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This work addresses the construction of a reduced-order model based on a multigroup maximum entropy
formulation for application to high-enthalpy nonequilibrium flows. The method seeks a piecewise quadratic
representation of the internal energy-state populations by lumping internal energy levels into groups and by
applying the maximum entropy principle in conjunction with the method of moments. The use of higher-order
polynomials allows for an accurate representation of the logarithm of the distribution of the low-lying energy
states, while preserving an accurate description of the linear portions of the logarithm of the distribution
function that characterize the intermediate- and high-energy states. A comparison of the quadratic and the
linear reconstructions clearly demonstrates how the higher-order reconstruction provides a more accurate
representation of the internal population distribution function at a modest increase in the computational cost.
Numerical simulations carried out under conditions relevant to hypersonic flight reveal that the proposed model
is able to capture the dynamics of the nonequilibrium distribution function using as few as three groups, thereby
reducing the computational costs for simulations of nonequilibrium flows.
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I. INTRODUCTION

Over the past decade there has been renewed interest in
high-fidelity modeling of nonequilibrium hypersonic flows.
With the increasing availability of computational resources
it is now possible to compute state-specific kinetic data by
leveraging ab initio potential energy surfaces and quasiclas-
sical trajectory calculations [1–11]. Although state-to-state
(StS) simulations [12–14] yield the most accurate description
of the nonequilibrium population distribution, they are pro-
hibitively expensive and cannot be used in computational fluid
dynamics calculations [15–19]. To overcome the limitations
of the StS methodology, various researchers have developed
reduced-order models. The simplest method of reduction is
the multitemperature model [20–24], where macroscopic rate
coefficients and relaxation energy parameters are expressed in
terms of one or more temperatures. The need for an accurate
description of nonequilibrium phenomena (e.g., the dynamics
of the internal distribution function) has led to the construction
of a new class of models, where the internal population dis-
tribution is described using functions that have local instead
of global support over the internal energy space. To this aim,
the energy states are lumped together into groups and their
population is prescribed in terms of a predetermined distribu-
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tion (e.g., uniform, Boltzmann, etc.). Gordiets et al. [25] first
proposed the use of multiple distributions patched together
to represent the vibrational population during a nonequilib-
rium chemical relaxation. In this work, the energy levels
were grouped based on their relaxation mechanisms, with the
lower-energy levels having a Treanor [26]–like distribution,
while the intermediate and the high-lying levels followed
Boltzmann distributions at different temperatures. Kustova
et al. [24] extended the model to include transport properties
using kinetic theory. The computed transport properties were
then used to simulate nozzle expansion flows [27,28] and the
population distribution function showed a good agreement
with the StS results. More recently, a number of papers on
the complexity reduction for state-specific chemical kinetics
have been published [16,29–39]. The approach followed is
very similar in all cases; a piecewise distribution is used to re-
construct the population of the internal levels. The main differ-
ences are related to the assumption regarding the specification
of the group distribution and temperatures; while some mod-
els assume fast equilibration of the group temperature with the
kinetic temperature, others determine the evolution of the tem-
perature within each group, by solving additional equations.

This work addresses the extension of the multigroup max-
imum entropy method (MGME) [30–32,38] to allow for re-
construction of the population distribution using high-order
polynomials. Traditionally, maximum-entropy-based methods
[40–43] have been used as a “scaling law” to generate large
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matrices of state-specific cross sections [42], leveraging the
maximum entropy functional form. For example, Kulakhme-
tov et al. [43] used maximum entropy theory to derive an-
alytical expressions for the state-specific cross sections. The
authors referred to this method as ME-QCT. Here, instead,
the multigroup maximum entropy method is used to derive
a reduced-order model. Following the work of Liu et al.
[30–32] the maximum entropy principle subject to a series
of constraints (i.e., mass, energy, etc.) is used to reconstruct
the population of the energy states within each group. A
similar approach was used to derive conservation equations
for polydisperse multiphase flows [44]. The multigroup max-
imum entropy linear model was first published in 2010 [30];
there the macroscopic mass and internal energy equations for
energy groups were obtained in a coupled manner from the
zeroth-order and first-order moments of the master equations.
The formulation was later extended to higher orders [31] and
to general collisional and radiative processes [32,39]. Finally,
Munafo et al. [38] modified the formulation to introduce
multiple temperatures per group. In its original formulation,
the MGME method requires knowledge of the state-specific
rate coefficients, which for more complicated systems can be
prohibitively expensive. To overcome this problem, recently
Macdonald et al. [45,46] applied the MGME methodology to
quasiclassical trajectory calculations for direct determination
of the grouped reaction rate parameters.

Under strong nonequilibrium conditions, the linear multi-
group maximum entropy method [32] requires a large number
of groups to accurately capture the dynamics of the distri-
bution function. To overcome the limitations of the previous
models, the present work focuses on the implementation
of a robust and computationally efficient method using the
multigroup maximum entropy quadratic formulation. The in-
troduction of a high-order reconstruction in the multigroup
maximum entropy modeling technique allows one to capture
curvature in the population distribution function (i.e., low-
lying energy states) with a reduced number of groups, thus
addressing the limitations of the linear reconstruction model.

