. Results from both the
methods are in good agreement, as shown in Fig. 15.

IX. NONIDEAL FLUIDS AND TWO-PHASE FLOW

The standard lattice Boltzmann method leads to an ideal
gas equation of state. Several variations to simulate nonideal
fluids have been proposed [67–71]. Most of the mentioned
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approaches model the microscopic physics and the inter-
facial dynamics at the mesoscopic level at an affordable
computational expense. The LBM is considered advantageous
for multiphase flows as it maintains a stable interface and does
not require explicit interface tracking. Reference [68] consid-
ered the microscopic interactions between the nearest neigh-
bors to model the collision operator for which the surface
tension could be maintained automatically [2]. The interaction
potential controlled the form of the equation of state of the
fluid and gave rise to phase separation, however, the surface
tension could not be freely adjusted [72]. Among the various
multiphase models, of particular interest is the free-energy
model [69] as it allows for surface tension to be independent
of the viscosity in addition to being thermodynamically con-
sistent. Recently, the entropic lattice Boltzmann model was
extended for multiphase flows to control the spurious currents
at the liquid-vapor interface, thereby opening the possibility
to simulate large density ratios [43].

At the macroscopic scale, the multiphase LBMs can be
considered diffuse interface models. These models smoothen
the discontinuity at the interface over a thin but numerically
resolvable layer. The fluid properties transition over this layer
smoothly as opposed to singular interfaces which have a
sharp discontinuity. The surface tension is transformed into
a volumetric forcing [73] and is spread over the diffused inter-
facial region. An undesirable feature of the diffuse interface
in LBM manifests in the form of the spurious currents that
develop in the vicinity of the interface [72,73]. Several at-
tempts have been made to identify their origin and to alleviate
these currents [73,74]. The departure of the LBM simulations
from the theoretical phase densities and the magnitude of
the spurious current depends upon the liquid-vapor density
ratio, the equation of state, and the surface tension. Often
they have been attributed to the violation of Gibbs-Duhem
equality due to the discrete derivative operator [75]. It was
mentioned in Ref. [75] that an open problem in this field is the
identification of a discrete derivative operator that preserves
the Gibbs-Duhem equality at the interface.

The RD3Q41 lattice is expected to offer an edge over the
conventional lattices because of the presence of the bcc grid
points that allow the derivatives to be calculated more accu-
rately. In this section, we propose an alternate way of treating
the discrete derivative such that the violation of Gibbs-Duhem
relation at the interface is reduced. We show that this way of
discretization leads to accurate liquid vapor phase densities
and reduces the spurious currents. We first review the van der
Waals theory of a single component two-phase fluid followed
by the equations of hydrodynamics and the methodology to
incorporate nonideal effects in the kinetic theory and lattice
Boltzmann model. It is followed by expressions for evaluating
second- and fourth-order accurate derivatives on a lattice
and the justification of the choice of stencil employed to
evaluate derivatives. We then propose a discrete derivative
operator to reduce the spurious currents. To prove the ther-
modynamic consistency, we choose an equation of state and
compare densities obtained from a deeply quenched liquid-
vapor system with their corresponding theoretical values.
Finally, we extend the entropic formulation of LBM to two-
phase flows and simulate a head-on collision between two
droplets.

In this section, we consider an isothermal system of a
nonideal fluid. Van der Waals modified the free-energy density
by incorporating terms that are large only when the density
gradients are significant [76,77]. Therefore, the underlying
free-energy functional �(x) is of the form

�(x) =
∫

[F (ρ(x)) + I (∇ρ(x),∇2ρ(x), . . . )]dx, (55)

where ρ is the density, F is the bulk free energy, and I
is the interfacial free energy. The interfacial free energy
I (∇ρ(x),∇2ρ(x), . . . ) is approximated to the lowest order as
[75,77]

I (∇ρ(x),∇2ρ(x), . . . ) = κ (ρ)

2
|∇ρ(x)|2. (56)

For simplicity, κ (ρ), related to the surface tension, is taken
constant. With this definition, the excess free energy is the
surface tension σ :

σ =
∫ ∞

−∞

κ

2
|∇ρ(x)|2dx. (57)

The above model of free energy is the simplest model that
gives two stable phases provided F has two minima and was
first formulated by van der Waals [76].

