
PHYSICAL REVIEW E 101, 013302 (2020)

Shear-viscosity-independent bulk-viscosity term in smoothed particle hydrodynamics

Josep Bonet Avalos *

Department d’Enginyeria Química, ETSEQ, Universitat Rovira i Virgili, Tarragona, Spain

Matteo Antuono
CNR-INM, Institute of Marine Engineering, Rome, Italy

Andrea Colagrossi
CNR-INM, Institute of Marine Engineering, Rome, Italy

and Ecole Centrale Nantes, LHEEA Research Department (ECN and CNRS), Nantes, France

Antonio Souto-Iglesias
CEHINAV, DACSON, ETSIN, Universidad Politécnica de Madrid, Madrid, Spain

(Received 30 October 2019; published 3 January 2020)

An angular momentum conservative pure bulk viscosity term for smoothed particle hydrodynamics (SPH)
is proposed in the present paper. This formulation permits independent modeling of shear and bulk viscosities,
which is of paramount importance for fluids with large bulk viscosity in situations where sound waves or large
Mach numbers are expected. With this aim a dissipative term proportional to the rate of change of the volume
is considered at the particle level. The equations of motion are derived from the minimization of a Lagrangian
combined with an appropriate dissipation function that depends on this rate of change of particle volume, in
analogy with the corresponding entropy production contribution in fluids. Due to the Galilean invariance of
the formulation, the new term is shown to exactly conserve linear momentum. Moreover, its invariance under
solid-body rotations also ensures the conservation of angular momentum. Two verification cases are proposed:
the one-dimensional propagation of a sound pulse and a two-dimensional case, modeling the time decay of
an accelerating-decelerating pipe flow. The SPH solutions are compared to exact ones, showing that the newly
proposed term behaves indeed as a viscosity associated only with the local expansion-compression of the fluid.
In view of these considerations, we conclude that the method presented in this paper allows for setting up a bulk
viscosity independently of the shear one and as large as any particular problem may require. At the same time,
together with the prescribed momentum conservation to reproduce the Navier-Stokes equation, the new term
also keeps the angular momentum conservation required to properly model free interfaces or overall rotations of
the bulk fluid.
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I. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a consoli-
dated technique to simulate macroscopic flows through a
Lagrangian description of the fluid dynamics [1]. Within the
context of the ongoing developments in this methodology,
in a recent article [2] Colagrossi et al. derived dissipative
terms in SPH departing from a dissipation function expressed
in terms of the relative particle velocities. The concept of
dissipation function was already introduced by Rayleigh [3]
and generalized by Onsager to various nonequilibrium ther-
modynamic processes [4,5]. Examples of recent applications
of the dissipation function can be found in Refs. [6,7].
Within this framework, Colagrossi et al. showed that it was
Monaghan and Gingold’s expression [8] for the two-body
dissipative interaction that conserves both linear and angular
momentum and produces a viscous stress in the simulated
fluid. When analyzing the hydrodynamic limit of this model,
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i.e., kd � 1, where k is a characteristic wave number of the
field spatial dependence and d is the interparticle character-
istic distance, one realizes that this formulation introduces
contributions to the Navier-Stokes equation proportional to

the symmetric traceless tensor
◦

∇v, but also unavoidably to
the field divergence ∇ · v. These two contributions emerge
from one single expression for the dissipative interaction.
Therefore, this choice implies that Monaghan and Gingold’s
term gives rise to both, shear μ and bulk κ viscosities, but
that these contributions are not independent but satisfy a fixed
proportionality μ = 3κ/5 [2], being in fact both of the same
order. This dependence of shear and bulk vicosities was also
highlighted in the astrophysical context by Lodato and Price
[9], who discussed various existing options to model the right
dissipation in an evolution problem.

Colagrossi et al. [2] also showed that if exact angu-
lar momentum conservation is not required, the expression
proposed by Morris et al. [10] in the context of creeping
flow, contains an additional degree of freedom as the friction
between particles is split into one contribution along their
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relative velocity and another orthogonal to it. However, this
additional contribution influences the transport properties of
the system in such a way that μ > 3κ/5, to the price of
sacrificing the angular momentum conservation. The latter
property may not be required for creeping flow motions in
bounded environments, but is necessary to model vorticity
relaxation near free surfaces. For example, if angular mo-
mentum is not conserved, then the overall rotation of a drop
of fluid in vacuo spuriously dies out if Morris’ expression is
used. The top-down approach, which derives the interparticle
dissipative forces from the discretization of the continuum
field [11,12], has the same limitation of a maximum value for
the bulk viscosity, necessary to avoid a negative contribution
to the entropy production.

Therefore, if incompressible flows in general situations
are to be modeled within SPH with a weakly compressible
approach, then what Ref. [2] teaches us is that choosing the
expression of Morris et al. [10] allows one to avoid the con-
sideration of any compressible dissipation to the expense of
the loss of angular momentum conservation. Choosing instead
Monaghan and Gingold’s [8] expression guarantees conser-
vation of angular momentum but introduces a compressible
viscosity of the same order as the shear viscosity. This effect,
however, is not relevant if the Mach number is sufficiently
small, and consequently dρ/dt � 0 (see, e.g., Ref. [13]),
which can be achieved in practical cases by sufficiently reduc-
ing the fluid compressibility. Moreover, the consistency of the
model within the framework of Morris et al. formulation can
be recovered by introducing the particle spin (see Müller et al.
[14], who proposed such an approach to improve a smoothed
dissipative particle dynamics model), as a way to close the
balance of the total angular momentum. Momentum transfer
between translational and rotational motions then occurs, but
the final outcome of the model is that the inequality μ > 3κ/5
still holds.

In the present paper we address the question of whether it
is possible to introduce an additional dissipation interaction
at the particle level to overcome the limiting relative value of
bulk versus shear viscosities and, at the same time, that the
force conserves linear but also angular momentum. Proposing
an appropriate form of the dissipation function we derive a
particle-particle dissipative force term that strictly contributes
only to the bulk viscosity, leaving the shear viscosity un-
changed. However, despite the fact that the force is pairwise
additive, it is multibody in nature since its calculation involves
the relative velocity of third particles in the neighborhood
of the interacting ones. Therefore, the new term introduced
in this article will be relevant in systems with large bulk
viscosity, like CO2, particularly for situations involving Mach
numbers near or larger than one, or where sound propagation
and attenuation is the target.

