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Absorbing boundary conditions for the time-dependent Schrödinger-type equations in R3
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Absorbing boundary conditions are presented for three-dimensional time-dependent Schrödinger-type of
equations as a means to reduce the cost of the quantum-mechanical calculations. The boundary condition is first
derived from a semidiscrete approximation of the Schrödinger equation with the advantage that the resulting
formulas are automatically compatible with the finite-difference scheme and no further discretization is needed
in space. The absorbing boundary condition is expressed as a discrete Dirichlet-to-Neumann map, which can
be further approximated in time by using rational approximations of the Laplace transform to enable a more
efficient implementation. This approach can be applied to domains with arbitrary geometry. The stability of
the zeroth-order and first-order absorbing boundary conditions is proved. We tested the boundary conditions on
benchmark problems. The effectiveness is further verified by a time-dependent Hartree-Fock model with Skyrme
interactions. The accuracy in terms of energy and nucleon density is examined as well.
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I. INTRODUCTION

Quantum-mechanical simulations, expressed in terms of
the Schrödinger equation, provide a fundamental description
of physical properties in chemistry and condensed-matter
physics [1,2]. On the other hand, due to the small length scale,
an outstanding challenge is the size of the system that one
can simulate, even with the rapid growth of computing power.
Computer simulations often face the scenarios where the
electrons are being emitted out of the computational domain,
e.g., the photoionization process. Recently there has been a
great deal of renewed interest in such issues in the quantum
transport problem [3], optical response of molecules [4], open
quantum systems [5], etc.

One approach to address the aforementioned issue is by
absorbing boundary conditions (ABCs) which reduce the
problem to a much smaller computational domain and yield
results as if the simulation is being performed in a much
larger (or unbounded) domain. Rather than simply removing
the exterior region, the ABCs provide an efficient approach to
mimic the influence from the surrounding environment. There
are several different approaches to construct and implement
ABCs, most of which involve the derivation and approxi-
mation of the Dirichlet-to-Neumann (DtN) map. They are
also commonly referred to as nonreflecting, transparent, or
radiating boundary conditions. By replacing the surrounding
region with the ABCs, the computational effort can be focused
on simulating the region of interest.
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There seemed to be separate development of ABCs for
quantum-mechanical simulations. For example, there is a
great deal of progress in developing ABCs in physics and
chemistry. These ABCs can be roughly classified into four
approaches: (1) the exterior complex scaling (ECS) [6–9],
where the coordinate outside a fixed radius is scaled into
the complex plane; (2) the mask function method [10–12],
where the wave functions are gradually scaled to zero; (3)
complex absorbing potentials (CAP) [13–15], which is intro-
duced outside the boundary by adding a complex potential
to the Hamiltonian; and (4) coordinate scaling, which scales
the spatial coordinate by a time-dependent factor [16,17] to
make wave functions compatible with the physical boundary
conditions. These methods are not constructed to directly
approximate the exact boundary condition. Rather, they are
very much goal oriented. Their direct aim is to absorb the
electrons that move outside the computational domain. These
methods in general are easy to implement and are quite robust
in practice. Meanwhile, the effectiveness depends heavily on
the choice of the parameters, e.g., in the CAP methods, the
size of the boundary region and the magnitude of the potential.
In some cases, the efficiency and accuracy (reflections) are
even debatable for decades [18–22]. The ABCs can also be in-
troduced for the density-matrix in the Liouville von-Neumann
equation [23].

In the applied math community, much effort has been
focused on one-dimensional (1D) problems, with a few works
for multidimensional problems with flat boundary, for a com-
prehensive review, see Refs. [24,25]. There a different path
is followed: The exact ABCs are first derived by solving an
exterior problem, many of which are written as a DtN or
Neumann-to-Dirichlet (NtD) map for the continuous time-
dependent Schrödinger equation (TDSE) [26] (or temporally
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discrete model [27], spatially discrete model [28,29], and fully
discrete model [30]). The same technique has been used by
Ermolaev et al. [31,32] to treat electron dynamics under a
laser field, where the exact boundary condition, referred to as
an integral boundary condition, is derived with the help of the
Green’s function for a free electron. Then, the exact ABCs,
which involve a time convolution, are approximated to avoid
the repeated calculations of the integrals. The most predomi-
nant method is by finite sums of exponentials in the real-time
space [33,34] or rational functions in the Laplace domain or
the Fourier space [35–38] to facilitate a fast evaluation. The
convergence, stability, and efficiency of these methods have
been thoroughly investigated [24,25]. The most extensively
studied case is the one-dimensional case. The extensions to
high-dimensional cases can be found in Refs. [39–43]; but
these methods are often limited only to special geometries of
the interior domain. Another classical strategy is the perfectly
matched layer (PML) [44], where one first constructs a buffer
layer so that the outgoing waves in the computational domain
are exactly preserved (perfect matching). The most common
approach is to introduce a complex stretching of the spatial
coordinate to derive a modified equation in the buffer zone,
and then the resulting models are discretized simultaneously
in the implementation. The PML has been applied to the
nonlinear Schrödinger equation by Zheng [45]. Similarly to
the CAP methods, the parameters in the PML method have to
be calibrated a priori.

In the three-dimensional case, one challenge in implement-
ing the ABCs stems from the fact that the kinetic energy in
the Schrödinger equation often needs to be approximated by
high-order finite-difference schemes, either to gain sufficient
accuracy or to reduce the computational cost by using larger
grid size. Therefore, the ABCs that are developed from con-
tinuous partial differential equations, especially those that are
expressed in terms of the normal derivatives of the solution
at the boundary [46,47], are difficult to be integrated with
the discretization in the computational domain. For instance,
due to the large finite-difference stencil, there are several
layers of grids at the boundary, where the ABCs need to be
applied, which is nontrivial. To overcome this difficulty, we
formulate the ABCs based on a semidiscrete approximation of
the TDSE obtained from high-order finite-difference schemes
in the entire domain. The resulting boundary condition does
not need to be further discretized in space. It can be read-
ily implemented. Meanwhile, the time convolution in the
corresponding DtN map is formulated and approximated by
rational functions in Laplace domain. This approximation
reduces the exact DtN map to ordinary differential equations
in the time domain, which is much more efficient in practice.
We also tackle the important issue that when the domains is
of arbitrary geometry, there is no simple representations of
the DtN map, e.g., in terms of a pseudodifferential operator
[37,48]. In this case, it is expressed as a matrix function which
involves the Hamiltonian in the exterior. We will employ the
discrete boundary-element method [49] to evaluate the DtN
map in the rational interpolation.

