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Correlations between conduction electrons in dense plasmas
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Most treatments of electron-electron correlations in dense plasmas either ignore them entirely (random phase
approximation) or neglect the role of ions (jellium approximation). In this work, we go beyond both these
approximations to derive a formula for the electron-electron static structure factor which properly accounts
for the contributions of both ionic structure and quantum-mechanical dynamic response in the electrons. The
result can be viewed as a natural extension of the quantum Ornstein-Zernike theory of ionic and electronic
correlations, and it is suitable for dense plasmas in which the ions are classical and the conduction electrons
are quantum-mechanical. The corresponding electron-electron pair distribution functions are compared with the
results of path integral Monte Carlo simulations, showing good agreement whenever no strong electron resonance
states are present. We construct approximate potentials of mean force which describe the effective screened
interaction between electrons. Significant deviations from Debye-Hückel screening are present at temperatures
and densities relevant to high-energy density experiments involving warm and hot dense plasmas. The presence
of correlations between conduction electrons is likely to influence the electron-electron contribution to the
electrical and thermal conductivity. It is expected that excitation processes involving the conduction electrons
(e.g., free-free absorption) will also be affected.

DOI: 10.1103/PhysRevE.101.013208

I. INTRODUCTION

In a simple description of metals and plasmas, the con-
duction electrons may be regarded as weakly interacting be-
cause their kinetic energy is large compared to their mutual
Coulomb repulsion. Such is the case in the limits of both
low and high temperature, where the respective kinetic energy
scales are the Fermi energy and the temperature. Electron
transport at each extreme is modeled well by the Ziman theory
of liquid metals or the Spitzer-Härm theory of classical plas-
mas, respectively [1,2]. Warm and hot dense plasmas occupy
an intermediate regime where the Fermi energy and temper-
ature are of similar order, typically occurring at temperatures
from a few eV to a few keV and mass densities ranging from
fractions of solid density to hundreds of times solid density. In
the laboratory, such conditions occur in inertial confinement
fusion implosions [3–5], in exploding wire arrays [6], and
in pulse power devices [7,8]. In Nature, one finds partially
degenerate plasmas in the envelopes of white dwarfs and in
the solar interior [9,10]. It is in this regime that the conduction
electrons may develop significant spatial correlations with one
another, and these correlations will impact electron transport
and optical processes.

The need for new theoretical descriptions of electron-
electron correlations in dense plasmas has been brought
to light by recent work highlighting the importance of
electron-electron scattering on electrical and thermal conduc-
tion in partially degenerate plasmas [11–14]. Such condi-
tions are challenging for quantum simulation methods, the
most widespread being density functional theory molecular
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dynamics paired with the Kubo-Greenwood method for elec-
tron transport [13,15–18]. These simulations scale poorly with
increasing temperature, and the use of the Kubo-Greenwood
method introduces an approximate treatment of electron-
electron scattering [13,14]. It is not yet fully understood
to what degree the Kubo-Greenwood approximation affects
QMD predictions of transport properties, especially thermal
conductivity. This means that currently there is a wide span
in temperatures between warm dense matter conditions and
classical plasma conditions where quantum simulations are
impractical and possibly inaccurate, yet the influence of cor-
relations on electron-electron scattering is likely to affect
transport in ways that classical plasma theory cannot predict.

While electronic correlation in metals has been an active
area in condensed matter physics for decades, many theoret-
ical developments in that field do not transfer in an obvious
way to plasmas, where the high temperatures mean that the
ions are not arranged on a lattice and the Fermi surface is
not an especially useful construct to understand the electron
dynamics. For this reason, theoretical treatments of electron-
electron correlations in dense plasmas commonly adopt the
random phase approximation (in which electron correlations
are ignored) and/or the jellium approximation (in which the
electron correlation properties are co-opted from those of the
homogeneous electron gas). More sophisticated approaches
based on the Green’s function formalism have also been
explored [11,19]. The limited knowledge of electron-electron
correlations in plasma also affects experiments, since models
of the plasma dynamic structure factor are used to diagnose
the plasma density and temperature from x-ray diagnostics
[20–22].