The macroscopic mass and momentum conservation equa-
tions are given by [78,79]

∂tρ + ∂α (ρuα ) = 0, (58)

∂t (ρuα ) + ∂β

[
pδαβ + ρuαuβ + σαβ + σ

(κ )
αβ

] = 0, (59)

where σαβ is the viscous stress tensor

σαβ = −ρν(∂βuα + ∂αuβ ) + 2
3ρν∂γ uγ δαβ, (60)

where ν is the kinematic viscosity, and σ
(κ )
αβ takes the form

σ
(κ )
αβ = κ

[(− 1
2∂γ ρ ∂γ ρ − ρ∂2ρ

)
δαβ + {∂αρ ∂βρ}] (61)

and accounts for the interfacial stresses. The term within the
curly braces in the above expression is known as the van der
Waals stress [77].

The nonlocal pressure tensor (also known as Korteweg’s
stress tensor) derived from the above description is consistent
with the definition of the free-energy functional and is written
as [69,80,81]

Pαβ =
[

p − κ

2
∂γ ρ ∂γ ρ − κρ ∂2ρ

]
δαβ + κ∂αρ ∂βρ, (62)

where δαβ is the Kronecker delta and

p = ρμ0 − F (63)

is the equation of state describing the nonideal fluid, with
μ0 = ∂F/∂ρ as the bulk chemical potential. For a continu-
ous system, the Gibbs-Duhem equality is trivially satisfied.
However, it gets violated for a discrete system due to the defi-
nition of the discrete derivative which leads to thermodynamic
inconsistency [75].

To incorporate the deviation from the ideal gas the inter-
molecular attraction, the repulsion between the particles due
to their nonvanishing size, and the interface dynamics needs to
be modeled. In LBM framework, the attractive and repulsive
parts are added as a force term. In order to do so, one begins
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with the Boltzmann BGK equation for an isothermal nonideal
gas [70]

∂ fi

∂t
+ ciα

∂ fi

∂xα

= f eq
i (ρ, u, θ0) − fi

τ
+ Fi, (64)

where the forcing term Fi is given by

Fi = gnid
α (ciα − uα )

θ0
f eq
i (ρ, u, θ0). (65)

The nonideal contributions are captured in gnid
α :

gnid
α = − 1

ρ
∂βPnid

αβ , Pnid
αβ = Pαβ − ρθ0δαβ. (66)

The above form of gnid
α , known as the pressure formula-

tion, is sufficient to incorporate the nonideal interactions and
the Korteweg’s stress tensor in the lattice Boltzmann model
[43,73,78]. Alternatively, by exploiting the Gibbs-Duhem re-
lation, one can write the chemical potential formulation as
[73,79]

gnid
α = −∂αμnid, (67)

where μnid = μnid
0 − κ∂2ρ.

Equation (64) is integrated along the characteristics using
the trapezoid rule to obtain the discrete (in space and time)
evolution of populations as

f̃i(x + ci�t, t + �t ) = f̃i(x, t ) + αβ
[

fi
eq(ρ, u, θ0)

− f̃i(x, t )
] +

(
1 − αβ

2

)
�tFi,

(68)

where f̃i is a transformation of the populations fi defined as

f̃i = fi − �t

2τ

[
fi

eq(ρ, u, θ0) − fi
] − �t

2
Fi, (69)

β = �t/(2τ + �t ), and α = 2 for the standard LBM. For the
entropic LBM the parameter α needs to be computed such
that the dynamics obeys the H theorem. The macroscopic
variables are calculated as

ρ =
∑

i

f̃i, uα = 1

ρ

∑
i

f̃iciα + �t

2
gnid

α . (70)

It is worth noticing that Eq. (68) does not conserve mo-
mentum. The change in momentum at each site during a time
step is obtained by multiplying Eq. (68) with ciα and summing
over all directions as