We will demonstrate that the first-order ABC obtained
from this approach correspond to a CAP method. This offers
an interesting connection between the DtN map and an exist-
ing method. But the Hamiltonian that represents the absorbing

potential is computed from the exact ABC rather than empiri-
cally built (e.g., a diagonal matrix). We will also show that the
second-order ABC is more general than CAP. In most cases,
it is more accurate than the first-order approximation.

This paper is organized as follows: In Sec. II, the solution
of the exterior problem, which leads to the exact ABC, is
formulated. We approximate the exact boundary condition
based on its Laplace transform in Sec. III. We discuss the
choices of the interpolation conditions such that the dynamics
is stable. In Sec. IV, both 1D and 3D numerical simulations
are performed to verify the stability and effectiveness. Further,
we test the ABCs on a time-dependent Hartree-Fock (TDHF)
model with localized interactions.

II. FORMULATION OF A DISCRETE DTN MAP FOR
SCHRÖDINGER-TYPE OF EQUATIONS

This paper is concerned with the time-dependent
Schrödinger equations in a domain � ⊂ Rd ,

i
∂

∂t
φ(x, t ) = Ĥφ(x, t ), x ∈ �. (1)

Here we have scaled the Planck constant and mass to unity,
i is the imaginary unit, and φ(x, t ) is the wave function
for an electron or nucleon in the d-dimensional quantum
system. In general, the Hamiltonian operator can be written
as Ĥ = −∇2

2 + V (x, t ), with V being the total potential of the
system. A Schrödinger-like equation can be derived from the
exact many-body Schrödinger equation with various mean-
field approximations of the many-body wave function, such
as the Hartree-Fock approach [50] and the time-dependent
density-functional theory [51]. For simplicity, we illustrate
the formulation with the simplest model and demonstrate the
applications of other Schrödinger-type equations in Sec. IV C.

We suppose that �I is a subdomain of interest in �. Rather
than solving the Schrödinger equations in the entire domain
�, we take into account the influence from the surrounding
region, here denoted by �II by deriving ABCs at the boundary
of �I. � = �I ∪ �II. In the exterior region �II, we assume
that the operator Ĥ does not explicitly depend on x. More
specifically, V (x) = 0, or more generally a constant, for any
x ∈ �II.

Most ABCs have been formulated in the continuous case
[5,27,37,52], which has to be further discretized in order to
be combined with the finite-difference or finite-element ap-
proximation in the interior of �I. For easier implementation,
our approach starts directly with a spatially discrete model.
Namely, we first consider the semidiscrete approximation of
(1) in the entire domain and regard it as a full or exact
model. This has been done for the acoustic wave equations
in Ref. [53]. But efficient evaluations of the ABCs were not
fully discussed there.

Let {x j} be the set of nI grid points with a constant spacing
of h in the interior �I and nII grid points in the exterior �II.
nI � nII. nII can be infinite. In real-space methods, the Hamil-
tonian operator in (1) can be approximated by a representation
over numerical grids (e.g., Ref. [54]), finite elements (e.g.,
Ref. [55]), or atom-centered basis set. These spatial approxi-
mations reduce the problem to a discrete model in space. Here
we take the simplest approach, the finite-difference method, to
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demonstrate the formulation of the ABC. To ensure high-order
accuracy, these finite-difference methods often employ large
stencils. For example, a one-dimensional Laplacian operator,
acting on a continuous function ψ (x, t ), can be approximated
by

∂2

∂x2
ψ (x, t ) ≈ −ψ−2 + 16ψ−1 − 30ψ0 + 16ψ1 − ψ2

12h2
.

Here ψ j (t ) = ψ (x + jh, t ) with h being the grid spacing. In
the high-dimensional case, this finite-difference formula can
be applied in each direction [56].

Let us introduce some notations to make the derivation
more transparent. These notations are largely adopted from
domain decomposition methods [57]. To begin with, the in-
dices of the nodal points are sorted as x1, . . . , xnI ∈ �I and
xnI+1, . . . , xnI+nII ∈ �II. Due to the discretization in space, the
wave functions are written in vectors, and the semidiscrete
model can be written in a compact form as follows:

iφ̇I(t ) = HI,IφI(t ) + HI,IIφII(t )

iφ̇II(t ) = HII,IφI(t ) + HII,IIφII(t ), (2)

where φI = [φ(xk )]xk∈�I and φII = [φ(xk )]xk∈�II . φI ∈ CnI and
φII ∈ CnII ; the dot means the derivative with respect to the
time t . Following the same partition, the discretization of the
Hamiltonian operator H is structured as follows:

H =
[

HI,I HI,II

HII,I HII,II

]
. (3)

Since the Schrödinger equation (1) has been discretized in
space, we use the dot to denote the time derivatives hereafter.

Our goal is to simplify the second equation in (2), while
retaining the first equation. HI,I and HII,II are, respectively, the
discretized Hamiltonian operator in �I and �II. HI,I can be a
nonlinear operator. HI,II and HII,I are the off-diagonal blocks
representing the coupling between �I and �II. Notice that due
to the finite-difference approximation of the kinetic energy
term, all these matrices are sparse.

The boundary condition will be expressed in terms of the
values of the wave functions near the boundary of �I. To this
end, we denote � as the boundary of �I, such that

� = {x j ∈ �I| if there exists xk ∈ �II such that Hjk �= 0}.
(4)

The width of � depends on the width of the finite-
difference stencil. We define φ� ∈ Cn� as a vector formed by
all φ j for x j ∈ �, where n� is the number of grid points in �.
The vector φI can be reordered so that the first n� components
are associated with the grid points in �, i.e.,

φI =
[

φ�

φI\�

]
. (5)

The boundary region � is defined in such a way that there
is no direct coupling between the points in the interior of �I

and those in �II. This is reflected in the off-diagonal block of
the Hamiltonian,

HII,I = [HII,� HII,I\�] = [HII,� 0]. (6)

In general, this procedure can be carried out by defining a
restriction operator E to extract the components of a function

that correspond to grid points at the boundary � from a
function defined in �I. Namely,

φ� = EφI. (7)

With the reordering in (5), the matrix E ∈ Rn�×nII can be
explicitly expressed as E = [In�

0]. Further, (6) can now be
simply written as HII,� = HII,IET . Since EET = In�

, we also
have

HI,II = ET H�,II. (8)

We are now set to formulate the ABC. We first consider the
influence of the wave functions in �II on the wave functions
in �I, and we define

f � = H�,IIφII. (9)

Then the first equation reads

φ̇I(t ) = −iHI,IφI(t ) − iET f � (t ). (10)

Here the dot denotes the derivative with respect to the time
variable t .