This work provides, to our knowledge, the first accu-
rate account of static correlations between the conduction
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electrons of dense plasmas. The main result is an expression
for the electron-electron static structure factor appropriate for
dense plasmas, which goes beyond the widely used random
phase and jellium approximations by accounting both for
direct correlations between the electrons as well as indirect
correlations by the surrounding ions. The focus here is mainly
on static electron-electron correlations; however, this already
should serve as a useful starting point for building theories
of dynamic correlations in dense plasma in the adiabatic
approximation or in a generalized dynamic linear response
formalism [11,12]. Our results should also be useful in
formulating new approximations to the electron self-energy
via the inverse dielectric function, thereby facilitating the
application of Green’s function techniques such as GW to
study free-free excitations in dense plasma [23]. Similarly,
our results would be of use in constructing new exchange-
correlation functionals that accurately treat the free electrons
of dense plasmas within density functional theory [24], or
new adiabatic approximations to the exchange-correlation
kernel for time-dependent density functional theory [25,26].
Specifically, the electron-electron correlation functions pre-
dicted here contain the ionic correlations explicitly, which are
not directly accounted for in exchange-correlation functionals
based on jellium. Developments along these lines would also
have applications to predicting the influence of electron cor-
relations on photo-excitation processes involving conduction
electrons, e.g., free-free absorption [11,27–29]

The expression for the structure factor derived here dif-
fers from the result one would obtain classically by the
appearance of a term which accounts for quantum-mechanical
dynamic screening. The result follows from general linear
response considerations and naturally extends the quantum
Ornstein-Zernike theory of ion-ion and electron-ion cor-
relations [30–32]. When suitably paired with an average-
atom treatment of electronic structure, the quantum Ornstein-
Zernike relations are known to give a realistic description of
both the ionic and electronic structure of dense plasmas [32].
With mild approximations, our result for the electron-electron
structure factor is cast in a form that is amenable to practical
calculations with average-atom models. From this, we com-
pute the pair distribution functions of warm and hot dense
deuterium and aluminum and compare with available path
integral Monte Carlo results on fully ionized plasmas, finding
good agreement when the notion of “free” and “bound” elec-
trons in the average-atom model is well-defined, e.g., when
there are no long-lived resonance states. We also construct
an approximate electron-electron potential of mean force and
contrast it with the high-temperature limit where the plasma is
weakly coupled and the effective potential is described well by
exponential Debye-Hückel screening [33]. Mean-force poten-
tials are a promising means of modeling electron correlation
effects on the transport properties of dense plasmas within
the framework of binary-scattering kinetic theories [34–36].
In such a model, the electron-electron mean-force potential
would improve on Spitzer and Härm’s treatment of electron-
electron scattering at dense plasma conditions within the static
screening approximation. At lower temperatures, significant
deviations from exponential screening are observed and at-
tributed both to indirect correlations induced by the strongly
coupled ions as well as core-valence orthogonality.

II. THEORY

A. Quantum Ornstein-Zernike description of a two-component
plasma

We model a dense plasma as a two-component mixture of
classical point ions with mean number density n0

I and conduc-
tion electrons with mean number density n̄0

e . The plasma is
assumed neutral so that the mean degree of ionization is Z̄ =
n̄0

e/n0
I , which is density- and temperature-dependent and may

be fractional. In this work, the ionization and thus the electron
density are obtained from the average-atom two-component
plasma (AA-TCP) model [32]. The notation adopted for den-
sities and ionization is chosen to match Ref. [32].

The central equations governing the AA-TCP model are
the quantum Ornstein-Zernike (QOZ) equations. These ex-
press the static structure factors of the TCP, Sab(k), in terms of
the unknown direct correlation functions, Cab(k),

SII (k) = 1 + β−1χ0
e (k)Cee(k)

D(k)
, (1a)

SIe(k) = Z̄− 1
2 nscr

e (k)SII (k), (1b)

nscr
e (k) = −β−1χ0

e (k)CIe(k)

1 + β−1χ0
e (k)Cee(k)

, (1c)

D(k) = (
1 − n0

I CII
)(

1 − β−1χ0
e Cee

) − n0
I β

−1χ0
e |CIe|2, (1d)

where χ0
e (k) is the static density response function of non-

interacting electrons, which is equal to −n̄0
eβ in the classical

limit and is the Lindhard function at zero temperature. The
solution of the QOZ equations for SII (k) and SIe(k) requires
closure relations for the direct correlation functions CII , CIe,
and Cee. These closures complete the AA-TCP model. The
specific closures used in this work are described in the Ap-
pendix.