The paper is arranged as follows: Sec. II describes the state-
specific chemical kinetics of the N2(1�+

g )-N(4Su) system,
which includes inelastic collisions and chemical reactions of
the rovibrational energy states. The details of the master equa-
tions are also discussed. Section III presents the formulation
of the multigroup maximum entropy quadratic model. The
results of the numerical simulations and model validation are
presented in Sec. IV. Finally, concluding remarks on this work
are given in Sec. V.

II. CHEMICAL SYSTEM

A. State-to-state kinetics

The multigroup quadratic model developed is applicable
for any system at thermo-chemical nonequilibrium. To illus-
trate the methodology, we choose as an example a pure ni-
trogen gas mixture, N2(1�+

g )-N(4Su), system. In this system,
rovibrational energy transfer (excitation-deexcitation pro-
cesses) and chemical reactions (dissociation-recombination
processes) between the molecules and the atoms are consid-
ered.

The N2(1�+
g ) molecule has 9390 rovibrational levels. The

first 7421 levels are bound levels and the remaining are
predissociated or quasibound. Here, we limit our analysis to
the bound energy levels of the molecules, given that the quasi-
bound levels are best characterized by linear or even constant
reconstruction [35,36]. The StS kinetics data for this system
are obtained from ab initio calculations performed at NASA
Ames Research Center [1–4,12]. The rovibrational levels are
sorted in increasing order of their energy, with no distinction
between the rotation and the vibration levels. When every
internal energy state is treated individually no decoupling of
the rotation and vibration energy states is needed.

The StS chemical kinetics of the N2(1�+
g )-N(4Su) system

can be written as

N2(i) + N ⇐⇒ N2( j) + N, (1)

N2(i) + N ⇐⇒ N + N + N. (2)

The indices i and j in the reaction represent the rovibrational
level of the N2(1�+

g ) molecule. Reaction (1) includes inelastic
and exchange reactions [16]. The other pair of reactions, (2),
is the dissociation-recombination reactions. For some of the
excitation processes the probability of occurrence is so low
that they are not observed in the quasiclassical trajectory cal-
culations and hence are ignored. These reactions, (1) and (2),
lead to more than 44 × 106 possible rovibrational dissociation
and energy transfer interactions that comprise the chemical
kinetics of the N2(1�+

g )-N(4Su) system.

B. Microscopic governing equations

Let ni, gi, and εi denote the population, degeneracy, and
energy of rovibrational level i of the N2 molecule, nN the
population of N atoms, and In the set of bound energy levels.
The microscopic master equation governing the population
density of N2 molecules for reactions (1) and (2) can be
written as

dni

dt
=

∑
jεIn

[−ki, jninN + k j,in jnN ]

+ [−kd
i ninN + kr

i n2
NnN

]
, i ∈ In. (3)

The concentration of the chemical species is a function
of time alone, i.e., the mixture is assumed to be spatially
homogeneous, and the simulations are ordinary differential
equations in time. The first two terms in the master equation
denote the excitation and deexcitation processes. The last two
terms denote the change in the individual state population
density due to dissociation and recombination processes.

The excitation rate coefficients from level i to level j are
denoted ki, j and the dissociation rate coefficients are denoted
kd

i . These rate coefficients are calculated using an Arrhenius
fit where the fit parameters are obtained from calculations
done at NASA Ames Research Center. The deexcitation rate
coefficients k j,i and recombination rate coefficients kr

i are
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computed using the relations of detailed balance,

k j,i = ki, j
gi

g j
exp

[−(εi − ε j )

kBT

]
, (4)

kr
i = kd

i

gi Qtr
N2(

gN Qtr
N

)2 exp

[−(εi − 2εN )

kBT

]
, (5)

where

Qtr
N =

(
2πmNkBT

h2

) 3
2

, Qtr
N2

=
(

2πmN2 kBT

h2

) 3
2

. (6)

The symbol kB represents the Boltzmann constant and h is
the Planck constant. Qtr is the translation partition function,
with m being the mass of a single atom or molecule per unit
volume. The translational temperature of the gas is denoted T .

The microscopic master equation discussed in this section
is the pivotal point in the development of the quadratic model
characterizing chemical nonequilibrium. The model order-
reduction technique adopted in this paper is discussed in the
following section.

III. MODEL FRAMEWORK

The maximum entropy formulation implies that the log-
arithm of the distribution function can be represented by
a polynomial of the internal energy. Using multiple groups
indicates that the representation is piecewise. The formulation
of the multigroup maximum entropy method, using a linear
reconstruction, was presented by Liu et al. [30], and later it
was extended to higher orders using an arbitrary-degree poly-
nomial representation [31,32]. Although the formulation was
expressed in a general form, only a linear representation was
actually implemented. In this section we present the quadratic
representation, for the purpose of clarity and completeness.

A. Method of moments and maximum entropy principle

In statistics, the method of moments is a tool used to
estimate population distributions of random variables based
on the law of large numbers. Here, this powerful technique
is applied to obtain governing equations that describe the
internal energy-space population distribution in thermal and
chemical nonequilibrium flows.

The energy value, X , is a discrete random variable whose
possible realizations are εi, the energy of the internal states of
the molecule, and P{X = εi} is the probability that a molecule
chosen at random will belong to the ith state. When the
system is at equilibrium, P{X = εi} is given by the Boltzmann
distribution,

P{X = εi} = ni

ntot
= gi exp

[− εi
kBT

]
∑

jεIn
g j exp

[− ε j

kBT

] , (7)

where ni and gi are the population and degeneracy of energy
state i, and ntot = ∑

iεIn
ni is the total number of molecules.