In this article we also show that the concept of dissipation
function can be applied to general formulations of dissipative
interactions for complex fluids within the framework of SPH.
The advantage of the formulation of the particle equations of
motion from a minimum principle involving the Lagrangian
lies in that the underlying conservation principles can be
enforced in the layout of the problem [12,15]. In this article
we have extended this concept to the dissipative interactions
introducing the dissipation function, along the lines of the

pioneering works of Lord Rayleigh [3] and Onsager [4,5].
Within the conditions of validity of the dissipation function
as a generator of dissipative interactions, if is invariant under
pure translations and solid body rotations, the conjugate mo-
menta will be conserved by the derived equations of motion,
including the dissipative forces. Hence, as Dirac remarked
(quoted by Monaghan [12]), basing the equations of motion
in a Lagrangian (here extended with the Rayleigh dissipation
function) allows new physical interactions to be included con-
sistently. Therefore, the bottom-up formulation of SPH per-
mits us to enforce general physical properties for the system
that will have their projection into the continuum macroscopic
behavior in a way that may be very difficult to infer from a
top-down perspective based on the continuum [16].

The article is organized as follows. In Sec. II we introduce
the SPH framework, including the Monaghan-Gingold term,
and we derive the new contribution to the dissipation force
for a general system with arbitrary shear and bulk viscosities.
The hydrodynamic limit of the model is derived in Sec. III
and is shown to be equivalent to a Newtonian bulk viscosity
term. We are able to derive expressions relating the macro-
scopic bulk viscosity with the parameters of the model for
the particle-particle interaction. The passage from continuum
to discrete, which is not unequivocal in SPH, is discussed
in Sec. IV. One-dimensional and two-dimensional numerical
verification cases are proposed in Sec. V. Some conclusions
are enumerated and future work threads proposed to close the
paper.

II. DERIVATION OF THE MULTIBODY FORCE FOR
THE BULK VISCOSITY

A. The SPH approximation to the hydrodynamic fields

Let us consider an ensemble of N particles representing
fluid elements located at positions ri, i = 1, . . . , N with ve-
locities ui and masses mi. Since the particles are considered
as macroscopic objects, we can define the internal energy
per unit of mass ei and the particle entropy per unit of mass
si. In SPH, fields are associated to corresponding physical
properties carried by particles, or defined from the immediate
neighborhood. The main example or the latter is the particle
mass density [11,17]

ρi = mi

N∑
j=1

W (ri j ; h), (1)

where W is a weight function referred to as kernel. Here,
ri j = ri − r j and ri j = |ri j |. The kernel is a positive definite
integrable smooth function with a characteristic length h (see
Ref. [18] for a recent discussion on the choice of kernels’
characteristic length), which will be omitted in the notation
where no confusion could occur. In this article, this kernel is
isotropic and its volume integral is normalized; i.e.,∫

dr W (r) = 1. (2)

The spatial gradient of the kernel satisfies

∇iW (ri j ) = ei j
dW

dri j
≡ −ei j ri jF (ri j ) = −∇ jW (ri j ), (3)
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where ei j = ri j/ri j is a unit vector. With this definition Eq. (3),
F is positively definite function. Within the same framework,
one can define the particle number density as

ci =
∑

j

W (ri j ). (4)

The definition of ci allows us to introduce an estimate of the
volume surrounding the ith particle, namely,

Vi ≡ 1

ci
= 1∑

j W (ri j )
. (5)

In SPH, to reproduce smooth fields, insensitive to the un-
derlying particulate nature of the description, it is required
that Vi � hD, i.e., that the number of particles ν in a given
particle environment determined by the range of the kernel
h, must be large enough, i.e., ν ∼ chD � 1. Here D is the
dimensionality of the space. Otherwise, the local fields show
large fluctuations at short wavelengths of the fields, revealing
the aforementioned particulate nature of the model. More-
over, to recover the hydrodynamic behavior as described by
the Navier-Stokes equation the so-called hydrodynamic limit
must be invoked [19]. The latter states that the characteristic
wavelengths of the fields must be much larger than h so that
spatial variations of the fields up to O(k2) are sufficient to
describe the dynamics, k being the field wave number. Hence,
if L ∼ 1/k is the characteristic length for the variation of a hy-
drodynamic field, then the continuous limit description should
be reached when h/L ∼ kh → 0 with Vi/hD → 0 [20–22].
The latter limit will be discussed in the next section.

Following the approach of Ref. [2], the conservative dy-
namics of the system can be derived from the Lagrangian

L[ṙi, ri] =
∑

i

[
1

2
mi ṙ 2

i − mi U (t, ri ) − mi e(ρi, si )

]
,

(6)

where the first term on the right-hand side of this equation
is the kinetic energy of the particles. U is a general external
potential field such as gravity and ṙi = ui. ei is the internal
energy, which is considered to be a function only on the
particle thermodynamic properties ρi and si in the present
model.

Together with the Lagrangian, following Ref. [7] we define
the dissipation function, often referred to as Rayleighian, as

�D[ui] = 1

2

∑
i, j>i

ηF (ri j )ri j (eij · ui j )
2 ViVj + 1

2

∑
i

ζV 3
i ċ2

i .