Observe that in the QOZ equations, Eq. (1), no expres-
sion is given for the electron-electron structure factor, See(k).
In the literature on the QOZ theory, one can find equa-
tions for the electron-electron zero-frequency susceptibility,
χee(k, ω = 0) [31,32,37]. However, such formulas are un-
suitable for describing the electron-electron static structure.
This is because electron-electron correlations must be treated
quantum-mechanically. In the quantum theory of correlation
functions, the static limit and the zero-frequency limits are
not equivalent, in marked contrast to the classical case [38]. A
consequence is that the calculation of See(k)—despite being
a static correlation function—still requires accounting for
the quantum-mechanical dynamic response of electrons. Sec-
tion II B will demonstrate this from completely general linear
response considerations. Then, with some mild assumptions,
an extended set of QOZ equations are derived which include
a relation for See(k) that is correct quantum-mechanically.

B. Linear response and extended QOZ relations

The dynamic density-density response functions for a mul-
tispecies plasma obey [38–40]

X = X 0 + X 0UX , (2)

where X is the matrix of response functions χab(k, ω), X 0

is the matrix of free-particle response functions χ0
a (k, ω)δab,
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and U is the matrix of polarization potentials Uab(k, ω) =
vab(k)[1 − Gab(k, ω)] expressed in terms of the Coulomb
interaction vab(k) = 4πZaZbe2/k2 and the dynamic local field
corrections Gab(k, ω). For a TCP, we can explicitly solve for
the response functions

χII (k, ω) = χ0
I (k, ω)

1 − χ0
e (k, ω)Uee(k, ω)

D(k, ω)
, (3a)

χIe(k, ω) = −χ0
I (k, ω)

χ0
e (k, ω)UIe(k)

D(k, ω)
, (3b)

χee(k, ω) = χ0
e (k, ω)

1 − χ0
I (k, ω)UII (k, ω)

D(k, ω)
, (3c)

D(k, ω) = det
{
δab − χ0

a (k, ω)Uab(k, ω)
}
. (3d)

Taking all species to be fermions [41], the free-particle
response functions are given by

χ0
a (k, ω) = −βnaIa(k, ω) (4)

with [42]

Ia(k, ω) = 3�3/2
a

4t

∫ ∞

0

ln
∣∣∣ (t2+2tu)2−(β h̄ω)2

(t2−2tu)2−(β h̄ω)2

∣∣∣
exp(u2 − βμa) + 1

u d u, (5)

where �a = kBT/EFa is the degeneracy parameter, EFa =
h̄2(3π2na)2/3/2ma is the Fermi energy, μa is the chemical
potential, t2 = h̄2k2β/2ma = �2

ak2, and �a is the thermal de
Broglie wavelength divided by 2π .

The dynamic response functions relate to the dynamic
static structure factors through the fluctuation-dissipation the-
orem [38–40]

Sab(k, ω) = − h̄

2π
coth(β h̄ω/2) Im χab(k, ω) (6)

from which the static structure factors are obtained as the
integral over frequencies

Sab(k) = 1√
nanb

∫ ∞

−∞
Sab(k, ω) dω. (7)

A convenient expression of this relationship is as a sum over
residues

Sab(k) = − kBT√
nanb

∞∑
l=−∞

χab(k, iωl ), (8)

where ωl = 2π lkBT/h̄ are the Matsubara frequencies [42]. As
will be shown below, this summation needs only to be carried
out for a jellium-like response function, so convergence may
be accelerated using the same technique employed by Tanaka
and Ichimaru; see Eqs. (27)–(31) of Ref. [42].