Since it is impractical to solve the microscopic master equa-
tion [Eq. (3)], and in some cases the problem becomes
intractable, the method of moments is adopted to describe
thermal and chemical nonequilibrium processes. The number
of molecules in a macroscopic quantity of the gas is extremely
large, of the order of Avogadro’s number, therefore, the law

FIG. 1. Nonequilibrium state-to-state population distribution
function (blue triangles) and a seven-group quadratic piecewise
reconstruction (orange diamonds).

of large numbers can be applied to estimate the population
distribution function in energy space. The probability mass
function (PMF) is taken to be a quadratic function to obtain a
good reconstruction of the trends observed in typical nonequi-
librium StS population distribution functions (Fig. 1).

The form of the estimated PMF derived in this paper is
based on the maximum entropy principle, which enforces
the population distribution function of a system to be such
that the entropy of the system is maximized while satisfy-
ing some constraints. This results in an (over-)constrained
problem (see [32,47] for a detailed derivation) for the most
probable macrostate of the system which maximizes entropy.
To solve this constrained maximization problem, the method
of Lagrange multipliers is employed in order to satisfy the
constraints.

B. Constraints on the distribution function

Since the population of the internal levels cannot be de-
scribed accurately by a single second-order polynomial, the
state space is divided into groups of equal energy intervals,
each characterized by an independent distribution. The loga-
rithm of the distribution is then approximated using a piece-
wise quadratic polynomial. Characterization of the quadratic
function requires three parameters, which can be determined
by taking moments of the energy. The moments used in this
work are:

i. The zeroth-order moment,
∑

i∈Ig
ni = ng, corresponds to

the mass constraint within each group.
ii. The first-order moment,

∑
i∈Ig

niεi = eg, implies the
conservation of energy within each group.

iii. The second-order moment,
∑

i∈Ig
niε

2
i = fg, denotes

the square of the energy within each group. This constraint
is required due to the choice of a quadratic reconstruction
function for the PMF.
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FIG. 2. Different types of reconstruction functions estimating the
actual distribution function in each group; constant (solid blue line),
linear (dashed red line), and quadratic (dotted-dashed pink line);
symbols denote the actual distribution function.

While the first two constraints are related to conservation
laws of nature, namely, conservation of mass and conservation
of energy, the third constraint is necessary to allow for the
higher-order reconstruction, and it does not have any immedi-
ate physical meaning. Furthermore, the group model parame-
ters which characterize the PMF are functions of the group
moments, αg = αg(ng, eg, fg), βg = βg(ng, eg, fg), and γg =
γg(ng, eg, fg), and they enter the formulation of the quadratic
model as Lagrange multipliers. As a result of applying the
maximum entropy principle and using these Lagrange multi-
pliers, the form of the PMF for the most probable macrostate
which maximizes the entropy of the system is as follows
[31,32]:

ln
gi

ni
= αg + βgεi + γgε

2
i , i ∈ Ig, (8)

Ig = {i | εg−1 < εi � εg}, g = 1, 2 . . . . (9)

The subscript g denotes the group index and the finite discrete
set Ig is given by Eq. (9). The energy of the highest-lying state
in the group is represented as εg. As discussed in the following
subsection, the evolution of these moments in time is solved
for in order to obtain the time dependence of the quadratic
model parameters. Having obtained the model parameters as
a function of time, the transient nonequilibrium population
distribution can be reconstructed.

Before moving on to discuss the master equation for the
multigroup maximum entropy quadratic model, we take a look
at the quadratic model parameters. Figure 2 is a representation
of the form of the PMF shown for different approximations of
the distribution function with a three-group maximum entropy
model. The blue circles are a cartoon representation of the ac-
tual distribution in the energy states. The horizontal blue line
corresponds to the type of reconstructed population obtained
when using only the constant term, αg, in (8). Increasing
the order of the approximation up to the linear term, we
obtain a representation as shown by the red lines. Finally,
in the quadratic representation, we introduce the quadratic
parameter, γ , and the estimated PMF is represented by the
pink quadratic curves.

The constant term (blue line in Fig. 2) in the quadratic
representation of the energy-state population distribution, αg,
comes from the first constraint, i.e., mass conservation within
each group. It can be shown to be related to the number of
moles in the group and the zeroth partition function [Eq. (11)
for m = 0] by the following relations:

ng =
∑
i∈Ig

ni,

ng =
∑
i∈Ig

gi exp
[−αg − βgεi − γgε

2
i

]
,

exp[−αg] = ng

Qg
; (10)

mQg =
∑
i∈Ig

giε
m
i exp

[−βgεi − γgε
2
i

]
. (11)

The linear (βg) and quadratic (γg) parameters are related to
the slope and curvature of the logarithm of the PMF by the
following relations:

slope = −βg − γgεi,

curvature = γg

(1 + (−βg − γgεi )2)1.5
. (12)

Since αg can be written in terms of the other two model
parameters, we are only required to solve for βg and γg.
Recalling that βg and γg are functions of the group mo-
ments, the two conservation constraints on the energy and
energy-squared terms are used to obtain the values of these
model parameters. These constraints together form a system
of coupled nonlinear equations in βg and γg, Eq. (13), which
are solved simultaneously to obtain the linear and quadratic
parameters. In this work we use an iterative inexact Newton
algorithm from the KINSOL Library of the SUNDIALS package
[48]:

eg = eg(βg, γg) =
∑
i∈Ig

giεi exp
[−βgεi − γgε

2
i

]
,

fg = fg(βg, γg) =
∑
i∈Ig

giε
2
i exp

[−βgεi − γgε
2
i

]
. (13)

In Eq. (13), the left-hand side is obtained by evolving the
moments in time as detailed in the following subsection.