(7)

The first contribution to the dissipation function has al-
ready been proposed in Ref. [2] and gives rise to the Mon-
aghan and Gingold’s force. The second one is the new
contribution proposed. Formally, it takes the form of an
entropy production due to a divergence fluid field since the
continuity equation states that dc/dt = −c∇ · v. Thus, Vi ċi

is an approximation of a local divergence field. To have an
intuitive idea of the nature of the newly introduced term, let

us use the continuity equation into the new term and write

1

2

∑
i

ζV 3
i ċ2

i ∼ 1

2

∑
i

ζV 3
i c2

i (∇ · v)2
i ∼ 1

2

∫
dV ζ (∇ · v)2

(8)
where we have used that ciVi = 1 and that

∑
i Vi(∇ · v)2

i �∫
dV (∇ · v)2, as

∑
i Vi ∼ ∫

dV ∼ V , the latter being the total
volume of the system. Therefore, this contribution to the
dissipative function effectively has the form of the entropy
produced in the system due to the fluid bulk viscosity ζ . The
relevant property of the formulation of this contribution from
the dissipation function is that the form of the interparticle
force obtained will be consistent with the general concepts
behind the theory of irreversible processes in fluids [23], as
intended. The factor V 3

i is introduced here by convenience,
to make the resulting contribution to the bulk viscosity inde-
pendent of the particle number density, as demonstrated in the
next section, but that can also be gathered from Eq. (8). Notice
that the factor ViVj in Monaghan and Gingold’s contribution
has the same effect of making the coefficient independent of
the particle number density.

Notice that in Eqs. (6) and (7) we have made the distinction
between the independent variables in the Lagrangian ṙi, ri

and the ones in the Rayleighian ui, which either set must be
considered as mutually independent, although at the end one
assumes ṙi = ui. Moreover, the dissipation function must be
a quadratic function of the velocities. Under these conditions,
the dynamics of the system is given by

d

dt

(
∂L
∂ ṙi

)
− ∂L

∂ ri
= − ∂

∂ui
�D, (9)

where the generalized dissipative forces are obtained from
differentiation of �D with respect to ui; i.e.,

fv
i = − ∂

∂ui
�D. (10)

Following Ref. [2], one can arrive to the equation of motion
for the dynamics of the ensemble of particles, which reads

mi
dui

dt
=

∑
j 
=i

[
p jV 2

j + piV 2
i

ViVj

]
ei j ri jF (ri j )ViVj + migi + fv

i .

(11)

Since F (0) = 0 for common kernels, the restriction j 
= i in
the summation in this equation, and in the ones that follow in
the rest of the paper, could be removed.

Making use of the properties of ei and translational invari-
ance, one can write the conservative interparticle force fC

i in
Eq. (11) as

fC
i ≡ −

∑
j

m j
∂e j

∂ri
= −

∑
j

m j
∂e j

∂ρ j

∣∣∣∣
s

∂ρ j

∂ri

=
∑
j 
=i

[
p j V 2

j + pi V 2
i

Vi Vj

]
ei j ri jF (ri j )ViVj, (12)

where we have used the fact that the particle pressure pi ≡
−mi∂ei/∂Vi|s. In this derivation we have considered that si is
intrinsically carried by the particles and is not a function of
the environment, as the local mass density ρi is. Notice that
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fC
i is defined here as the reversible (adiabatic) variation of

the internal energy of the particle ei. To have a model with a
complete thermodynamic description, the energy balance has
to be also provided (see, e.g., Eq. (12) in Ref. [2]).

The contribution due to the external potential is given by

gi = −∂U

∂ri
, (13)

which is a pure acceleration in view of the fact that we
have defined U as an energy per unit of mass. Therefore, the
dynamics of the system takes the form

dpi

dt
= fC

i + fv
i + migi, (14)

where we have introduced the particle momentum as pi ≡
miui.

B. Analysis of the dissipative forces

The presence of two terms in Eq. (7) permits us to split
the force also into two contributions. The first one is the
Monaghan and Gingold’s force, as expected

fMG
i = −

∑
j 
=i

ηF (ri j ) ri j (ui j · ei j ) ei jViVj . (15)

The new contribution requires the derivative of the local
number density; i.e.,

dci

dt
=

∑
j

W ′(ri j )
dri j

dt
= −

∑
j 
=i

F (ri j ) ri j ei j · ui j . (16)

Then, the related force in Eq. (7) is obtained by differentiating
with respect to ui, and using this latter result

fBulk
i = − ∂

∂ui

⎛
⎝1

2
ζ

∑
j

V 3
j ċ2

j

⎞
⎠

=
∑

j

ζV 3
j ċ j

⎛
⎝ ∂

∂ui

∑
k 
= j

F (r jk ) ri j e jk · u jk

⎞
⎠

=
∑

j

ζ
(
V 3

j ċ j
)∑

k 
= j

F (r jk ) ri j e jk (δi j − δik ). (17)

Hence, using the symmetry F (ri j ) ei j = −F (r ji) e ji one ar-
rives at the central result of this article, namely,

fBulk
i =

∑
j 
=i

ζ
[
V 3

j ċ j + V 3
i ċi

]
F (ri j ) ri j ei j . (18)

The first and most obvious property of fBulk
i is that is null in

an incompressible system. This is due to the fact that the force
is proportional to ċi, in view of Eq. (18). Thus, its presence in
the dynamics of the ensemble of particles does not modify the
shear viscosity, as we will prove below. Therefore, Eq. (18)
introduces a genuine contribution to the bulk viscosity alone.
Moreover, the expression found is already symmetric with
respect to the permutation of particle indices, as a result of
the translational invariance of the dissipation function Eq. (7).

Second, while the force given by Monaghan and Gingold
[Eq. (15)] depends only on the relative velocity of the in-
teracting particles, the form given in Eq. (18) depends on

velocities of third particles in the immediate environment of
the interacting particles. It is thus many body in nature. By
inspection of Eq. (18) one can see that it is still pair-wise
additive.

Third, according to Eq. (18) by permuting the indices we
arrive at the conclusion that

fBulk
i j = ζ

[
V 3

j ċ j + V 3
i ċi

]
F (ri j ) ri j ei j = −fBulk

ji . (19)

Thus, the total force on the center of mass of the pair is zero
and, therefore, the total momentum of the system will be a
conserved quantity under the action of this force.

Fourth, due to the aforementioned invariance of the dis-
sipation function under solid-body rotations, the derived in-
terparticle force is directed along the relative vector between
particle centers, and thus the torque induced by this force over
the pair is also zero, i.e.,

ri × fBulk
i j + r j × fBulk

ji = (ri − r j ) × fBulk
i j ∝ ri j × ei j = 0,

(20)

which indicates that the total angular momentum of the system
will be also conserved.