At this point, we observe that what is needed to compute
φI in time is f � (t ). For this purpose, let us take the Laplace
transform of the second equation in (2). Due to the assumption
that �II(0) = 0, one has

is�II(s) = HII,II�II(s) + HII,I�I(s), (11)

where �II(s) = L{φII}(s) and �I(s) = L{φI}(s). By defining
H̃II,II(s) = HII,II − isI , Eq. (11) simply reads

H̃II,II(s)�II(s) = −HII,I�I(s). (12)

Formally, its solution can be expressed as

�II(s) = −H̃−1
II,II HII,I�I(s). (13)

Due to the locality of HII,II, the right-hand side of (13) can
be further reduced. Notice that

HII,I�I = HII,�E�I = HII,���.

The first step is from the identity (6), and the second step used
(7). This simplifies the solution to

�II(s) = −H̃−1
II,II HII,��� (s). (14)

Since HII,II is a nII × nII matrix, it is in general impractical to
solve the linear system (14) numerically. However, the main
observation from (10) is that we only need f � to keep the
computation in �I. We let F� be the Laplace transform of f � .
By left-multiplying the equation above by H�,II, we obtain

F� (s) = K (s)�� (s). (15)

The matrix-valued function K (s) : R → �� × �� , which
will play a key role in the numerical approximation, is given
by

K (s) = −H�,IIH̃
−1
II,II (s)HII,� = −H�,II[HII,II − isI]−1HII,�.

(16)

The mapping K (s) is precisely the DtN map of the problem
(2) in the Laplace domain. Although K (s) still involves the
inverse of a large matrix, it is much easier to compute than
(14) due to the fact that only a small number of entries
are needed. This is known as selected inversion [58]. The
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detailed solution to this problem, which involves a discrete
boundary element method, will be discussed in Sec. III and
Appendix A.

In the time domain, the DtN map becomes a time convolu-
tion,

f � (t ) =
∫ t

0
κ (t − τ )φ� (τ )dτ. (17)

With the DtN map, we incorporate (17) into (10), and we
arrive at a reduced problem (2),

φ̇I(t ) = −iHI,IφI(t ) − iET
∫ t

0
κ (t − τ )EφI(τ )dτ, (18)

where κ (t ) is the real-time kernel function which corresponds
to K (s) in the Laplace domain.

The main difficulties in implementing the transparent
boundary condition (17) are as follows: (i) There is no an-
alytical expression for K (s) or κ (t ) in general, other than
the formula (16) in terms of a large-dimensional matrix, in
which case it is expensive to evaluate K (s) or κ (t ) repeatedly.
(ii) The direct evaluation of the time-convolution integral
adds up quickly to the computational cost: Since the kernel
function κ (t ) does not have compact support in time, long-
time integration is required to evaluate the exact boundary
condition.

In light of these concerns, we will introduce further ap-
proximations in the next section.

Remark 2.1. Our procedure for reducing the problem is
reminiscent of reduced-order modeling [59,60]. More specif-
ically, the quantity f � can be viewed as the low-dimensional
output, and φ� corresponds to the control quantity. In the
reduced-order literature, it is sometimes convenient to write
(11) into the alternative form

i(s − s0)(HII,II − is0I )−1�II(s)

= �II(s) + (HII,II − is0I )−1HII,I�I(s), (19)

where s0 ∈ C is a preselected scalar. In this case, the kernel
function becomes

K (s) = −H�,II[I − i(s − s0)(HII,II − is0I )−1]−1

× (HII,II − is0I )−1HII,�. (20)

If we denote A = i(HII,II − is0)−1 and C = (HII,II −
is0I )−1HII,� , then the Taylor expansion of the kernel function
K (s) around s = s0 reads

K (s) = −H�,II[C + AC(s − s0) + A2C(s − s0)2

+A3C(s − s0)3 + · · · ]. (21)

The coefficients (moments) in the expansion are M0 =
−H�,IIC, M1 = −H�,IIAC, M2 = −H�,IIA2C, etc. One way to
approximate the kernel function K (s) is by rational functions
with the same moments, which is known as moment matching
[59,61]. One may also notice that (21) is connected to a
Krylov subspace K(A,C). However, for the problem consid-
ered here, the higher powers of A are much more difficult to
compute.

III. APPROXIMATION OF THE DISCRETE DTN MAP

Consider the following rational functions:

Rm,m(s) = (sm − sm−1B0 − · · · − Bm−1)−1

× (sm−1A0 + · · · + Am−1). (22)

A0, . . . , Am−1 and B0, . . . , Bm−1 are n� × n� matrices to be
determined. Here the integer m � 0 will be referred to as the
order of the approximation.

The rational approximation reduces the DtN map in the
Laplace domain to

F� (s) = Rm,m(s)�� (s). (23)

One advantage of the rational approximation is that in the
time domain, the dynamics can be represented by an ordinary
differential equation (ODE),

f (m)
� = B0 f (m−1)

� + · · · + Bm−1 f �

+ A0φ
(m−1)
� + · · · + Am−1φ�, (24)

assuming appropriate initial conditions. The superscript (m)
denotes the mth derivative. Now, the nonlocal time convolu-
tion in the DtN map (Eq. (18)) is replaced by a linear ODE
system, which is much more efficient in practical implemen-
tations. The reduced model [Eq. (2)] is replaced by

∂

∂t
φI(t ) = − iHI,IφI(t ) − iHI,IIφII(t )

f (m)
� = B0 f (m−1)

� + · · · + Bm−1 f � + A0φ
(m−1)
�

+ · · · + Am−1φ�. (25)

The remaining question is how to determine the coef-
ficients Ai and Bi. This is done by interpolation. Namely
we match Rm,m(s) to K (s) at certain points. In principle we
need 2m points of (si, K (si )) to determine these coefficients.
In general, one may hope that the accuracy would improve
as the number of interpolation points increases. However, a
more subtle issue is the stability of the system (25). The
semidiscrete models are quite similar to molecular dynamics
models, for which the stability of ABCs has been analyzed
in Ref. [62]. In particular, the Lyapunov functional approach
is quite useful. In this paper, we will present the guaranteed
stability of the zeroth-order (m = 0) and first-order approxi-
mation (m = 1). We did not find a simple proof of stability
for higher-order approximations, and we will resort to our
numerical simulations to examine the stability property.

Remark 3.1. We did not pursue a one-point Padé approx-
imation, or the Krylov subspace projections, which has been
overwhelmingly successful in reduced-order modeling [59].
The main reason is that in our case, a selected inversion of
(HII,II − is0) can be done very efficiently, but the higher-order
inverse is very difficult.