C. Time-varying nonequilibrium distributions

The method of moments along with the maximum entropy
principle described above is used to characterize the transient
nonequilibrium internal energy population distribution. In or-
der to arrive at the macroscopic moment governing equations,
moments of the microscopic master equation, Eq. (3), are
taken [31,32]:

∑
i∈Ig

d
(
niε

m
i

)
dt

=
∑
i∈Ig

∑
h∈N

∑
j∈Ih

[−ki, jε
m
i ninN + k j,iε

m
i n jnN

]

+
∑
iεIg

[−kd
i εm

i ninN + kr
i ε

m
i n2

NnN
]
. (14)

Here, N denotes the number of permissible group indices
such that union of all the groups spans the whole energy-state
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space of the molecule. The collision partner is chosen to be
atomic nitrogen and is assumed to be inert. The grouping strat-
egy reduces the number of ordinary differential equations to
be solved from the order of the number of rovibrational levels
in the molecule to the order of the number of groups chosen to
represent the energy space of the molecule. Further, the group
rate coefficients are computed and Eq. (14) is rewritten using
grouped macroscopic rate coefficients. Kg,h denotes the group
excitation rate coefficient for the excitation process occurring
from group g to group h, and Cd

g represents the group dissoci-
ation rate from group g. Similarly, Kh,g and Cr

g are the group
deexcitation and recombination rate coefficients, respectively.
The numerical index m on these rate coefficients corresponds
to the moment for which they are being defined. Equation (15)
shows the final form of the macroscopic equations that are
solved in the multigroup maximum entropy quadratic model:

dng

dt
=

∑
h∈N

[−0Kg,hngnN +0 Kh,gnhnN] −0Cd
g ngnN +0Cr

gn2
NnN,

deg

dt
=

∑
h∈N

[−1Kg,hegnN +1Kh,gehnN] −1Cd
g egnN +1Cr

gn2
NnN,

dfg

dt
=

∑
h∈N

[−2Kg,h fgnN +2 Kh,g fhnN] −2Cd
g egnN +2Cr

gn2
NnN.

(15)

The grouped rate coefficients are expectation values of
the function, 〈∑ j∈Ih

ki, jε
m
i |i ∈ Ig〉, normalized by the mo-

ment values written as ntot〈X m
g 〉, where ntot = ∑

g∈N ng. The
macroscopic group rate coefficients for the mth moment are
given by Eqs. (16)–(19). Equation (16) gives the forward
rates of a reaction, which lead to the depletion of the group
moment, whereas Eq. (17) gives the reaction rates for the re-
verse processes populating the particular group. Note that, for
m = 0, the group rate coefficient matrix is symmetric.

However, for higher moments the group rate coefficients
need to be computed for both the forward and the reverse
processes. mQg in these expressions denotes the mth moment
group partition function for group g and is a normalization
parameter which is expressed as a weighted sum of probabil-
ities of finding a molecule in the energy levels belonging to a
particular group. Equation (11) gives the form of the partition
function.

It should be noted that the superscript m on εi is the mth
power of the energy value. The recombination rates are simply
a summation of the individual microscopic recombination rate
coefficients of the states belonging to a particular group since
these rates do not depend on the internal energy-state pop-
ulation distribution of the molecules. It is worth mentioning
here that the principle of detailed balance for the grouped
rates holds only when the quadratic coefficient goes to 0 and
the internal temperatures corresponding to the β parameters
for all the groups are the same and equal to the translational
temperature. This condition is achieved only when the system
is at equilibrium and is an important validation of the model
since at equilibrium the forward and reverse processes should
balance each other out. A thorough derivation of detailed
balance between grouped rates is given by Macdonald in [49].

Group quantities are obtained by numerically integrating
Eqs. (15) in time. We used the backward differentiation
scheme of the CVODE package from SUNDIALS [48] for this
purpose. At every time step, the macroscopic rate coefficients
for each group are calculated as follows:

mKg,h =
∑
i∈Ig

∑
j∈Ih

ki, jε
m
i ni

ntot
〈
X m

g

〉
= 1

mQg

∑
i∈Ig

∑
j∈Ih

ki, jε
m
i gi exp

[−βgεi − γgε
2
i

]
, (16)

mKh,g =
∑
i∈Ig

∑
j∈Ih

k j,iε
m
i n j

ntot
〈
X m

h

〉
= 1

mQh

∑
i∈Ig

∑
j∈Ih

k j,iε
m
i g j exp

[−βhεi − γhε
2
i

]
, (17)

mCd
g =

∑
i∈Ig

kd
i εm

i ni

ntot
〈
X m

g

〉
= 1

mQg

∑
iεIg

kd
i εm

i gi exp
[−βgεi − γgε

2
i

]
, (18)

mCr
g =

∑
i∈Ig

kr
i ε

m
i . (19)

This is required since the macroscopic group rate coeffi-
cients depend on the model parameters, and they change with
time. To circumvent the actual summation, thermodynamic
tables can be computed for the rates over a range of the linear
and quadratic parameters, which can then be used to obtain
the group rate coefficients by interpolation.