Finally, we want to point out that the introduction of
random forces to describe fluid fluctuations should require the
definition of a specific contribution coupled to the new term.
This analysis will be presented elsewhere.

III. FROM THE DISCRETE TO THE CONTINUUM

To obtain the relationship between the SPH particle dy-
namic parameters and the macroscopic transport coefficients
of the “continuum” fluid represented by the ensemble of
moving particles, we have to introduce the macroscopic fields
and take the hydrodynamic limit, i.e., that the spatial variation
of the fields L ∼ 1/k is much longer than the characteristic
range of the kernel h [24]. For the purposes of this article it
is sufficient to focus on the momentum conservation and the
Navier-Stokes equation.

A. Macroscopic field densities

We can introduce the field densities from the knowledge of
the properties of the particles. These magnitudes are intrinsi-
cally different from the weighted densities given in Eqs. (1)
and (4), which are properties defined at the particle level.
Let us introduce in the first place the particle number density
n(r, t ) as

n(r, t ) ≡
N∑

i=1

δ[r − ri(t )]. (21)

A general property ψi carried by the particles allows us to
define a field � from the relation

�(r, t ) ≡
N∑

i=1

ψi δ[r − ri(t )]. (22)

However, in the framework of SPH the fields are extrapolated
and smoothed out by using the kernel W , according to

�SPH(r, t ) ≡
∫

dr′ W (|r − r′|)
N∑

i=1

ψi δ[r′ − ri(t )]
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=
N∑

i=1

ψi W (|r − ri|). (23)

This difference between the particulate field Eq. (22) and the
smoothed SPH field Eq. (23) is irrelevant in the hydrodynamic
limit, where the field � is expected to slowly vary with the
distance. The relevance of the kernel becomes apparent only
at the level of particle interactions, as we have indicated in
Sec. II, but it is not relevant for the derivation of the transport
coefficients of the ensemble of particles.

The effect of the uneven distribution of the particles in
space is reflected by the pair distribution function g(r − r′),
which is defined from the relation [19]

N∑
i=1

∑
j 
=i

δ[r − ri(t )]δ[r′ − r j (t )] ≡ n(r, t ) n(r′, t ) g(r − r′).

(24)
In Eq. (24) no average is considered, contrary to the usual
statistical mechanical analysis of liquids, because no thermal
agitation is present in the model. Thus, strictly speaking, g(r)
depends locally and instantaneously on the actual distribution
of particles. However, if the conditions mentioned in Sec. II
are satisfied, then we can assume that g(r − r′) � g(|r −
r′|) � 1 − 1/N � 1 all over the bulk fluid. Moreover, g(r)
will only be different from 1 when |r − r′| < h, as the range
of interaction of SPH particles is h. Furthermore, in view
of Eq. (12), SPH particles interact through soft potentials
(i.e., the interaction energy is finite when particles overlap).
It is thus expected that the minimum of g will be shallow at
particle-particle overlap, namely, g(|�r| → 0) > 0. Finally, if
the number of particles is very large as to have chD � 1, then
the interaction between two particles such that |ri − r j | < h
is screened by the presence of third particles interacting with
both. Thus, the local structure of the ensemble introduced
by the direct particle-particle interaction is confined to an
effective distance V 1/D

i . Hence, for the hypothesis g(|�r|) �
1, usually assumed in SPH method, to be correct, the limit
Vi � hD needs to be considered. In this work we keep g(r)
within the analysis instead of replacing it by 1 to obtain
general expressions for systems where the limit Vi � hD is
only marginally satisfied and the particulate nature of the
model may be relevant.

Particle number density and the corresponding field are
related in the following way:

ci =
N∑

j=1

W (ri j ) =
∫

dr′ W (|ri − r′|)
∑

j

δ(r′ − r j )

�
∫

dr′ W (|ri − r′|)n(r′, t ). (25)

Due to the fact that the kernel W is a short-ranged function, in
the hydrodynamic long-wavelength limit, a multipolar expan-
sion can be carried out. Effectively, writing r′ = ri + �r′ and
using translational invariance of the bulk system, up to second
order in the gradients O(kh)2 we can write

ci � n(ri ) + 1
2 C2 : ∇∇ n(r′, t )

∣∣
r′=ri

+ . . . , (26)

with the multipolar coefficients given by

Cq =
∫

d�r �r�r (q). . .�r�r W (|�r|). (27)

Notice that C0 = 1 due to the normalization of the kernel, and
all the odd-q multipoles vanish due to the kernel isotropy.

For the local volume one can further write

Vi � 1

n(ri )

(
1 − 1

2n(ri )
C2 : ∇∇n(r′, t )|r′=ri + . . .

)
. (28)

In a homogeneous system n = N/V , and if Vi � hD, then ci �
n(ri ), but their values may differ near interfaces. Therefore,
for long-wavelength variations of the fields, kh � 1, we ex-
pect that ci and n(ri ) are practically the same. The momentum
density is given by

j(r, t ) ≡
N∑

i=1

pi δ[r − ri(t )]. (29)

Differentiating Eq. (29) one can write

∂

∂t
j(r, t ) =

N∑
i=1

[ṗi − ∇ · uipi] δ[r − ri(t )], (30)

with ui = pi/mi. Making use of Eq. (14), we find

∂

∂t
j(r, t ) =

∑
i

(
fC
i + migi − ∇ · uipi

)
δ[r − ri(t )]

+
∑

i

∑
j 
=i

[−ηF (ri j ) ri j (ui j · ei j )ViVj

+ ζ
(
V 3

j ċ j + V 3
i ċi

)
F (ri j ) ri j ei j

]
δ[r − ri(t )].

(31)

Introducing
∫

dr′ δ(r′ − r j ) = 1, together with Eq. (24), we
can write

∂

∂t
j(r, t ) = −∇P(r) + ρ(r)g(r) − ∇ · ρ(r)v(r)

+ ∇ · σ MG + ∇ · σ Bulk. (32)

In this equation, we have defined the convective contribution
from the relation∑

i

uipi δ(r − ri ) ≡ ρ(r)v(r), (33)

and we made use of Eq. (28) replacing ri by the field point
r. Notice that we have introduced the velocity field v from
Eq. (33), although we are implicitly assuming that the particle
velocity ui � v(ri ). Moreover, the particle-particle interaction
force gives the system pressure,

−∇P =
∑

i

∑
j 
=i

[
p j V 2

j + pi V 2
i

Vi Vj

]

× F (ri j ) ri j ei j ViVj δ[r − ri(t )]. (34)

The contribution due to the external fields is straightforwardly
given by

ρ(r)g(r) ≡
∑

i

migi δ[r − ri(t )] = g(r)
∑

i

miδ[r − ri(t )].