A. Zeroth-order approximation

For the zeroth-order approximation, R0,0 becomes a con-
stant matrix, here denoted by M. We restrict M to be a
Hermitian matrix. The corresponding dynamics is

φ̇I(t ) = −iHI,IφI(t ) − iET MEφI(t ). (26)
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Theorem 3.1. (Stability condition of the zero-order ap-
proximation). The dynamics [Eq. (26)] is stable if M is chosen
as K (s0) for an arbitrary positive value of s0 (s0 � 0).

Proof. We define a Lyapunov functional as

W (t ) = φ∗
I (t )φI(t ). (27)

We examine the derivative of the Lyapunov functional,

dW

dt
= d

dt
φ∗

I φI + φ∗
I

d

dt
φI

= i(φ∗
I HI,I + φ∗

�M∗E )φI − iφ∗
I (HI,IφI + ET Mφ� )

= iφ∗
� (M∗ − M )φ�. (28)

This indicates that if M has a negative definite imaginary part,
then dW

dt � 0. To verify this, we note that since −HI,II[HII,II −
is0I]−1HII,I = −HI,II(H2

II,II + s2
0I )−1(HII,II + is0I )HII,I, K (s0) al-

ways has a negative imaginary part as long as s0 is real and
positive. Therefore, the dynamics (26) is stable. �

This shows that the stability does not depend on the choice
of the interpolation point.

Remark 3.2. The stability analysis also reveals that the
additional term in (26) has an imaginary part that acts as
a CAP. However, unlike the commonly used CAP methods
[13–15], this term is derived from the DtN map, and it is
dependent of the mesh size, finite-difference formulas, as
well as the geometry of the domain. Further, the higher-order
approximations of the DtN map, which will be presented
next, provide a more general form that goes beyond the CAP
methods.

B. First-order approximation

For the first-order approximation, we use the rational func-
tion R1,1 = (sI − B)−1A to approximate the DtN map. The
first-order approximated dynamics is

φ̇I(t ) = −iHI,IφI(t ) − iET f � (t )

ḟ � (t ) = B f � (t ) + AEφI(t ). (29)

To verify the stability, we introduce a Lyapunov functional,

W (t ) = φ∗
I (t )φI(t ) + f ∗

� (t )Q f � (t ), (30)

where Q is a positive definite matrix to be determined. The
derivative of the above Lyapunov functional is

dW

dt
= d

dt
φ∗

I φI + φ∗
I

d

dt
φI + d

dt
f ∗

�Q f � + f ∗
�Q

d

dt
f �

= (iφ∗
I HI,I + i f ∗

�E )φI + φ∗
I (−iHI,IφI − iET f � )

+ ( f ∗
�B∗ + φ∗

I ET A∗)Q f � + f ∗
�Q(B f � + AEφI )

= f ∗
� (iI + QA)EφI + φ∗

I ET (−iI + A∗Q) f �

+ f ∗
� (B∗Q + QB) f �. (31)

At this point, we observe that if iI + QA = 0, and B∗Q + QB
has negative definite real part, then the dynamics (29) is stable.
The following theorem provides a guideline for the choice of
the interpolation points to ensure stability.

Theorem 3.2 (Stability condition of the first-order approx-
imation). The dynamics [Eq. (29)] is stable if the coefficients
A and B are determined by the interpolations limλ→0

d
dλ

R′
1,1 =

limλ→0
d

dλ
K , where λ = s−1, and R1,1(s1) = K (s1), where s1

is a any positive real number.
Proof. From

lim
λ→0

d

dλ
R1,1 = lim

λ→0

d

dλ
K,

we have

A = −iH�,IIHII,�.

Now we pick Q = (H�,IIHII,� )−1. Q is symmetric positive
definite. The Lyapunov functional [Eq. (30)] is thus positive
definite. Let us denote K1 = K (s1). When R1,1(s1) = K (s1),
we have

B = s1I − AK−1
1 .

Hence, QB = −is1A−1 + iK−1
1 . Next, we show that QB has a

negative definite imaginary part. We start with

QB + B∗Q = 2s1(H�,IIHII,� )−1 + i(K−1
1 − (K∗

1 )−1),

= 2s1(H�,IIHII,� )−1 + i(K∗
1 )−1(K∗

1 − K1)K−1
1 .

(32)
To continue, we denote P1 = (HII,II − is1I )−1HII,� . As a result,
K1 = −HII,�P1, and

K∗
1 − K1 = − H�,II(HII,II + is1I )−1HII,�

+ H�,II(HII,II − is1I )−1HII,�,

= 2is1P∗
1 P1. (33)

Therefore we have

QB + B∗Q = 2s1(K∗
1 )−1[K∗

1 (H�,IIHII,� )−1K1 − P∗
1 P1]K−1

1

= 2s1(K∗
1 )−1[P∗

1 H�,II(H�,IIHII,� )−1

× HII,�P1 − P∗
1 P1]K−1

1 ,

= 2s1(K∗
1 )−1P∗

1 [HII,� (H�,IIHII,� )−1H�,II−I]P1K−1
1 .

(34)

Since HII,� (H�,IIHII,� )−1H�,II is an orthogonal projection
matrix, HII,� (H�,IIHII,� )−1H�,II − I is symmetric negative
semidefinite. As a result, QB + B∗Q is negative semidefinite.
Therefore, the dynamics [Eq. (29)] is stable.

The interpolation scheme suggested in the theorem in-
volves an interpolation point s1 > 0 and another point toward
s2 → +∞. Our numerical tests indicate that the approxima-
tion is still stable when s2 is finite.

C. Second-order approximation

The rational function approximation can be extended to
higher order. We briefly describe the second-order approx-
imation here, in which case the DtN map is approximated
by R2,2 = (s2I − sB1 − B0)−1(sA1 + A0), and the dynamics
augmented with this ABC is given by

φ̇I(t ) = −iHI,IφI(t ) − iET f � (t )

f̈ � (t ) = B1 ḟ � (t ) + B0 f � (t ) + A1E φ̇I(t ) + A0EφI(t ). (35)

In the above equation, double dots denote the second deriva-
tive with respect to the time. We have not found a simple proof
that provides the stability condition of the dynamics (35) in
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terms of the interpolation points. The stability will thus be
demonstrated by numerical tests in Sec. IV.