IV. VALIDATION AND RESULTS

The multigroup maximum entropy quadratic model is val-
idated by comparison of the full state-to-state model with the
solutions of the system of macroscopic governing equations,
(15). The macroscopic governing equations represent a set of
stiff, highly nonlinear ordinary differential equations which
are difficult to solve. To integrate these equations in time,
backward differentiation formulas from CVODE of the package
SUNDIALS [48] were implemented. Determination of the group
moment values, Eq. (15), with a good accuracy is essential
in the calculation of the quadratic model parameters, αg, βg,
and γg, which are functions of the group moments. However,
these functions represent a system of coupled highly nonlinear
equations and cannot be inverted to calculate the quadratic
parameters directly. Therefore, it is necessary to use an iter-
ative root-finding algorithm. Both CVODE and KINSOL use a
LAPACK-based direct solver run in parallel using OpenMP.

The thermally and chemically reacting system in a
nonequilibrium state is studied by carrying out isothermal
simulations with no spatial variations. The translation temper-
ature of the mixture is initialized to 2000 K, and the mixture
is assumed to consist of 95% N2 and 5% N. It is necessary to
include some initial atoms to establish thermal excitation and
chemical reactions since molecule-molecule collisions are not
considered. The translation temperature of the reactor is then
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increased to a higher temperature. Two cases are studied, one
at 10 000 K and the other at 20 000 K. Translation modes of
the N2-N system equilibrate to the translational temperature
instantly. The strong thermal and chemical nonequilibrium
state within the rovibrational levels of the N2 molecule arising
due to collisions is studied using the proposed model.

A. Comparison of the state population distribution

A comparison of the state population distribution is done
for the quadratic model at various simulation times for two
translational temperature cases, 10 000 and 20 000 K. To
assess the quality of the reconstruction function, the results
are plotted against the full StS solution. Simulations with two
and three groups for the energy spectrum of the molecule
are studied. Energy-based grouping [32] is employed for both
linear and quadratic groups.

The distribution function temporally evolves from a Boltz-
mann distribution at 2000 K through transient non-Boltzmann
distributions to a Boltzmann distribution at 10 000 or
20 000 K. The slope of the initial distribution is higher than
the final distribution since the slope of the plot is inversely
proportional to the temperature of the system: the higher the
temperature, the lower the slope. During the initial phase, the
higher levels start to approach the Boltzmann distribution at
the final translation temperature, while the lower levels are at
strong nonequilibrium. The purpose of the proposed model is
to accurately represent this state of strong nonequilibrium.

Figure 3 shows the comparison of the population dis-
tribution for two groups at 10 000 and 20 000 K at two
instants in time, t = 0.2 ns and t = 0.1 μs. Looking at the
population distribution for the two translation temperatures,
we observe that the population of the lower states is of the
same order of magnitude. This is expected since the lower
states are initially in a frozen state at the starting translational
temperature of 2000 K. It is shown that the first group of the
linear model deviates significantly from the true distribution.
In contrast, the first group in the quadratic model provides
a better representation of the StS population distribution in
both temperature cases. The ability of the quadratic model to
account for the “curvature” in the distribution function helps
to obtain a better description of the distribution function.

Figure 4 shows a comparison of the three models with three
groups. Reconstruction using three quadratic groups shows a
promising representation of the nonequilibrium behavior of
the system at all times. As we march forward in time, it can be
seen that the non-Boltzmann distributions are more accurately
reconstructed using the quadratic model at the two instants
in time. The moment values and, hence, the slope as well
as the curvature values in the quadratic formulation change
continuously such that the probability mass function for the
energy states is reconstructed accurately as shown in Fig. 4.
There are several advantages and obvious improvements in
the results when using three groups instead of two. The most
striking improvement is the representation of the distribution
in the lower-energy states of the molecule. The dynamics of
the nonequilibrium distribution in a chemical system with
dissociation in general is such that the energy space of the
molecule is naturally divided into three regions [12,24,50].
The first is comprised of the lower-energy states, which slowly

FIG. 3. Comparison of the state population distributions ob-
tained using the state-to-state (triangles; blue at 0.25 ns and green
at 0.1 μs) and two-group maximum entropy linear (black circles)
and quadratic (yellow diamonds) models. (a) T = 10 000 K; (b) T =
20 000 K.

relax to the final translation temperature, followed by the
mid sloping region and, finally, the tail, where dissociation
facilitates quick equilibration to the translational temperature.
This makes three groups a naturally good choice for the
division of the energy space of the molecule and leads to a
better representation compared to the two-group maximum
entropy quadratic model.