ρuα (t + �t ) − ρuα (t ) = �tρgnid
α . (71)

In fact, this change in momentum is due to the nonideal nature
of the fluid and leads to two stable phases separated by an in-
terface. However, the global momentum of the system should
be exactly conserved provided no net momentum exchange
occurs at the boundary [68]. This is an important feature of
the discrete dynamics, satisfied by the pressure formulation
[Eq. (66)] but not by the chemical potential formulation
[Eq. (67)]. It is known that the chemical potential formulation
is more accurate than the pressure formulation and leads to
smaller spurious currents [73,79]. However, the thermody-
namic consistency requires that the global momentum should

stay preserved. This will be elaborated in the forthcoming
sections, where we propose an alternate formulation that is
similar to the chemical potential formulation but preserves
global momentum.

A. Discretization scheme

As discussed earlier, for a continuous system the Gibbs-
Duhem relation is trivially satisfied. However, for a discrete
system it gets violated, i.e.,

∂̃αPαβ �= ρ∂̃βμ, (72)

where ∂̃α represents the discrete derivative operator [75]. This
is the reason why the two formulations, namely, the pressure
and the chemical potential, show different accuracy, stability,
and spurious currents.

The chemical potential formulation is more accurate and
has smaller spurious currents as compared to the pressure
formulation [73]. However, one of its drawbacks is that the
global momentum is not conserved. This is further explained
in what follows: In the pressure formulation in 1D, the second-
order discrete derivative ∂̃ (2)

α at the nth grid point is written as

∂̃ (2)
α Pαβ = 1

2�xα

[Pαβ (n + 1) − Pαβ (n − 1)]. (73)

With appropriate boundary conditions (say periodic), one can
sum over the entire domain to show that

N∑
n=1

[Pαβ (n + 1) − Pαβ (n − 1)] = 0. (74)

The local change of momentum from Eq. (71) is �tρgnid
α . The

global momentum conservation upon using Eqs. (66), (73),
and (74) follows as

N∑
n=1

�tρgnid
α = −

N∑
n=1

�t ∂̃ (2)
α Pnid

αβ

= − �t

2�xα

N∑
n=1

[
Pnid

αβ (n + 1) − Pnid
αβ (n − 1)

] = 0.

(75)

However, for the chemical potential formulation the net global
momentum is

N∑
n=1

�tρgnid
α = − �t

2�xα

N∑
n=1

ρ(n)[μnid(n + 1) − μnid(n − 1)],

(76)
which is nonzero.

Fundamentally, this lack of momentum conservation is
emerging due to the violation of the Leibniz rule. For this
analysis we ignore the interfacial terms which are added sep-
arately. The bulk nonideal pressure using the thermodynamic
relations is written as

pnid = μnid
0 ρ − Fnid. (77)

Taking the discrete derivative of the above equation one
obtains

∂̃α pnid = {
μnid

0 ∂̃αρ
} + ρ∂̃αμnid − ∂̃αFnid, (78)
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TABLE II. Discretization scheme and the maximum magnitude
of spurious current for Peng-Robinson (PR) and Carnahan-Starling
(CS) EOS on a grid of size 80 × 80 × 4 at θ/θc = 0.9 using the
RD3Q41 model.

gnid
α PR [Eq. (83)] CS

Pressure 6.376 × 10−3 4.317 × 10−3

Chemical potential 5.139 × 10−3 4.281 × 10−3

Current, η = 1.0 4.765 × 10−3 5.565 × 10−3

Current, η = 0.5 2.790 × 10−3 3.706 × 10−3

where the left-hand side is the pressure formulation which
conserves the global momentum. The term in curly braces
on the right-hand side is the chemical potential formulation
which does not conserve the global momentum because the
other two terms (although they cancel in the continuous case)
are ignored in the discrete chemical potential formulation. It
is interesting to note that if one defines the discrete derivative
as

∂̃α (AB) = A∂̃αB + B∂̃αA, (79)

A, B being arbitrary functions, the Leibniz rule as well as the
global momentum conservation holds.