IV. APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, we test the ABCs with three examples.
For each model, the details regarding the numerical tests are
respectively discussed in Sec. IV A, Sec. IV B, and Sec. IV C.
The three problems are briefly summarized as follows:

(i) A 1D time-dependent Schrödinger equation exten-
sively used as a test example in the literature [24], although
our main emphasis is on Schrödinger equation in R3. The
system is a 1D free electron,

i
∂

∂t
ψ (x, t ) = Ĥψ (x, t ), Ĥ = −∂2

x

2
in R, (36)

with the initial condition ψ0(x) = exp[−(x − xc)2 + ik0(x −
xc)].

(ii) A 3D time-dependent Schrödinger equation consid-
ered in Ref. [40]:

i
∂

∂t
ψ (x, t ) = Ĥψ (x, t ), Ĥ = −∇2

2
in R3, (37)

with the initial condition ψ0(x) = exp(−x2
1 − x2

2 − x2
3 +

ik0x1).
(iii) A 3D time-dependent Hartree-Fock model [63]:

i
∂

∂t
ϕ j (x, t ) = Ĥϕ j (x, t ) in R3, for j = 1, . . . , A, (38)

with the initial condition ϕ0
j determined from the ground state.

The form of Ĥ is given by (49) later in this section. The 3D
TDHF model is a system of nonlinear 3D time-dependent
Schrödinger equations. The Hamiltonian Ĥ depends on the
one-particle wave functions.

Integrators. In general, numerical integrators can be for-
mulated as [64]

φ(n+1) = Uφ(n), (39)

where U is the operator that mimics the time evolution oper-
ator. For linear problems with time-independent potential, the
exact operator is a matrix exponential,

UE (t, t ′) = exp[−i�tH (t ′)]. (40)

One widely used method is the Crank-Nicholson scheme,

UCN = (1 + i�t/2H )−1(1 − i�t/2H ). (41)

For the 3D case, it is often impractical to perform the
matrix inversion in the Crank-Nicholson scheme. In time
dependent density functional theory [1,64,65], one classical
method is the Taylor expansion of the exact integrator,

U5 = I − iH�t − 1
2 H2(�t )2 + 1

6 H3(�t )3 − i 1
24 H4(�t )4.

(42)

Clearly, the operator U5 is not unitary. However, we will
choose �t to be sufficiently small, in which case this integra-
tor is stable and accurate [10]. This allows us to focus more
on the performance of various ABCs.

FIG. 1. An illustration of the model reduction for one-
dimensional Schrödinger equation. ψ is the wave function, initially
supported in the computational domain �I.

A. The 1D time-dependent Schrödinger equation

In the first test, we look at a 1D quantum system. The
setting of the problem is illustrated in Fig. 1.

The analytical solution of Eq. (36) can be explicitly written
as

ψex(x, t ) =
√

i

i − 2t
exp

[−k0(x − xc) + k2
0t − i(x − xc)2

i − 2t

]
,

(43)
assuming the initial condition

ψ0(x) = exp[ik0(x − xc) − (x − xc)2]. (44)

The initial condition ψ0 is localized around xc, which is the
center of the wave packet. k0 is the wave number. In this
test, we set k0 = 5 and xc = −6. The exact solution, ψex,
propagates to the right when k0 > 0. Therefore, we only need
to implement an ABC on the right boundary. A Dirichlet
boundary condition will be imposed on the left.

In our simulations, we pick the interior region to be
�I = [−12, 3] and the exterior domain is �II = (∞,−12) ∪
(3,∞). The Laplacian operator is discretized by the five-point
scheme with grid spacing of h = 0.01.

The evaluation of the DtN map is discussed in our previous
work [66] using the discrete Green’s function. The details of
1D lattice Green’s function will be discussed in the Appendix
B. We select s = 20 for the zeroth-order approximation, two
points s = 10, and 20 for the first-order approximation and
four interpolation points, s = 10, 11, 20, 21, for the second-
order approximation. The zeroth-order approximation corre-
sponds to a complex absorbing potential over two grid points
at the boundary. But we point out that in practice, the latter
method can be applied to a much larger buffer region. In
accordance with the width of the finite-difference stencil, four
and eight extra variables are introduced in the first-order and
second-order approximations, respectively.

The solution computed with the Dirichlet boundary con-
dition is completely reflected back into the interior region
when the wave function propagates to the boundary (Fig. 2).
The zeroth-order approximation causes some reflection when
the wave packet first arrives at the boundary, but most of the
reflection is eliminated eventually. The first-order ABC qual-
itatively captures the transient profile of the exact solution,
with some errors when the wave reaches the boundary. The
second-order ABC provides a much more accurate solution.
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FIG. 2. The solutions computed using fixed boundary condition, zeroth-order, first-order, and second-order ABCs compared with the exact
solution.

The solution with ABCs is systematically improved as the or-
der of the approximation increases. In Fig. 3, the total electron
number (L2 norm of the wave function in the computational
domain) is presented. Before t = 0.5, the electron number in
four cases is the same. The norm of the wave function does
not decay with the fixed boundary condition since all the wave
function are reflected. The electron number by the first-order
ABC decays slower than the exact one. In the second-order
approximation, the maximum error in the L2 norm over time
is less than 3 × 10−3.

In the proposed ABCs, one can either improve the order of
ABCs or optimize the interpolation points. In most absorbing
techniques, the adjustable parameters are the width of the
buffer region or the absorbing strength. It is generally difficult
to quantitatively compare the absorbing properties of these
methods. As a qualitative comparison, we implemented the
following CAP [14]:

W (x) =
⎧⎨⎩

(x + 16)2, −16 < x < −12
(x − 7)2, 3 < x < 7
0, otherwise

, (45)

in the 1D model. The size of the buffer region is fixed
in our simulations. This leads to the effective Hamiltonian
H eff(η) = H − iηW on the interval [−16, 7], where η is the
CAP strength. The CAP varies from 0.01 to 10 (Fig. 3). When
η is smaller than 0.1, we still observed the reflection from the
buffer region. When η = 1, we observed the decent accuracy
(98%). As a comparison, this is also achieved by the proposed
first-order approximation without optimizing the interpolation
conditions and without introducing a buffer region.

B. A 3D time-dependent Schrödinger equation

In this section, we will test the absorbing boundary con-
ditions for the 3D Schrödinger equation for a free electron.
We restrict the computational domain in a box [−1.5, 1.5] ×
[−1.5, 1.5] × [−1.5, 1.5]. The 3D Laplace operator is ap-
proximated by the 7-point finite-difference scheme in each
direction with uniform grid spacing of h = 0.1. Consequently,
there are 31 interior points and 6 exterior points in each axis
direction. For each interpolation point, the DtN map K (t )
is a 14 166 × 14 166 dense matrix. The coefficients of the

FIG. 3. Comparison of the total electron density in �I with different ABCs (left). Comparison of the total electron density in �I with
different complex absorbing potential strength (right).
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FIG. 4. The number of electrons as a function of time.

first-order ABC are computed by interpolation of s = 1, 2.
Four interpolation points s = 1, 2, 3, 10 are used for the
second-order ABC.