(35)
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Furthermore, we can define the two contributions to the
viscous stress, i.e.,

∇ · σ MG = −
∑

i

∑
j 
=i

ηF (ri j ) ri j (ui j · ei j )ViVj δ[r − ri(t )],

(36)
where σ MG stands for the contribution to the stress tensor due
to the Monoghan and Gingold’s expression, and

∇ · σ Bulk =
∑

i

∑
j 
=i

ζ
[
V 3

j ċ j + V 3
i ċi

]
F (ri j ) ri j ei j δ[r − ri(t )],

(37)
where σ Bulk refers to the contribution to the stress tensor
arising from the new term. The stress tensor σ Bulk should not
be regarded as the only contribution to the bulk viscosity as the
Monaghan and Gingold’s expression also produces a residual
contribution.

B. Identification of the different contributions to the viscosities

To develop further the right-hand side of Eq. (31), using the
fact that both W and F are short ranged (h), we can introduce
the multipolar expansions, as in Eq. (26). From Eq. (34)
we insert the identity

∫
dr′δ(r − r′) = 1 and use Eq. (24) to

obtain

−∇P(r) = −
∫

dr′[p(r + �r′)V 2(r + �r′) + p(r)V 2(r)]�r̂

× F (�r′) �r′ g(�r′)n(r + �r′)n(r), (38)

where the negative sign arises from the fact that the unit vector
ei j → −�r̂ since in the pass to the continuum we have ri → r
and r j → r′ with r′ = r + �r′, while ri j = ri − r j . Hence,
introducing the multipolar expansion and collecting terms up
to second order in the gradients,

−∇P(r) = −
∫

d�rF (�r′) �r′ g(�r′)�r̂�r

·∇[p(r)V 2(r)n2(r)]. (39)

Despite the apparent complexity of this expression, in the hy-
drodynamic limit and for a sufficiently homogeneous system
Vi � hD, i.e., g(�r′) � 1, the macroscopic pressure coincides
with the particle pressure, since V (r) � 1/n(r), cf. Eq. (28)
and ∫

d�r′F (�r′)�r′�r′

= 4π

3

∫ ∞

0
d�r′ F (�r′)(�r′)4

= −4π

3

∫ ∞

0
d�r′ (�r′)3 dW (�r′)

d�r′ = 1. (40)

The last equality follows after partial integration and the
fact that W is normalized, together with W (�r → ∞) → 0.
In evaluating this expression we have used that the angular
integral of the isotropic second rank tensor yields

I3D
αβ =

∫
d�r̂ �r̂α�r̂β = 4π

3
δαβ. (41)

Therefore, if the system is locally homogeneous enough, then
it follows that the macroscopic pressure gradient is given by

the particle expression for the pressure pi; i.e.,

−∇P(r) � −∇p(r). (42)

For completeness we provide the general expression in the
hydrodynamic limit, for situations were only marginally Vi �
hD, i.e.,

−∇P(r) = −
(

4π

3

∫
d�rF (�r′)g(�r′)(�r)4

)
∇p(r),

(43)
where use has been made of the fact that V � 1/n, according
to Eq. (28).

As far as the viscous stresses are concerned, let us consider
Eq. (36) and introduce the pair distribution function as in
Eq. (38). One has

∇ · σ MG = −
∫

d�r′ηF (�r′) �r′ �r̂′�r̂′

·[v(r) − v(r + �r′)]

×V (r)n(r)V (r + �r′)n(r + �r′)g(�r′). (44)

After the multipolar expansion one obtains up to second order
in the gradients

∇ · σ MG � η

2

∫
d�r′ F (�r′)g(�r′)(�r′)3

×�r̂′�r̂′�r̂′�r̂′ ... {n2(r)V 2(r)∇∇v(r)

+ (∇[n2(r)V 2(r)])∇v(r)}. (45)

The integration of the isotropic fourth rank tensor can be
carried out to give

I3D
αβγ ν =

∫
d�r̂′ �r̂′

α�r̂′
β�r̂′

γ �r̂′
ν

= 4π

15
(δαβδγ ν + δαγ δβν + δανδβγ ). (46)

After evaluating the triple contraction in Eq. (45) one finds

∇ · σ MG = ∇ · μ(∇v + (∇v)T + 1∇ · v)

= ∇ · μ

(
2

◦
∇v + 5

3 1∇ · v
)

, (47)

where (∇v)T is the transposed of ∇v, we have introduced

the symmetric traceless velocity gradient tensor
◦

∇v and 1 is
the identity matrix. The prefactor is the shear viscosity of the
model and is given by the expression

μ ≡ η
2π

15

∫ ∞

0
d�r′ �r′5 F (�r′) g(�r′), (48)

where use has been made of the fact that V n � 1 in view of
Eq. (28). Again, in a sufficiently locally homogeneous system
Vi � hD, this expression reduces to

μ ≡ η
2π

15

∫ ∞

0
d�r′ �r′5 F (�r′). (49)

As we can see from Eq. (47) this calculation leads us to
the aforementioned result that the Monaghan and Gingold’s
expression produces also a bulk viscosity whose magnitude
is proportional to the one of the shear viscosity, namely,
λMG = 5μ/3.
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The new contribution to the viscous dissipation can be
transformed to introduce the pair distribution function and the
local densities, as before. From Eq. (37)

∇ · σ Bulk = −ζ

∫
d�r′F (�r′)�r′g(�r′)

× [V 3(r + �r′)ċ(r + �r′) + V 3(r)ċ(r)]

× �r̂′n(r)n(r + �r′), (50)

with the additional complexity introduced by the multibody
nature of the force, i.e.,