At dense plasma conditions, the electron de Broglie wave-
length can be of similar order as the relevant density fluc-
tuation wavelengths, while the ion de Broglie wavelength is
smaller by a factor

√
me/mI . This allows for considerable

simplifications and an important connection to the quantum
Ornstein-Zernike theory. Taking �I k � 1 and βμI � 0, the
ion free-particle susceptibility for imaginary frequencies is

χ0
I (k, iωl ) =

{−βn0
I + O(�2

I k2) l = 0

−βn0
I

�2
I k2

2π2l2 + O(�4
I k4l−4) l �= 0

. (9)

When this expansion is used in Eq. (3), one finds for l = 0

χII (k, 0) = −βn0
I

1 − χ0
e (k, 0)Uee(k, 0)

D(k, 0)
, (10a)

χIe(k, 0) = βn0
I χ

0
e (k, 0)

UIe(k, 0)

D(k, 0)
, (10b)

χee(k, 0) = χ0
e (k, 0)

1 + βn0
I UII (k, 0)

D(k, 0)
, (10c)

D(k, 0) = 1 + n0
I βUII (k, 0) − χ0

e (k, 0)Uee(k, 0)

− n0
I βχ0

e (k, 0)[UII (k, 0)Uee(k, 0)

− |UIe(k, 0)|2] (10d)

up to terms of order �2
I k2. The corresponding expansion for

l �= 0 produces

χII (k, iωl ) = −βn0
I

�2
I k2

2π2l2
, (11a)

χIe(k, iωl ) = βn0
I χe(k, iωl )UIe(k, iωl )

�2
I k2

2π2l2
, (11b)

χee(k, iωl ) = χe(k, iωl )

−βn0
I [χe(k, iωl )UIe(k, iωl )]

2 �2
I k2

2π2l2
(11c)

up to terms of order �4
I k4l−4. In Eq. (11) we have defined

χe(k, ω) = χ0
e (k, ω)

1 − χ0
e (k, ω)Uee(k, ω)

, (12)

which is similar in form to the response function of jellium
except that the polarization potential here should involve the
local field correction appropriate for a TCP.

A classical treatment of the ions corresponds to neglecting
terms of order �2

I k2 and above. Doing so, the evaluation of
Eq. (8) for SII (k) and SIe(k) requires only the zero-frequency
(l = 0) contribution to χII and χIe, whereas See(k) retains an
l �= 0 contribution from the jellium-like first term of Eq. (11c)

SII (k) = 1 − χ0
e (k, 0)Uee(k, 0)

D(k, 0)
, (13a)

SIe(k) = χ0
e (k, 0)UIe(k, 0)

Z̄
1
2 D(k, 0)

, (13b)

See(k) = − 1

βn̄0
e

∑
l �=0

χe(k, iωl )

−χ0
e (k, 0)

βn̄0
e

1 + βn0
I UII (k, 0)

D(k, 0)
. (13c)

In their static limit, the polarization potentials are synony-
mous with the OZ direct correlation functions [38,43]

Uab(k, 0) = −kBTCab(k), (14)

and it is easy to see that in fact Eqs. (13a) and (13b) are just
the QOZ relations, Eqs. (1). For the electron-electron structure
factor, a more physically illuminating formula can be written
by introducing the jellium-like static structure factor,

Se(k) = − 1

βn̄0
e

∞∑
l=−∞

χe(k, iωl ), (15)
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FIG. 1. Electron static structure factors for hydrogen at 50 eV
and 2.7 g/cc. The solid line is the full electron-electron structure
factor, and the dashed line is the jellium contribution [first term of
Eq. (16)].

in terms of which

See(k) = Se(k) + χe(k, 0)

βn̄0
e

− χ0
e (k, 0)

βn̄0
e

1 − n0
I CII (k)

D(k, 0)
. (16)

The first term in See(k) is just the jellium structure factor,
the second term removes the jellium zero-frequency response,
and the third adds back in the TCP zero-frequency response,
which accounts for correlations between the electrons induced
by their attraction to the ions. The ionic correction is sub-
stantial, as shown in Fig. 1, especially at long wavelengths.
Ion correlations lift the jellium-like Se(k) → 0 behavior to
a finite value as k → 0, which is necessary to satisfy the
charge-density sum rule [44]. This expression (16) for the
electron-electron static structure factor is the main result
of this paper, from which other useful quantities describing
electron-electron correlations can be derived.