Similarly to the 1D case, we still can construct the analyti-
cal solution of Eq. (37),

ψex =
(

i

i − 2t

) 3
2

exp

[
−i

(
x2

1 + x2
2 + x2

3

) − k0x1 + 1
2 k2

0t

i − 2t

]
(46)

with k0 = 5. One should notice that the difference between the
analytical solution and the exact solution of the discrete model
might not be small due to the large grid spacing. Therefore,
we will only use the analytical solution as a reference for
qualitative comparisons.

For the time integration, the step size is chosen as �t =
0.001. In the first test, we observe how the total electron
density in �I changes in time (Fig. 4). The number of elec-
trons is almost a constant when we fix the wave function at
the boundary (Dirichlet boundary condition). If we impose
the ABC on the system, then the number of electrons will
decrease after the wave function propagates to the boundary.
With the first-order ABC, about 20% of the wave function
in magnitude is reflected. Much more reflections are reduced
by the second-order ABC. Over a longer time period, such
reflections occur multiple times for both the first-order ABC
and the second-order ABC. After that, almost all the electrons
are emitted out of the box.

The top view of surface plots of solutions of 3D time-
dependent Schrödinger equation with different boundary con-
ditions are shown in Fig. 5. The fixed boundary condition
leads to significant reflections. From t = 0.011, it does not
provide any significant results. These errors are reduced by
the absorbing boundary conditions. Some reflections are still
observed in the first-order approximation. The reflections in
the second-order ABC are almost negligible. This experiment
also shows that the proposed ABCs is not sensitive to the pres-
ence of corners and edges along the boundary. Even though
the wave function propagates to the corners, no significant
reflection is observed around the corners.

FIG. 5. Projection of the 3D electron density on x-y plane. Time-
dependent Schrödinger equation with the fixed boundary condition
(first row), the first-order ABC (second row), the second-order ABC
(third row), and the exact solution (last row). The color indicated the
electron density.

C. 3D time-dependent Hartree-Fock model
with localized interactions

The Hartree-Fock equation for a nucleon system can be
formulated from the many-body system by approximating the
many-body wave function with the Slater determinant and
applying the variational principle of the Skyrme functional
[63,67,68] with respect to the wave function. The direct
procedure yields the coupled TDHF equations with localized
interactions,

ih̄
∂

∂t
ϕ j (r, t ) = H (t, ρ)ϕ j (r, t ), j = 1, . . . , A, (47)

where H is the time-dependent one-body HF Hamiltonian.
The one-body Hamiltonian depends on the nucleon density,
given by

ρ(r, t ) =
A∑

j=1

|ϕ j (r, t )|2. (48)

The one-body HF Hamiltonian can be explicitly written as

H = − h̄2

2m
� + 3

4
t0ρ + 3

16
t3ρ

2 + Wy + WC . (49)

Here t0 and t3 are the coefficients of the Skyrme interactions
[63,67,68]. Among the five terms in the one-body Hamilto-
nian, the first term is from the kinetic energy. The following
two terms are the expectation value of the zero-range density-
dependent two-body effective interaction. Furthermore, Wy is
the Yukawa potential,

Wy(r) = V0

∫
dr

exp −|r − r′|/a

|r − r′|/a
ρ(r′), (50)
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FIG. 6. The loss of nucleons and total energy.

and WC is the Coulomb potential given by

WC (r) = e2
∫

dr′ 1

|r − r′|ρp(r′), (51)

where V0 and a are the coefficients of Yukawa interactions.
ρp is the proton density. In practice, the Yukawa and Coulomb
potentials are calculated by solving the corresponding Poisson
and Helmholtz problems, respectively,

∇2Wc = −2πe2ρ

(∇2 − 1/a2)WY = −4πV0aρ. (52)

We consider the above TDHF model (38) in the infinite
region R3. In practice, the computational domain �I (usually
a box) is only a small part of the entire �. We make the further
assumption that

ψ j = 0 for i = 1, . . . , A and ρ = 0 in �II, at t = 0. (53)

Our approach starts from the discrete model. We denote ϕI
is the discretization of the wave function ϕ(x) in �I. HII,II is the
discretization of the operator − h̄2

2m ∇2. HI,I is still a nonlinear
operator containing the Coulomb potential. The notations of
boundaries and DtN map follow those in Sec. II. In this model,
we only assume ρ = 0 in �II at t = 0.

As an application, we study the nuclear reaction of the
16O + 16O system in the infinite space R3. The setup and data
of the numerical experiments are mainly from Ref. [63]. In
this model, we assume the perfect spin-isospin degeneracy for
each particle, so that each spatial orbital is occupied by four
nucleons. There are 32 nucleons in total in this system. The
two particles at ground state are positioned in a box away
from each other and away from the boundary. The ground
state is achieved by solving the static Hartree-Fock equation
self-consistently in �I. We assume that there is no interaction
between the two particles at the initial state. The Poisson and
Helmholtz problems are solved by preconditioned conjugate
gradient method using the same discretization method as the
wave functions.

The initial condition is given by multiplying each orbital by
the phase eik·r to create a head-on collision. Here k should be
carefully selected to ensure the particles enter into the fusion
window. Namely, two particles pass the Coulomb barrier and

are trapped by the nuclear force. Otherwise, the two particles
move to the boundaries and the nuclear fusion will not occur.
We use the same integrator as the case for three-dimensional
Schrödinger equation. The time step is set to be 0.001 fm/c.
In each time step, we also need to perform the self-consistent
iteration due to the nonlinearity [64,65].

In the numerical experiment, �I is discretized with grid
spacing of 1 fm. The Laplacian operator is approximated by
the seven-point scheme in each spatial direction. The region
of interest is [−15 fm, 15 fm]3. We employ the solution of
a larger system ([−30 fm, 30 fm]3) as the exact solution
to examine the ABCs. The exact number of nucleons and
the exact total energy are computed from the larger system
restricted to the small region. The initial conditions of the two
systems are the nucleon density at the ground state of the
smaller system. One should notice that the ground state of
the smaller system is not necessarily the ground state of
the larger system. The initial condition of the larger system
is not the ground state of itself. This will lead a small
truncation error due to the long-range interaction in the
system.