Therefore, the global momentum conserving new formula-
tion using Eq. (78) is written as

ρgnid
α = −[

ρ∂̃ (2)
α μnid

0 + μnid
0 ∂̃ (2)

α ρ − ∂̃ (2)
α Fnid + κ∂̃

(2)
β Iαβ

]
,

(80)
where the interfacial stresses Iαβ are given by

Iαβ = [− 1
2∂γ ρ ∂γ ρ − ρ ∂2ρ

]
δαβ + ∂αρ ∂βρ. (81)

Ideally, one would prefer to work with the fourth-order dis-
crete derivatives [Eq. (A5)] but they lead to violation of the
global momentum conservation. One can, however, use the
fourth-order discrete derivative for ∂̃αFnid, for which we use a
convex combination of the second- and fourth-order discrete
derivative (see Appendix for details). This brings us to the
final form of gnid

α :

ρgnid
α = − [

ρ∂̃ (2)
α μnid

0 + μnid
0 ∂̃ (2)

α ρ − η∂̃ (2)
α Fnid

− (1 − η)∂̃ (4)
α Fnid + κ∂̃

(2)
β Iαβ

]
. (82)

The above route to calculating the discrete derivative is ther-
modynamically consistent, preserves the global momentum,
and has a parameter η ∈ [0, 1] that can be fine tuned to
improve the accuracy, but for this work we restrict ourselves
to η = 1

2 .
To demonstrate the accuracy of the present model, we sim-

ulate a one-dimensional interface of a van der Waals fluid on a
grid of size 192 × 4 × 4 using the RD3Q41 model. Figure 16
shows the densities from the pressure formulation, chemical
potential formulation, and the current scheme for three η

values. It is evident that the current scheme predicts the values
of phase density that match with the theoretical Maxwell’s
construction values. From Fig. 17 and Table II, it can be
seen the maximum magnitude of the spurious current is also
reduced upon using the current formulation. Here, it should
be pointed out that although η = 0 gives smaller spurious
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FIG. 16. Liquid vapor densities of the van der Waals fluid for
various formulations at different reduced temperature θ∗ = θ/θc.
The same plot is represented on the linear scale (top) and the
logarithmic scale (bottom) to emphasize the error in density of the
gas phase.

currents than η = 1
2 , it succumbs to numerical instabilities at

a higher θ/θc = 0.87.

B. Sound propagation in a nonideal gas

In this section, we validate the proposed model for sound
propagation in an isothermal nonideal gas. For a gas following
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FIG. 17. Spurious currents of the van der Waals fluid for various
formulations at different reduced temperature θ∗ = θ/θc.
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an ideal equation of state (EOS) p = ρθ0 the sound speed is
fixed at

√
θ0 where θ0 is a reference temperature. However,

in real gases, the speed of sound becomes dependent on the
phase density too as pressure is a nontrivial function of phase
density. To confirm this, we introduce a density perturbation at
constant temperature in a nonideal fluid with Peng-Robinson
type equation of state given by

p = ρθ0
1 + η + η2 − η3

(1 − η)3
− aρ2

1 + 2ρb − ρ2b2
, (83)

where a = 1.851 427 622θc/ρc, b = 0.353 748 714/ρc are van
der Waals type critical parameters and η = ρb/4. Here, θc and
ρc are critical temperature and critical density, respectively.

We compute the speed of sound at various values of θ∗ =
θ0/θc and their corresponding equilibrium phase densities
(ρph) by initializing a 1D density fluctuation of the form

ρ(x, t = 0) = ρph[1.0 + ε cos(πx)], (84)

in domain of size [−π, π ] in the x direction. The domain
has two lattice points in the y and z directions and periodic
boundary conditions are applied in all three directions. The
wave is expected to reach the same configuration as the initial
condition after one wave period (tp). We track the l2-norm of
the density fluctuation computed using the present state and
initial state, which is minimum when the waves are in phase
after completing one cycle. The domain size (L) and the time
period at which l2-norm is minimum are used to compute the
speed of sound (cs = L/tp).