An observation worthy of mention is the reaction dynamics
near the dissociation limit of the N2 molecule, which is equal
to 9.753 eV. Molecules which have energies very close to the
dissociation limit dissociate quickly due to high dissociation
rates, as shown in Fig. 5, which is a plot of the state-specific
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FIG. 4. Comparison of the state population distributions ob-
tained using the state-to-state (triangles; blue at 0.25 ns and green
at 0.1 μs) and three-group maximum entropy linear (black circles)
and quadratic (yellow diamonds) models. (a) T = 10 000 K; (b)
T = 20 000 K.

dissociation rates plotted against the energy of the
rovibrational levels. This causes the population to plummet
at the dissociation limit as observed in the population
distribution as the almost-vertical line.

Another interesting feature is observed in the full state
population distribution at around 0.1 μs. In the lower-energy
states, distinct strands separate out [12]. As we move higher
in the energy space, the strands coalesce into a cloud of
particles. It is noted that the energy states connected by these
strands have the same vibrational quantum number. Moreover,
each vibrational strand is further divided into two different
strands corresponding to the odd and even rotational quantum
numbers belonging to that vibrational quantum number. This
implies that the lower rotational states belonging to the same

FIG. 5. State-specific dissociation rate constants for rovibra-
tional states of N2.

vibration energy state tend to equilibrate more rapidly, giving
rise to these strands. The quadratic model using two or three
groups is able to provide an average representation of the
curvature of these strands using equal energy spacing groups.
However, it is not able to mimic the strands individually
because, in the grouping strategy employed in this study,
the kinetics of the chemical system is not considered as a
grouping parameter. Recently, effort has been under way to
understand the effect of kinetics on the grouping strategy as
well as PMF reconstruction, e.g., by Sahai et al. [51] and
Venturi et al. [50].

At all times, the quadratic model outperforms the linear
model in the reconstruction of the full population distribution
function. This can be attributed to the ability of the quadratic
model to estimate the population distribution of the first
group, which is highly underpredicted by the linear model.
In the figures, it can also be seen that the quadratic model
is able to reconstruct the population distributions for different
profiles, one corresponding to a final translational temperature
of 10 000 K and the other to a translational temperature of
20 000 K.

To quantitatively prove the usefulness and accuracy of the
quadratic model, we look at the moment generating function
of the probability mass function. It is a well-known fact
in probability theory that in order to accurately estimate a
distribution function it is necessary to be able to reproduce
the moment generating function (if it exists) accurately. The
moment generating function in general has the following
form:

f (z) =
∞∑

m=0

1

m!
zm E[X m], z ∈ R. (20)

Here, X is the discrete random variable which is analogous
to the energy as described in Sec. III. Rewriting the moment
generating function in terms of ni and εi we get

f (z) =
∞∑

m=0

1

m!

zm

ntot

(∑
i

niε
m
i

)
, z ∈ R. (21)
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(a)

(b)

FIG. 6. Percentage error in mean and variance of the PMF esti-
mated using three linear and quadratic groups. (a) Error in mean and
(b) error in variance of the distribution function.

In the case of the quadratic model, the summation is truncated
at m = 2, while in the linear model we have just the first-order
linear terms. Therefore, the error in the quadratic function
is inherently lower, O(3), for each individual group, which
quantitatively proves that the quadratic model works much
better than the linear model. The mean and variance of the
distribution function can be written as

E[X ] =
∑

i

ni

ntot
εi,

Var(X ) =
∑

i

ni

ntot
ε2

i −
(∑

i

ni

ntot
εi

)2

. (22)

Figure 6 shows a comparison of the error in the estimated
mean and variance of the distribution function for the two
models. The error is calculated as the deviation from the actual
distribution obtained from the StS solution. As expected, the
mean is estimated very accurately with both models, with
errors of less than 4.5% throughout the relaxation process
[Fig. 6(a)], since the first moment is solved for explicitly in
both models. However, comparing the variance of the distri-
bution, which gives a sense of the spread of the distribution,
we see that the quadratic model greatly outperforms the linear
model, with the error being less than 2%, while the linear

FIG. 7. Mole fraction profiles zoomed in during dissociation.

model incurs errors of up to 15% during the excitation phase
when there is a large spread or variance in the distribution
function. Closer to the dissociation phase, t ≈ 1 μs, the pop-
ulation distribution is predominantly a straight line, and hence
the error in Var(X) of both models decreases significantly.

B. Comparison of the macroscopic quantities

This subsection presents a comparison of the time evo-
lution of macroscopic quantities obtained with the quadratic
model and the StS model for a heat-bath temperature of
T = 20 000 K. In order to assess the sensitivity of the solution
to the number of groups used in the reduced-order model,
the simulations were run for one, two, three, five, and seven
groups.

In Fig. 7, the predicted time evolution of the molecular
nitrogen concentration is presented. Under these conditions,
the bulk of the dissociation takes place only after a long
incubation period, during which the kinetic energy is trans-
ferred to the internal energy modes. As a result, significant
dissociation occurs only after t = 3 × 10−7 s. As the system
evolves towards its final equilibrium state, the averaged in-
ternal energy of the system increases (see Fig. 8), and the
high-lying excited states become significantly populated, thus
increasing the effective macroscopic dissociation rate. The
dissociation is completed and the system reaches chemical
and thermal equilibrium by 3 μs. Given the elevated temper-
atures, a significant portion of the dissociation process does
not occur under quasi-steady-state (QSS) conditions [12].
The modeling of dissociation under non-QSS conditions is
extremely challenging due to rapid changes in the internal
distribution function that take place throughout the relax-
ation and the impossibility of defining a single macroscopic
phenomenological rate coefficient able to describe the entire
dissociation process [52]. This constitutes one of the main
shortcomings of the state-of-the-art models built on the QSS
assumption.