The energy conservation and mass conservation (Fig. 6)
for the standard TDHF with Dirichlet boundary conditions are
easily observed in our simulations. The system with ABCs
released over 1 MeV from the total energy, and emitted 0.1
nucleons in the simulating period. More energy and nucleons
are expected to be emitted over a longer period.

Our main focus here is to test how the absorbing property
is influenced by the interpolation points. We present results
from the following six cases: (A) s1 = 10−1, s2 = 2 × 10−1;
(B) s1 = 100, s2 = 2 × 100; (C) s1 = 101, s2 = 2 × 101; (D)
s1 = 102, s2 = 2 × 102; (E) s1 = 10−2, s2 = 2 × 10−2; and
(F) fixed boundary condition.

The case when s1 = 1 and s2 = 2 provides the best agree-
ment with the exact solution in terms of both the number of
nucleons and total energy. The case s1 = 0.1 and s2 = 0.2
follows second. When the order of magnitudes of s1 and s2

are much larger or smaller than 1, the absorbing properties are
much worse. The optimal s1 and s2 should be on the order
of 1. From Fig. 6, the absorbing property is not sensitive to
the selection of s1 and s2, as long as we choose them in the
interval [0.1, 1].
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FIG. 7. Error of the nucleon density in time evolution of 16O + 16O collision, projected onto the x-y plane. From the top to the bottom: (A)
s1 = 10−1, s2 = 2 × 10−1; (B) s1 = 100, s2 = 2 × 100; (C) s1 = 101, s2 = 2 × 101; (D) s1 = 102, s2 = 2 × 102; (E) s1 = 10−2, s2 = 2 × 10−2;
(F) fixed boundary condition.

Further, we compare the profile of the densities with
the exact solution. Results are displayed in Fig. 7. In the
first 5000 time steps, the error of different cases are al-
most the same. However, when the wave function reaches
the boundaries, the Dirichlet boundary condition generates
massive errors as expected. The cases (A) and (B) still show
great agreement with the exact density. The cases (C), (D),
and (E) also improved the accuracy of density in varying
degrees.

We note that the long-range potential (Coulomb and
Yukawa) make the problem nonlinear in the entire space, in
which case the ABCs are difficult to derive, unless further
simplifications are made. However, since the two particles
never propagate to the boundary, ρ ≈ 0 outside. We expect
that one can neglect the potential terms in the exterior.

V. SUMMARY AND DISCUSSIONS

We constructed absorbing boundary conditions for time-
dependent Schrödinger equations by first deriving the
Dirichlet-to-Neumann map. We chose the starting point to be
a semidiscrete approximation so that the resulting boundary
condition can be readily implemented with the discretization

in the interior seamlessly. The nonlocality in time in the exact
boundary condition is treated by rational interpolations of the
Laplace transform, which in the time domain turns into linear
ODEs. For the zeroth- and first-order approximations, the
stability has been proved. The effectiveness and accuracy are
also illustrated by various numerical tests. For higher-order
absorbing boundary conditions, a direct proof seems rather
challenging. Our numerical observations are that second-order
and third-order methods are still stable for a wide range of
interpolation points s.

In principle, the boundary conditions presented in this
paper can be applied to three-dimensional problems with
general geometry. The stability results do not depend on the
specific configuration of the computational domain. However,
a remaining challenge is to choose the optimal interpolation
conditions to maximize the accuracy, i.e., minimize the reflec-
tion. For one-dimensional problems, or higher-dimensional
problems in a half-plane, one can compute the reflection
coefficients and choose the optimal boundary condition by
minimizing the total reflection [69]. This approach breaks
down when corners and edges are present. One possible rem-
edy is the optimal interpolation strategy from order-reduction
problems [70,71]. For instance, in the current setting, one can
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formulate the following optimization problem:

s0 = arg min ‖K (s) − R1,1(s)‖H2 , (54)

for the first-order boundary condition to identify the best
interpolation point. This will be pursued in separate works.

Another long-standing issue is associated with the long-
range interactions among the electrons, i.e., the Coulomb in-
teractions. This issue has been partially addressed in Ref. [72],
where the Coulomb potential is replaced by an asymptotic
form. But, in general, all the existing methods have not be
constructed to take full account of the Coulomb potential.

APPENDIX A: EVALUATION OF THE
DIRICHLET-TO-NEUMANN MAP

In this section, we briefly discuss the evaluation of the
kernel [Eq. (16)] in the Laplace domain. The key is to use
the Green’s function to evaluate the selected inversion. We
refer readers to our previous work [49,66] for the detailed
derivations.

The discrete Green’s function G̃i j corresponding to the
discretized operator H̃i j satisfies∑

j

H̃i, j G̃ jk = δi,k, for any integer i, k.

To shorten the derivation, the notations of G̃I,II and G̃II,II follow
the convention of HI,II and HII,II, respectively. Furthermore, we
introduce the boundary set in �II,

� = {x j ∈ �II| if there exists xk ∈ �I such that Hjk �= 0}.
(A1)

and matrices

G̃�,� = [G̃i j]i∈�, j∈�, G̃�,� = [G̃i j]i∈�, j∈�, H�,�

= [Hi j]i∈�, j∈�, H�,� = [Hi j]i∈�, j∈�.

We start with the discretized operator H̃ in �. By (11), the
discretized operator satisfies

H̃II,II�II + H̃II,I�I = 0. (A2)

The definition of the discrete Green’s function implies that

G̃II,IIH̃II,II�II + G̃II,IH̃I,II�II = �II. (A3)

Equation (A2) and Eq. (A3) can now be combined into the
following equation:

�II = G̃II,IHI,II�II − G̃II,IIHII,I�I, (A4)

where the fact that H̃I,II = HI,II has been used.
By multiplying both sides of (A4) by H�,II, we have

H�,II�II = H�,IIG̃II,IIHI,II�II − H�,IIG̃II,IIHII,I�I. (A5)

Notice that f � = H�,II�II. Making use of the sparsity of H�,II

and HI,II, we obtain

f � = H�,�G̃�,� f � − H�,�G̃�,�H�,���. (A6)

Therefore, the discrete Dirichlet-to-Neumann map is ex-
pressed as

f � = −(In�
− H�,�G̃�,� )−1H�,�G̃�,�H�,���. (A7)

This shows that once the Green’s function is available, the
evaluation of the DtN map only involves the operations of
small matrices.