We observe a good agreement with the theoretical predic-
tion of the sound speed in both the phases for a broad range of
θ∗ as shown in Fig. 18.

C. Quenching of a liquid-gas system

Quenching of a liquid-gas system exhibits phase separation
and has been widely accepted as a test for thermodynamic
consistency and stability of a multiphase lattice Boltzmann
model [82]. We use the Peng-Robinson EOS as defined in
Eq. (83), and the Carnahan-Starling EOS. For θ < θc the
system shows phase separations where in the initial stages
tiny bubbles of the liquid phase surrounded by the ambient
gaseous phase are formed. As time progresses, the bubbles
merge to form a stable lamellar film, a cylinder or a spherical
droplet. Figure 19 shows the liquid and gas density obtained
from the RD3Q41 model compared against the theoretical
values obtained from Maxwell’s equal area construction. The
model accurately recovers liquid-gas bulk densities, hence is
confirmed to be thermodynamically consistent.

D. Droplet collision

We employ the proposed multiphase model and the
Carnahan-Starling EOS [83] to simulate binary droplet col-
lision as it offers interesting outcomes depending upon the
control parameters [43]. Three particular outcomes observed
upon collision at various Reynolds number, Weber number,
and the impact parameter are coalescence, stretching separa-
tion, and reflexive separation [84].

The setup consists of a rectangular box of 160 × 200 ×
200 lattice units with two liquid phase droplets of diameter
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FIG. 18. Speed of sound in a nonideal gas for liquid and vapor
phases: theoretical prediction (solid line) and simulation (points).

D0 = 45 units and interface width 5 units located in the
ambient of gas phase with a distance of 30 units between
their centers. At t = 0, they are imparted a relative velocity
U0 = 0.2 toward each other. The liquid phase having a density
of ρliq/ρc = 2.412 is in equilibrium with the gas phase of
density ρgas/ρc = 0.185 at θ/θc = 0.8. The chosen value of
κ = 0.001a�x2 corresponds to a surface tension σ = 0.223
when �x = 1. The kinematic viscosity of the liquid phase
νliq = 0.0303, hence, Reynolds number (Re) and the Weber
number (We) can be calculated as

Re = U0D0

νliq
= 297.03, We = ρliqU 2

0 D0

σ
= 19.47. (85)

For calculating α required for the entropic formulation of
LBM, we rewrite Eq. (68) as

f̃i(x + ci�t, t + �t )= f̂i(x, t )+αβ
[

f̂i
eq

(ρ, u, θ0) − f̂i(x, t )
]
,

(86)

where we have the transformations f̂i = f̃i + �tFi and f̂ eq
i =

f eq
i + (�t/2)Fi with �t = 1. These transformations permit

us to define xi = f̂ eq
i / f̂i − 1 and compute the path length α

in the spirit of Refs. [85]. Figure 20 shows head-on collision
between two droplets in thermodynamic equilibrium with the
ambient.
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FIG. 19. Equilibrium liquid and gas density ρ/ρc = ρ∗ obtained
from RD3Q41 model for Carnahan-Starling EOS (top) and Peng-
Robinson type EOS (bottom) compared against their respective
Maxwell equal area construction at various θ/θc = θ∗.

X. TURBULENT FLOWS

Higher-order isothermal lattice Boltzmann methods
are known to be stable and have been proposed as an
alternative to direct numerical simulations (DNS) for fluid
turbulence [40]. It is shown that energy conserving LB models
are more numerically stable than their non-energy-conserving
counterparts [20]. The proposed RD3Q41 model, which is an
energy conserving higher-order LB model, takes advantage
of these two features and is a viable alternative for DNS
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t = 0.102 t = 0.133 t = 0.191 t = 0.289

t = 0.444 t = 0.600 t = 0.702 t = 1.027

FIG. 20. Head-on collision between two droplets at Re = 297.03
and We = 19.47.
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FIG. 21. Comparison of evolution of mean enstrophy with time
(line: LBM, points: PS).

simulations of turbulent flows. In this section, we present
simulations of turbulent flows for three cases: a fully periodic
test case of decaying turbulence, flow in a rectangular
channel, and flow over a sphere.