Comparison of the composition profiles reveals that the
reduced-order model is able to describe the entire relaxation
with a single group. The results obtained using a single group
relax slightly faster compared to the StS prediction. This
behavior can be attributed to inaccuracy in the description
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FIG. 8. Total internal energy.

of the high-lying levels in the distribution function. With the
curvature parameter, the one-group reconstruction function is
simply a parabolic profile in the internal energy space (Fig. 9).
This leads to an overprediction of the population of the high-
energy states which have high dissociation rates, as shown
in Fig. 5, and results in a faster averaged dissociation rate;
this comes directly from Eq. (18). As the number of groups
is increased, the concentration profiles approach the StS so-
lution. Figure 7 shows that the mole fraction values converge
for groups 3 and 7. The excellent agreement obtained with the
quadratic reconstruction model demonstrates the flexibility
and generality of the method and, more importantly, its ability
to describe both QSS and non-QSS regimes.

The analysis of the internal energy profiles, shown in
Fig. 8, demonstrates the ability of the reduced model to predict
the total internal energy of N2 accurately. The internal energy
of the N2 molecules is initially almost a constant since there
are very few excitation and dissociation events occurring at

FIG. 9. State population distribution obtained from a one-group
maximum entropy quadratic model compared with the actual distri-
bution from the state-to-state model.

2000 K. As the system evolves, the internal energy of the
nitrogen molecules increases, until the onset of dissociation,
which depletes the number of molecules, thus reducing the in-
ternal energy of the molecular species in the gas. As discussed
for Figs. 3 and 4, some deviation from the full StS simulation
exists due to the type of grouping strategy (uniform energy
grouping) employed in this paper. It is worth mentioning here
that during this time evolution simulation, the total energy of
the system is conserved, but not the group energy. However,
the time scales for the group internal reactions are assumed to
be much smaller than the time scales of intergroup processes
and reactive processes, therefore, when looking at the evolu-
tion of the moments, it is a safe assumption that the properties
within the group equilibrate with each other instantly. This
leads to another approximate collision invariant, which is the
group internal energy [49]. Since intergroup processes are still
taking place at slower time scales, as seen in the evolution of
group internal energies, this is what drives the system to the
overall equilibrium state as time evolves.

C. Comparison of group properties

For the sake of brevity, the comparison of the group
properties is shown only for the three-group quadratic model
against the StS solution. Such a comparison has been done
for different numbers of groups, and all cases yield similar
results. The group properties from the StS simulation are
calculated by taking moments of the actual distribution in the
postprocessing step since the output from the StS simulation
directly gives the population in each energy state.

Figure 10(a) shows a comparison of the number of moles
in each group. The solid lines represent the StS results and
the markers represent the quadratic model. The prediction
of the quadratic model are in excellent agreement with the
StS results. In the early stages of the relaxation only the first
group is significantly populated, and throughout the relaxation
its density decreases monotonically as the higher groups are
excited. This trend is in contrast to the evolution of the number
of moles in higher groups. The initial number of moles in the
higher groups is very low because at a temperature as low as
2000 K most of the molecules are in the ground state or oc-
cupy the lower-energy states. As time evolves, the excitation
reactions from the lower groups cause the mole fractions of
the higher groups to increase and eventually reach a maxi-
mum. In the early stages of the relaxation, excitation processes
tend to drive the populations of the groups towards their
corresponding equilibrium values at the final translational
temperature. In the figure, these values are indicated by dotted
lines. Given the elevated temperatures, the thermal relaxation
is not completed at the onset of dissociation, indicating that
thermal and chemical relaxation occur concurrently. The onset
of dissociation causes the number of moles to decrease, thus
affecting the group populations. It is important to note that the
lower-temperature case did not exhibit this behavior, and the
thermal and chemical relaxation were found to be decoupled.

Figure 10(b) shows a comparison of the internal energy of
each group. All groups have similar trends for the evolution
of the group internal energy. Group 1 shows a higher inter-
nal energy at the start of the simulation because the lower-
energy states are the most highly populated. The second group
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FIG. 10. Time evolution of the number of moles in each group
and the group energy. Symbols represent the quadratic model and
solid lines represent the full state-to-state model. (a) Group number
of moles; (b) group internal energy.

becomes populated significantly due to pumping of molecules
from the first group through excitation. It is important to note
that the faster relaxation of the second group is mainly due
to the presence of exchange reaction processes that favor the
energy transfer between the levels characterized by energies
between 3 and 8 eV. Furthermore, the states belonging to
the second group are characterized by higher energies, thus
contributing more to the total energy of the group. The latter
group is in general not very highly populated; furthermore,
its population is significantly depleted due to the very fast
dissociation processes. This explains its low energy content.

Another important physical macroscopic quantity studied
is the internal temperature of each group. The temperature
for each group is computed using the energy-state population
distribution. To calculate the temperature, the following one-
dimensional nonlinear equation is solved:

eg

ng
= 1

Qg

∑
iεIg

gi εi e−εi/kBTg. (23)

FIG. 11. Time evolution of the group internal temperature. Sym-
bols represent the quadratic model and solid lines represent the full
state-to-state model.