APPENDIX B: DISCRETE GREEN’S FUNCTION FOR 1D
SCHRÖDINGER EQUATION

Consider the one-dimensional time-dependent Schrödinger
equation,

i
∂

∂t
ψ (t, x) + 1

2

∂2

∂x2
ψ (t, x) = 0. (B1)

By taking the Laplace transform in time (t → s) and Fourier
transform in space (x → q), the corresponding fundamental
solution solves

2siG(s, q) − q2G(s, q) = 1, (B2)

which gives

G(s, q) = 1

2si − q2
. (B3)

The inverse Fourier transform yields the fundamental solution
in the Laplace domain

G(s, x) = − 1

2
√−2si

e−√−2si|x|. (B4)

G(s, x) is the continuous Green’s function of the following
equation in the Laplace domain. Now we turn to the discrete
case. To obtain the discrete Green’s function, we discretize the
Schrödinger equation in the Laplace domain by the five-point
scheme,

2siψ j (s) +
2∑

k=−2

ckψ j+k (s)

h2
= 0, (B5)

where c−2 = −1/12, c−1 = 4/3, c0 = −5/2, c1 = 4/3, and
c2 = −1/12. h is the grid spacing.

The characteristic equation of Eq. (B5) is given by

− 1

12
u4 + 4

3
u3 +

(
i2sh2 − 5

2

)
u2 + 4

3
u − 1

12
= 0. (B6)

The four roots of the characteristic equation are given by

u1 = 4 + a −
√

6sh2i + 8a + 24

u2 = 4 − a +
√

6sh2i − 8a + 24

u3 = 4 − a −
√

6sh2i − 8a + 24

u4 = 4 + a +
√

6sh2i + 8a + 24, (B7)

where a = √
9 + 6sh2i, Re(u1) < 1, and Re(u3) < 1 for a

small s. We take the branch cut (u1 and u3) to ensure the
boundedness of the Green’s function. Hence, the discrete
Green’s function can be explicitly expressed as

Gj (s) = b1u| j|
1 + b2u| j|

3 , (B8)
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FIG. 8. One-dimensional discrete Green’s function versus one-
dimensional continuum Green’s function, s = 1, h = 1.

where

b1 = h2

2

√
3

(3 + 2sh2i)(24 + 6sh2i + 8a)
,

b2 = h2

2

√
3

(3 + 2sh2i)(24 + 6sh2i − 8a)
. (B9)

The coefficients b1 and b2 are determined by the conditions

2∑
j=−2

c ju j = 0 and
2∑

j=−2

c ju j = 1.

We make a comparison between the continuum Green’s func-
tion and analytical discrete Green’s function in Fig. 8. Both
the imaginary part and real part of the two Green’s functions
get close to each other when the distance gets large. This
reveals that we can use the continuous Green’s function to
approximate the discrete Green’s function when the distance
is large, which becomes quite important especially when there
is no explicit formula for the discrete Green’s function.

APPENDIX C: FIRST-ORDER ABC FOR 1D
SCHRÖDINGER EQUATION

Let us consider the 1D Schrödinger equation [Eq. (B1)] on
the interval �I = [xl , xr]. We assume the discretization (B5)
of Eq. (B1). x1, . . . , xN are N grid points inside the �I. x−1,
x0, xN+1, and xN+2 are the exterior points. The input and output
of the DtN map, respectively, are

f � =

⎡⎢⎢⎣
f−1

f0

fN+1

fN+2

⎤⎥⎥⎦ and �� =

⎡⎢⎢⎣
ψ−1

ψ0

ψN+1

ψN+2

⎤⎥⎥⎦. (C1)

The matrices in the DtN map are explictly written as

H�,� =

⎡⎢⎢⎣
0 −1/12 0 0

−1/12 4/3 0 0
0 0 4/3 0
0 0 −1/12 0

⎤⎥⎥⎦,

G�,� (s) =

⎡⎢⎢⎣
G2(s) G1(s) GN (s) GN+1(s)
G3(s) G2(s) GN−1(s) GN (s)
GN (s) GN−1(s) G2(s) G1(s)

GN+1(s) GN (s) G1(s) G2(s)

⎤⎥⎥⎦
and

G�,� =

⎡⎢⎢⎣
G0(s) G1(s) GN−2(s) GN−1(s)
G1(s) G0(s) GN−3(s) GN−2(s)

GN−2(s) GN−3(s) G0(s) G1(s)
GN−1(s) GN−2(s) G1(s) G0(s)

⎤⎥⎥⎦.

Therefore, the kernel function K (s), which is defined by (15),
can be evaluated (A7). Even for the 1D model, the DtN map
is not trivial. To demonstrate the idea of the proposed ABCs,
we determine the coefficients of the first-order ABC is by the
moments of K (s). More specifically, the coefficients of the
first-order ABC are obtained by solving

(s1I − B)−1A = K (s1)

(s1I − B)−2A = −K ′(s1) (C2)

for certain s1 > 0. Generally, the coefficients A and B cannot
be explicitly expressed.

APPENDIX D: DISCRETE GREEN’S FUNCTION FOR THE
3D SCHRÖDINGER EQUATION

Consider the 3D time-dependent Schrödinger equation,

i∂tψ (t, x) + 1
2�ψ (t, x) = 0. (D1)

FIG. 9. Three-dimensional discrete Green’s function and three-
dimensional continuum Green’s function, h = 0.01, s = 10.
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By following the same procedure, the corresponding funda-
mental solution in the Laplace space is given by

G(x, s) = − 1

4πr
e−√−2sir, (D2)

where x = (x1, x2, x3) and r =
√

x2
1 + x2

2 + x2
3.

For the finite-difference approximation, we discretize the
operator, e.g., by the nine-point scheme in each spatial
direction,

∂2u

∂x2
≈

4∑
k=−4

cku j+k

h2
. (D3)

where c−4 = −1/560, c−3 = 8/315, c−2 = −1/5, c−1 =
8/5, c0 = 205/72, c1 = 8/5, c2 = −1/5, c3 = 8/315, and
c4 = −1/560. We denote ck as the coefficients of the 3D
discretization.

The discrete Green’s function can be expressed as a Fourier
integral,

Gn j = 1

|B|
∫

B

ei(xn−x j )·ξ

C(ξ)
dξ, C(ξ) =

∑
k

cke−ick·ξ. (D4)

Here B refers to the Fourier domain associated with the finite-
difference grid points. It is given by π

h [−1, 1] × π
h [−1, 1] ×

π
h [−1, 1] for uniform grids.

In Fig. 9, we show an example of the discrete Green’s
function, obtained by a quadrature with 100 × 100 × 100
points in the Fourier domain, compared with the continuous
Green’s function.
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