A. Kida-Peltz flow

Kida-Peltz flow is a periodic flow with highly symmetric
initial conditions and is a good test case for the computational
study of high Reynolds number (Re) flows [86]. The initial
conditions for the flow are

ux(x, y, z) = U0 sin x[cos(3y) cos z − cos y cos(3z)],

uy(x, y, z) = U0 sin y[cos(3z) cos x − cos z cos(3x)], (87)

uz(x, y, z) = U0 sin z[cos(3x) cos y − cos x cos(3y)],

with x, y, z ∈ [0, 2π ]. The simulations were performed at a
Reynolds number 5000 defined based on the domain length
and velocity U0. In this flow, enstrophy (�) increases very
sharply in the initial time steps and reaches a maximum value
and then decays with time. Mean enstrophy is calculated from
the symmetric velocity gradient tensor [87]

Sαβ = 2

ρθ (2τ + �t )

∑
i

(
fi − f eq

i

)
ciαciβ, (88)

where τ = ν/c2
s . We demonstrate the efficiency of the pro-

posed RD3Q41 model by comparing the evolution of mean
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FIG. 22. Mean velocity profiles from our simulation (points) and
DNS results (line) from [94].

013309-16



LATTICE BOLTZMANN MODEL FOR WEAKLY … PHYSICAL REVIEW E 101, 013309 (2020)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100

y+

urms
vrms
wrms

FIG. 23. RMS velocity profiles from our simulation (points) and
DNS results (line) from [94].

enstrophy of a Kida-Peltz flow setup with that of pseudospec-
tral (PS) method in Fig. 21.

The pseudospectral method solves the 3D Navier-Stokes
(NS) equations in a periodic domain. We use the projection
operator Pi j = δi j − kik j/k2 to eliminate the pressure term in
the Navier-Stokes equations, which allows us to rewrite them
in Fourier space as [88]

∂t [ũ j (k) exp(νk2t )] = exp (νk2t )Pi jF (k), (89)

where ũ j (k) denotes velocity in Fourier space, δi j is the
Kronecker delta, F (k) is the Fourier coefficient of the non-
linear advection term [87]. Runge-Kutta third-order scheme is
used for the time integration and dealiasing of the nonlinear
term is performed via the 2

3 rule [89]. For the MPI (message
passing interface) implementation of parallel Fourier trans-
form, FFTW library (version 3), was used which provides a
comprehensive collection of fast C routines for computing the
discrete Fourier transform [90]. The initial conditions being
highly symmetric in space, only odd and even transforms are
used, thus reducing the problem size to one eighth (half in
each direction) [86], as compared to the full original domain.
An in-house solver was used to perform the PS simulations.
The numerical implementation of Eq. (89) and details of the
solver are given in detail in Ref. [91].

B. Turbulent channel flow

In this section, the proposed RD3Q41 model is bench-
marked for the classic wall bounded turbulent flow in a rectan-
gular channel. We perform simulations at a friction Reynolds
number (Reτ ) ≈ 180. The friction Reynolds number is de-
fined based on the wall shear velocity (uτ ) and the channel
half-width (δ). The simulations were performed a domain of
size 12δ × 2δ × 6δ, and the channel half-width was chosen to

TABLE III. Mean flow properties from present RD3Q41 simula-
tion and from Ref. [95] at Reτ = 180.

Cf0 Cf Um/uτ Uc/uτ Uc/Um

RD3Q41 5.95 × 10−3 8.23 × 10−3 15.58 18.33 1.17
Ref. [95] 6.04 × 10−3 8.18 × 10−3 15.63 18.20 1.16

FIG. 24. Isovorticity contours of flow over sphere at Reynolds
number = 3700.

be 96 grid points. This corresponds to a nondimensional grid
spacing �x+ = �x/y+ ≈ 2 where y+ = yuτ /ν.