ċ(r) =
∫

d�r′ F (�r) �r′ g(�r) �r̂′

·[v(r) − v(r + �r)]n(r + �r), (51)

according to Eq. (16). Again, introducing a multipolar expan-
sion and retaining terms up to second order in the gradients
one arrives at the expression

∇ · σ Bulk = ∇(λ∇ · v), (52)

where

λ ≡ ζ

[
4π

3

∫ ∞

0
d�r′ �r′4 F (�r′) g(�r′)

]2

. (53)

Again, use has been made of the fact that V n � 1. If the limit
Vi � hD is assumed, then the expression for this dissipative
coefficient takes the simpler form

λ ≡ ζ

[
4π

3

∫ ∞

0
d�r �r4 F (�r)

]2

= ζ , (54)

according to Eq. (40).
As we can see from Eq. (52), the new contribution to the

dissipation projects only onto ∇ · v, showing that it is possible
to separately model shear and bulk viscosities with arbitrary
relative values, keeping the conservation of both linear and
angular momenta, which was the main objective of this article.

IV. FROM THE CONTINUUM TO THE DISCRETE

In the previous section we have deduced the macroscopic
hydrodynamic equations for a SPH fluid starting from the
formulation of particle interactions only. These particle prop-
erties included conservative and dissipative forces as well.
While the conservative forces due to pressure need to be
of a particular form, to recover the appropriate meaning of
the pressure in the macroscopic system [cf. Eqs. (34), (38),
(40), and (42)], the dissipative force can be defined in many
different ways, all leading to the same type of viscous dissi-
pation, although the dependence of the viscosity coefficients
on model parameters may be rather different. The formulation
in terms of the dissipation function is then an instrument for
exploring a pleiad of possible, equally consistent at the macro-
scopic level, expressions for the fluid viscosities, including
specific kernels as well as density dependent viscosities. The
key ingredient for this bottom-up formulation is that the ap-
propriate conservation laws, such as total momentum, angular
momentum and energy, are maintained at the particle level
by the algorithm. For comparison it is thus instructive to also
explore the derivation of the additional bulk viscosity from a
top-down perspective, starting for the continuum equations.

The choice of Eq. (18) as dissipative force is motivated
by the requirement that the corresponding contribution to
the bulk viscosity is independent of the particle density [cf.
Eq. (54)], as it is also customary for the shear viscosity in
the form of Monaghan and Gingold term in Eq. (49) but also
implicitly for the pressure term in Eq. (12). However, it should
be now obvious for the reader that other forms could have
been chosen for the dissipation forces, including the use of
kernels other than W and its gradient F , with an interaction
range different from h, although here, for the simplicity of
the formulation, we have used the same kernel in all the
interactions, as is customary in SPH.

In the usual deductive top-down procedure in SPH (cf.
Ref. [12] and references therein), one starts by associating the
viscous terms with forces per unit volume exerted between the
particles, namely,

ρg = μ ∇2u + (λ + μ) ∇ (∇ · u), (55)

where, as in Eq. (13), g is a force per unit of mass, i.e., a pure
acceleration. In Ref. [2] it was shown that using Monaghan
and Gingold’s viscous term is equivalent at the continuous
level to having the force per unit volume term

ρgMG = μ ∇2v + 2μ∇ (∇ · v), (56)

in the momentum equation, which automatically implies λ =
μ. Thus, to introduce an additional contribution that acts only
on ∇ · v, one can write Eq. (55) to be equal to

ρg = ρgMG + λSPH ∇ (∇ · v), (57)

which combines Eq. (56) with an independent term on the gra-
dient of the velocity divergence. The additional term depends
on a new parameter (let us call it λSPH) to introduce a correct
second viscosity. A viscous term allowing for this is proposed
taking advantage of continuity equation, leading to

ρg = ρgMG − λSPH∇
(

1

ρ

dρ

dt

)
. (58)

Then, discretizing this last equation with plain SPH in a
particle set leads to the expression

ρi gi = −2μ (n + 2)
∑

j

F (ri j ) (ui j · ei j ) ei j Vj

+ λSPH
∑

j

(
ρ̇ j

ρ j

)
F (ri j ) ei j Vj . (59)

As usual in the top-down procedure, the structure of the last
term in the previous equation does not satisfy crucial physical
properties; in particular, total momentum conservation. This
is due to the fact that the process of discretization of the
continuum equations is not unequivocal, and can be done in
different ways. Here we explore two different possibilities and
their connection with the formulation given in the previous
section.

Multiplying Eq. (59) by the particle volume, we have a
force to be applied onto particle i, where the last term has been
symmetrized by using that the integral of the kernel gradient
is zero,

fi = −μ (n + 2)
∑

j

F (ri j ) (ui j · ei j ) ei j Vi Vj
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+ λSPH
∑

j

(
ρ̇i

ρi
+ ρ̇ j

ρ j

)
F (ri j ) ei j Vi Vj . (60)

This last expression conserves linear and angular momentum
for the particle motion. Since the Lagrangian evolution of the
volume of a fluid element is governed by the volumetric strain
rate equation:

1

V

dV

dt
= ∇ · v, (61)

using the definition c = 1/V , then

−V ċ = ∇ · v. (62)

This allows us to write Eq. (60) as

fi = −μ (n + 2)
∑

j

F (ri j ) (ui j · ei j ) ei j Vi Vj

+ λSPH
∑

j

(Viċi + Vjċ j )F (ri j ) ei j Vi Vj, (63)

with the second part of the term becoming another choice for
a bulk viscosity term, similar to the one in Eq. (18), which
also conserves linear and angular momentum exactly and that
remarkably gives the same contribution to the macroscopic
viscosity, Eq. (54). Let us denote it as

fBulk
i = λSPH

∑
j

(Viċi + Vjċ j )F (ri j ) ei j Vi Vj . (64)

As it happens with different consistent choices in various SPH
formulas (see, e.g., Ref. [12] Sec. 2.2 for a discussion on SPH
discretizations for the continuity equation), there may be some
advantages in using one or another formula in a particular
problem (e.g., multiphase with high density ratios, hypersonic
gas dynamics, etc.), an aspect to be investigated in the future.