It is important to clarify that a linear reconstruction func-
tion is used to compute the moments of the distribution func-
tion where the linear term coefficient is inversely proportional
to the internal temperature of the group. The simulation starts
at a temperature of 2000 K and progresses to equilibration at
20 000 K. In Fig. 11, a comparison of the temperatures ob-
tained from the StS and quadratic solutions at different times
shows good agreement. All groups attain a final temperature
of 20 000 K, the temperature of the reactor.

Groups 2 and 3 quickly first reach quasi–steady state, at
about 15 000 K. The onset of dissociation alters the tempera-
ture of the three groups: groups 1 and 2 are at QSS at the same
temperature, while the third group exhibits a significantly
lower temperature due to the effect of dissociation. All three
groups equilibrate at the final temperature at the end of the
relaxation.

D. Comparison of group parameters

In this section, we present a discussion of the model
parameters β and γ . These model parameters are related to
the slope and curvature of the population distribution. The
values of β and γ are of the order of the energy and the
energy squared, respectively. Dealing with model parameters
of such different orders of magnitude poses computational
challenges. Hence, to work with more reasonable values of β

and γ , the energy and model parameters are normalized. The
normalization constant used is the value of the dissociation
limit of the nitrogen molecule, 9.753 eV(≡ε̂). These new
normalized parameters are distinguished by hats, β̂ and γ̂ , and
are related to the actual values by the following equations:

β̂ = βε̂, (24)

γ̂ = γ ε̂2. (25)

Figure 12 shows the evolution of the quadratic parameters
for three groups. The results for β̂ are similar to those obtained
for the internal temperatures, therefore similar considerations
apply to this parameter. The value of the first group is
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(a) β̂

(b) γ̂

FIG. 12. Time evolution of quadratic parameters using three
groups. (a) β̂; (b) γ̂ .

substantially frozen in the initial stages of the relaxation,
while groups 2 and 3 quickly reach lower values of β̂. During
dissociation, β̂ of group 3 decreases to a negative value. This
negative value for group 3 should not be confused with a
population inversion. This value of β̂ is just a parameter in the
quadratic model which is combined with the quadratic terms.
These two terms together define the population distribution of
this group. A negative value is also observed for γ̂ due to the
inverted parabolic shape of the population distribution near
the dissociation limit.

Analysis of the time evolution of the γ̂ parameter reveals
that significant curvature is necessary for the first group, while
the other two groups could be treated using a linear model. As
reported in Sec. IV A, the population distribution follows a
non-Boltzmann distribution, where the lower-lying states are
frozen while the high-lying states are significantly excited.

Figure 12 shows that, as the system approaches equilib-
rium, the β̂ and γ̂ values of all groups start to converge. When
the system reaches equilibrium the distribution reaches the
Boltzmann distribution. The value of βg for each group can
be shown to be related to the Boltzmann constant (kB) and the

final equilibrium temperature of the system by

βg = 1

kBT
, (26)

and we get

ni

ntot
= gi exp

[− εi
kBT

]
∑

jεIn
g j exp

[− ε j

kBT

] . (27)

On the other hand, the value of γ̂ and, by extension, the
curvature of the distribution functions tend to 0 as the system
approaches equilibrium. This result is consistent with the
derivation of βg and physically means that the distribution ap-
proaches the Boltzmann distribution at the final translational
temperature. This constitutes an important validation of the
proposed method, since, at equilibrium, the molecules attain
a Boltzmann distribution and hence all higher-order terms in
the description of the population distribution must become 0,
i.e., γ̂ values for all groups approach 0.

V. CONCLUSION

In summary, this paper presents an advanced technique
to model nonequilibrium flows for thermal nonequilibrium
and state-specific chemical kinetics based on the method of
moments combined with an energy-based grouping strategy.
This model comprises a quadratic reconstruction operator to
represent the logarithm of the population distribution function
of the molecules in energy space. The kinetic and thermody-
namic data are obtained from ab initio calculations performed
at NASA Ames Research Center [1–11]. In the computation of
group properties, no ad hoc assumptions are made, and hence
this model retains most of the physics of the system. From the
results we see that this simple model is capable of accurately
representing the non-Boltzmann distributions occurring in
strongly nonequilibrium regimes. The key contribution of this
model over previous nonequilibrium models [32–34] is the
introduction of the quadratic parameter in the PMF definition.
This reduces the number of groups required to estimate the
non-Boltzmann distribution and makes the integration into
CFD applications [53] more feasible.

Although the model is used to characterize nonequilibrium
in the N2(1�+

g )-N(4Su) system in this paper, the proposed
approach is general and the framework presented in the paper
can be applied to any physical system for arbitrary physical
conditions. Particular attention is, however, required when
dealing with interaction between polyatomic molecules. First
steps in this direction have been published recently by Mac-
donald et al. [45,46]. In that work, the authors have proposed
the MGME-QCT method, in which the grouped kinetic prop-
erties can be calculated directly from scattering calculations,
bypassing the need to compute state-to-state rates. Future
work shall address the extension of the quadratic model for
its application to MGME-QCT.
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