The flow is driven by a body force, and periodic boundary
conditions are applied in streamwise and spanwise directions.
Turbulence in the domain is triggered by adding a divergence-
free noise to the initial conditions [92].

At sufficiently high Reynolds numbers in channel flows,
the variation of the mean velocity in wall coordinates (u+) is
known to follow the law of the wall [93]. The mean velocity
(u+) scales linearly with wall coordinate y+ in viscous layer
and in the log law region scales as u+ = (1/κ )ln(y+) + B
where κ = 0.42 and B = 5.5 are constants. Figure 22 shows
that the mean flow of velocity in wall coordinates from our
simulations follows the law of the wall and is in excellent
agreement with that reported in Ref. [94]. RMS velocity pro-
files also show an excellent agreement, as shown in Fig. 23.

The other mean flow properties like skin friction coefficient
(Cf ), the ratio of bulk mean velocity (Um), and center line
velocity (Uc) to wall shear velocity (uτ ) show good agreement
with Kim et al. [95] and are reported in Table III. This
shows that the proposed model is well suited to simulate wall
bounded turbulent flows.

C. Flow past a sphere

Flow over bluff bodies is a well studied problem that is of
considerable academic and practical interest. In this section,
we simulate flow past a sphere at Reynolds number of 3700
(see Fig. 24). The Reynolds number is defined based on
the free stream velocity U0 and the diameter of the sphere
D0. A computational domain of [−4.725D0, 15.525D0] ×
[−6.125D0, 6.125D0] × [−6.125D0, 6.125D0] is used with
80 grid points per diameter of the sphere and the center of
sphere located at the origin. The inlet and outlet boundary
conditions are based on Ref. [96]. A diffused bounce back
boundary condition described in Ref. [97] is implemented
on the surface of the sphere. This boundary condition is
local in nature, and is implemented in two steps: First, the
standard bounce back is applied locally at each grid point,

TABLE IV. Drag coefficient (Cd ), average base pressure coeffi-
cient (Cp), recirculation length (LR), separation angle (φs).

Cd Base Cp LR φs

DNS [98] 0.394 −0.207 2.28 89.4
LES [99] 0.355 −0.194 2.622 90
Experiments [100] −0.224
RD3Q41 0.427 −0.211 2.241 90
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FIG. 25. Cp distribution on the surface of the sphere compared
with with the experimental [100] and DNS [98] studies.

after which the density ρboundary can be calculated since all
the populations are known after bounce back. In the second
step, the incoming populations are replaced with f eq(ρ =
ρboundary, uimposed, θimposed ), where uimposed, θimposed are the ve-
locity and temperature imposed, respectively. Velocity is im-
posed to be zero on the surface of the sphere and is maintained
at constant temperature.

We compare the flow variables such as the drag coefficient,
base coefficient pressure, separation angle, and mean recircu-
lation length with the available numerical and experimental
data in Table IV. The drag coefficient Cd is defined as

Cd = FD
1
2ρU 2

0 A
, (90)

where FD is the drag force and A = πD2
0/4. The recirculation

length is defined as the distance between the rear end of the
sphere and the location where the velocity in the streamwise
direction changes its sign. The angular distribution of the
pressure coefficient Cp defined as

Cp = P − P0
1
2ρU 2

0

(91)

is plotted over the surface of the sphere in Fig. 25. Cp profiles
from an experimental study, and a DNS study are also shown
for reference. It is to be noted that capturing the Cp distribution
requires a very high resolution of the sphere [101] while with

the current model, we find a reasonable agreement with only
80 points per diameter.

The averaged profile of the velocity in the streamwise
direction normalized with the free stream velocity at three
different locations (x/D0 = 0.2, 1.6, 3.0) in the wake of the
sphere are shown in Fig. 26. The averaged profiles of the flow
show a good agreement with the DNS [98], LES [99], and
experimental [100] studies.