Equating (55) and (57), the free parameter λSPH is obtained
from the physical viscosities as

λSPH = λ − μ, (65)

with the same meaning as the ζ parameter introduced in the
discrete analysis.

Since the bulk viscosity, κ , is defined as

κ = λ + 2 μ

n
, (66)

then

λSPH = κ −
(

1 + 2

n

)
μ, (67)

and, therefore, there is no upper limit for representing any
actual physical bulk viscosity with this model. Such bulk
viscosity can be achieved by adjusting the parameter λSPH

as a function of the physical shear and bulk viscosities with
Eq. (67), then applying, at the discrete level, Monaghan and
Gingold formula for the viscous term, and Eq. (18) or (64) for
the additional compressible viscosity dissipation.

According to Eq. (67), assuming Stokes hypothesis, i.e.,
the zeroing of the bulk viscosity, κ , in a Newtonian fluid [2],
leads to a negative value of the new contribution coefficient,
λSPH. This fact violates the second principle for the novel
term, unless its contributions to the volumetric dissipation and

FIG. 1. Sinusoidal pulse. Initial velocity field, n = 256.

the Monaghan and Gingold one are considered as part of the
same dissipation mechanism, which they are.

To end this section, let us consider the last term in Eq. (58)
and discretize it following a different strategy. Effectively, as
it is customarily done to obtain Eq. (12) from the continuum
[12] we can write

− λSPH∇
(

ρ̇

ρ

)
= − λSPHρ

[
∇

(
ρ̇

ρ2

)
+ ρ̇

ρ3
∇ρ

]
. (68)

Applying the rules of discretization as before, multiplying by
the particle volume, one arrives at

fi = −μ (n + 2)
∑

j

F (ri j ) (ui j · ei j ) ei j Vi Vj

+ λSPH
∑

j

(
V 3

i ċi + V 3
j ċ j

)
F (ri j ) ei j . (69)

This expression for the contribution to the bulk viscosity is the
same as derived in Eq. (18).

V. NUMERICAL VERIFICATION

The periodic propagation of a sinusoidal sound wave and
the time decay of a two-dimensional accelerating-decelerating
pipe flow are used as verification cases.

A. Sinusoidal sound pulse

The setup is the same used by Ott and Schnetter [25] to
test a new algorithm for muliphasic SPH. Their same periodic
one-dimensional domain [−0.5, 1.5) is proposed. The width
of the domain is therefore L = 2. A fluid with reference
density ρ0 and numerical sound speed c0 equal to one (in
consistent units) is considered.

The governing equations are the compressible one dimen-
sional continuity and momentum equation, with the bulk
viscosity as the only contribution to dissipation due to the
one-dimensional nature of the problem:

dρ

dt
= −ρ

∂v

∂x
, (70)

ρ
dv

dt
= −∂ p

∂x
+ κ

∂2v

∂x2
. (71)
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FIG. 2. Sinusoidal pulse. Velocity field, n = 256, t/(L/c0) ≈ 1.22.

Pressure p is linked to density with a linear isentropic
barotropic equation of state:

p = c2
0 ρ. (72)

An initial density field is defined by perturbing the refer-
ence field with a sinusoidal function of wavelength equal to
L, as

ρ(x)

ρ0
= 1 + A sin

(
2π

x

L

)
, (73)

with A = 0.005.
An initial velocity field, consistent with the density dis-

turbance through the linearized sound propagation equa-
tions, representing a pressure pulse traveling to the right, is
defined as

v(x) = cs

(
ρ(x)

ρ0
− 1

)
. (74)

A test with Aρ0c0L/κ = 0.05 is discussed next. The ref-
erence solution, considered exact, is obtained with a straight-
forward finite-difference (FD) 1D Eulerian discretization of
Eqs. (70) and (71).

Wendland’s C2 kernel is used [26]. The ratio between the
initial interparticle distance �x and the smoothing length h
is taken as 0.25, low enough to obtain representative SPH
summations. A leap-frog time integration scheme is used
[27]. The time integration step is defined based on stability
criteria (see Ref. [28] for a recent investigation on the optimal
value of this variable). Cases, with n = 64, 128, 256, and 512
particles are considered. Therefore, by taking �x = 2/n, then
kh ∼ h/W = 0.62, 0.31, 0.16, and 0.08, respectively. Hence,
the larger the n the closer the sought hydrodynamic limit
kh → 0. The mass of each particle is defined at time zero
consistently with the density field. Equation (18) is used for
the bulk viscosity term. Since the volume of particles is very
similar during the time evolution, the impact of substituting
this formula by the alternative Eq. (63) is negligible.

To compare SPH and the reference FD solution, the time
evolution of the kinetic energy of one period will be inspected.
In Fig. 1, the initial velocity field, and an example of a given
particle discretization are shown. In Fig. 2 the velocity field
is shown when its maximum has already noticeably decreased
(20%). Time is made nondimensional with the residence time
defined by the sound speed c0 and the wavelength L. In Fig. 3
the time evolution of the kinetic energy is plotted. As can
be appreciated, the agreement with the reference solution
improves for increasing resolution.

B. Time decay of an accelerating-decelerating pipe flow

As a test case in two dimensions, the time decay of an
accelerating-decelerating pipe flow is proposed. The fluid
domain is (x, y) ∈ [−x0, x0] × [0, L] with walls at y = 0 and
y = L and inflow/outflow conditions at x = ±x0, respectively.
We assume the state equation to be linear, that is p = c2

0(ρ −
ρ0) + pb (where pb is a background pressure) and the velocity
to be v = [u(t, x, y), 0]. Then, the continuity and the Navier-
Stokes equation simplify as follows:

ρt + (ρ u)x = 0,

ut + u ux = − c2
0

ρx

ρ
+ f + (λ′ + ν) uxx + ν (uyy + uxx ), (75)

where λ′ = λ/ρ and ν = μ/ρ are assumed to be constant, and f is an external body force. The previous to last term in the
right-hand side of Eq. (75) is the action of the bulk viscosity.