XI. OUTLOOK

In this paper, we have presented an energy conserving
lattice Boltzmann model which is suitable for compressible
hydrodynamics, aeroacoustics, and thermoacoustic problems.
It recovers the pressure dynamics and the isentropic sound
speed in addition to the effects of viscous heating, and heat
conduction with a high degree of accuracy. The theoretical
requirements and the methodology to construct this model
have been discussed, and the test cases confirm its stability
for a wide range of parameters. With improved accuracy in
the velocity space and better representation of the curved
surfaces, this model raises the prospect of direct simulations
of turbulent flows involving objects. This has been shown via
simulations of Kida-Pelz flow, channel flow and flow past a
sphere. The specific heat ratio and Prandtl number of this
model are fixed. This restriction on the Prandtl number can
be addressed by a number of collision kernels [102–105].
The interactions between turbulence and acoustics along with
methods to fix the specific heat ratio to that of polyatomic
gases is subject of further investigation [106].
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APPENDIX: EVALUATING DERIVATIVES ON A LATTICE

In this Appendix, we briefly review the way to evaluate the
discrete gradients and Laplacian in an isotropic manner. The
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FIG. 26. Averaged profile of the normalized velocity at three different locations (x/D = 0.2, 1.6, 3.0) in the wake of the sphere from this
study (solid line) compared with DNS [98], LES [99], and experimental [100] studies.
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discrete derivative ∂̃ is defined as

∂̃αψ = 1

θ̂0�t

∑
i

ŵiciαψ (x + ci�t ). (A1)

Here, ŵi are the weights of the lattice with discrete velocities
ciα and ψ is the function whose derivative needs to be cal-
culated. The above definition can be understood as follows:
we consider the Taylor expansion of Qα = ∑

i ŵiciαψ (x +
ci�t )/(θ̂0�t ) [107,108],

Qα ≡ 1

θ̂0�t

∑
i

ŵiciαψ (x + ci�t ) = 1

θ̂0�t

[
ψ (x)

∑
i

ŵiciα

+ �t
∂ψ

∂xβ

∑
i

ŵiciαciβ + �t2

2

∂2ψ

∂xβ∂xγ

∑
i

ŵiciαciβciγ

+ �t3

6

∂3ψ

∂xβ∂xγ ∂xκ

∑
i

ŵiciαciβciγ ciκ + O(�t4)

]
.

(A2)

The odd-order moments of weight are zero due to symmetry
of the underlying lattice and further simplification of Qα leads
to

Qα ≡ 1

θ̂0�t

∑
i

ŵiciαψ (x + ci�t ) = ∂ψ

∂xα

+ �t2θ̂0

2

∂

∂xα

∂2ψ + 3�t4θ̂2
0

8

∂

∂xα

∂4ψ + O(�t6),

(A3)

assuming the lattice is sufficiently isotropic. The emergence
of the derivatives of ψ is seen on the right-hand side of the
above equation.

The second-order gradient is hence

∂̃ (2)
α ψ = 1

θ̂0�t

∑
i

ŵiciαψ (x + ci�t ). (A4)

The fourth-order gradient is written as

∂̃ (4)
α ψ = 1

θ̂0�t

∑
i

ŵiciαψ (x + ci�t ) − θ̂0

2
(�t )2∇α (∇2ψ ).

(A5)

The Laplacian can also be evaluated as

∂̃2ψ = 2

�t2θ̂0

[∑
i

ŵiψ (x + ci�t ) − ψ (x)

]
. (A6)

Here, it remains to justify the choice of stencil for calculating
derivatives. From Eq. (A3) it is evident that the discretization
errors are proportional to θ̂0 = ∑

ŵic2
ix of the chosen stencil.

For the crystallographic grid, the 15 velocity stencil compris-
ing of the discrete velocities

ci = {(±1, 0, 0), (0,±1, 0), (0, 0,±1), (±0.5,±0.5,±0.5)}
(A7)

is found to have the least θ̂0 = 1
6 with ŵ0 = 14

36 , ŵSC = 1
36 ,

and ŵBCC = 2
36 , therefore, is the ideal choice for computing

derivatives.
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