For the body force, the following field is chosen:

f = b

[
U 2

0

2

sinh(2bx)

cosh(bx0)2
sin(ky)2 exp(−2να2k2t ) − c2

0 tanh(bx)

]
,

where k = π/L (L is the wavelength in the y direction) and

α =
√

σ + 2

σ + 3
, b = k√

σ + 2
√

σ + 3
, σ = λ

μ
. (76)
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The following solution for the velocity is obtained:

u(t, x, y) = U0
cosh(bx)

cosh(bx0)
sin(ky) exp(−να2k2t ), ρ(t, x, y) = ρ0

cosh(bx)
, (77)

where U0 represents the maximum velocity, which is attained
at the initial instant (namely, t = 0) for (x, y) = (±x0, L/2).
Note that the density depends neither on time nor on the
variable y.

The Reynolds number for this test case is defined as Re =
U0L/ν and is set equal to 50. Regarding the speed of sound, c0,
it is set equal to 2U0, and hence the Mach number is Ma = 0.5.

Several values of the ratio σ = λ/μ are considered,
namely, σ = −1, 0, 1, 10, and the related initial velocity fields
are displayed in Fig. 4. The case σ = −1 implies a null bulk
viscosity or, in other words, that the Stokes’ hypothesis is
verified for this 2D test.

Considering the solution Eq. (77), the viscous forces on the
right-hand side of Eq. (75) can be reshaped as

fv : = [(λ′ + ν)uxx + ν(uyy + uxx )] = νu[(σ + 2)b2 − k2]

= −νk2u

[
1 − 1

(σ + 3)

]
. (78)

This equation shows how the viscous forces are affected by
the parameter σ (i.e., by the ratio λ/μ).

In all the simulations the particles are initially positioned
on a Cartesian lattice with spacing �x, and the volumes of all
particles equal to (�x)2. However, it is important to underline
that the flow studied in this section is characterized by a
divergence velocity field equal to

∇ · v (t, x, y) = U0 b
sinh(bx)

cosh(bx0)
sin(ky) exp(−να2k2t ),

(79)

which, for the chosen parameters, induces a considerable
change on the particles’ volumes during the time evolution
[see Eq. (61)]. To tackle this behavior numerically, the split-
ting and merging procedure described in Ref. [29] has been

FIG. 3. One-dimensional sinusoidal pulse propagation.
Aρ0c0L/κ = 0.05, �x/h = 0.25. Kinetic energy; time history.

implemented to limit the relative variations on the particles’
volumes and the related interpolation errors.

The time decay of the velocity field at the center of the
fluid domain and of the total kinetic energy of the fluid are
shown in Fig. 5. In all the simulations the agreement between
the analytic and numerical solutions is good.

FIG. 4. Pipe flow: initial velocity field for Re = 50 and different
values of the ratio σ = λ/μ.
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FIG. 5. Pipe flow: time decay of the velocity at the center of the fluid domain and of the total kinetic energy for different values of the ratio
σ = λ/μ. The dash-dotted lines represent the analytical solutions, while the solid lines are the SPH solutions.

VI. CONCLUSIONS

A pure bulk viscosity term for smoothed particle hydro-
dynamics has been proposed in the present paper. The main
characteristics of the new term are, on the one hand, that
bulk viscosity can be modeled independently of the shear
viscosity and, on the other hand, that the interparticle inter-
action conserves the angular momentum, in addition to the
necessary linear momentum conservation. The key element of
our proposed additional contribution is that the new term is
proportional to the rate of change of volume of the volume
element, here defined as a local estimate from the collective
motion of the particles. Effectively, from the definition of
the local particle density we have defined an estimate of the
particle volume. The time evolution of the latter, in analogy
with the continuity equation, permits us to define an estimator
of ∇ · v, from which we eventually produce the dissipation
term leading to this contribution to the bulk viscosity of the
fluid, independently of other sources of viscous dissipation
related to the shear viscosity, such as the Monaghan and
Gingold’s classical friction force. By construction, the newly
proposed bulk viscosity term conserves the linear momentum,
as required to produce the macroscopic behavior embedded
into the Navier-Stokes equation. However, it also conserves
the angular momentum, which is a crucial property to de-
scribe free interfaces in a dynamically consistent way, as well
as situations involving free rotations of parts of the fluid.
Nonconserving interactions, such as the one of Morris et al.,
produce a spurius damping of the overall angular momentum.

From a technical point of view, we have formulated the
equations for the SPH model from a bottom-up perspec-
tive, defining the interations between the particles, along
the lines of Ref. [2] and references therein. As a novelty,
however, we have introduced the dissipative interactions
from the dissipation function, formulated along the lines of
the works of Rayleigh and Onsager, which allows us to
define complex dissipative behavior in a consistent manner if
the restrictive conditions of validity of the minimum principle

are satisfied [4,5]. The use of the dissipation function has
additional advantages with regards to other approaches. In
particular, the dissipation function �D in Eq. (7) is Galilean
invariant. As a result, the resulting force has the appropriate
momentum conservation as well as is symmetric with respect
to the permutation of particle indices, requiring no further
symmetrization as often occurs in top-down approaches. Sim-
ilarly, the angular momentum conservation of the obtained
force term stems from the solid-body rotational invariance of
the dissipation function.

In this article we have also explored an alternative deriva-
tion starting from the continuous Newtonian viscous term.
Within this top-down analysis, together with the SPH Mon-
aghan and Gingold shear and bulk viscosity terms, we have
derived also a similar additional contribution to the bulk
viscosity at the discrete level. Notably, the discretization uses
the continuity equation, which is also the main starting point
of the bottom-up approach described in this article. Although
equivalent, the functional form of the terms in Eqs. (18)
and (64) are substantially different. They produce the same
macroscopic bulk viscosity, but they can present particular
aspects that may be relevant depending on the applications.

Two verification cases have been proposed: the one-
dimensional propagation of a sound pulse, and a two-
dimensional case, modeling the time decay of an accelerating-
decelerating pipe flow. The SPH solutions have been com-
pared to exact ones, showing that the newly proposed term
behaves indeed as a viscosity associated only with the local
expansion-compression of the fluid. It remains as future work
to apply this term for complex 3D problems in which bulk
viscosity plays a relevant role.
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