A point of practical interest is that one can obtain accurate
predictions for the static structure factors without the need for
dynamic local field corrections, despite their apparent need in
Eq. (8). Of the three structure factors, only See(k) involves
dynamic local field corrections, and even then only in the
calculation of its jellium-like part, Se(k). Recent advances
in computing the dynamic structure factor of jellium [45]
suggest that at high electron densities (n̄0

e � 1021 cm−3), the
dynamic local field correction can be replaced by its static
(zero-frequency) with little error in the dynamic structure
factor and thus also the static structure factor, viz., Eq. (7).
Even though the present case concerns the electron-electron
dynamic local field corrections for a TCP (not jellium), we
take it as a reasonable approximation that a similar result
should hold here. The results shown in Sec. III all make use of
a static electron-electron local field correction. Approximate
dynamic response is still included through the free-particle
response functions, χ0

e (k, iωl ), in Eqs. (12) and (13c).
One way in which the theory could be refined concerns

self-consistency. Namely, the formulas derived in this section
assume the electron-electron direct correlation function Cee

is given. In the practical calculations shown in Sec. III, the
jellium approximation for Cee is used, but clearly the resulting

See will differ from that of jellium due to the second term
of Eq. (13c) which couples to the ions. One could imagine
constructing a self-consistent closure for Cee in which one
starts with the jellium approximation and refines according
to the resultant See. However, it is unclear how to produce an
independent closure for Cee in terms of See or if corrections
beyond the jellium approximation would make any practical
difference in the resulting static structure factors. Since Cee is
intimately connected electron-electron exchange-correlation
potential [37], this is an important question to resolve if the
present results are to be applied to the development of new
exchange-correlation or self-energy functionals.

C. Pair distribution function and mean-force potential

The TCP pair distribution functions are related to the static
structure factors by

gab(r) = 1 + 1√
nanb

∫
[Sab(k) − δab]eik·r d3k

8π3
. (17)

The pair distribution functions may be used to construct
potentials of mean force using Percus’s theorem [30,31,46].
The theorem states that if a particle of species a is inserted
into the plasma at the origin, then the resulting density profile
of species b is given by

nb(r|vab) = nbgab(r), (18)

where the notation emphasizes that nb(r) is a functional of
the “external” potential vab(r). The potential of mean force,
vmf

ab (r), is introduced by constructing an auxiliary system of
noninteracting particles. One then asks what external poten-
tial applied to the noninteracting system would induce the
same density profile in species b that is obtained when the
interacting system is acted on by the external potential vab(r).
This potential is the potential of mean force, and the above
statement is expressed mathematically as

n0
b

(
r|vmf

ab

) = nb(r|vab), (19)

where the superscript “0” denotes the density profile of the
noninteracting system.

An explicit formula for vmf
ab (r) follows from the identity

relating the chemical potential and intrinsic Helmholtz free
energy F of an inhomogeneous system exposed to an external
potential φb(r) [47]

δF

δnb(r)
+ φb(r) − μb = 0. (20)

This identity is applied separately to the interacting system
exposed to φb = vab and to the noninteracting system exposed
to φb = vmf

ab . Equating the two gives

vmf
ab (r) = vab(r) + δF ex

δnb(r)
− μex

b , (21)

where F ex and μex
b are the nonideal parts of intrinsic free

energy and chemical potential. The excess intrinsic free en-
ergy may be developed in a functional Taylor series about the
densities of the uniform system, n0

s = ns(r|vas)|vas=0, which,
after making the identifications

δF ex

δnb(r)

∣∣∣∣
vab=0

= μex
b , (22)
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δ2F ex

δnb(r)δns(r′)

∣∣∣∣vab = 0
vas = 0

= −β−1Cbs(r − r′), (23)

ns(r|vas) = n0
s gas(r) (24)

obtains for the mean-force potential [31]

vmf
ab = vab − β−1

∑
s=I,e

ns(gsb − 1) 
 Cas + β−1Bab, (25)

where the star denotes convolution and Bab(r) is the bridge
function containing third- and higher-order functional deriva-
tives of F ex. We treat the ion-ion bridge function using the
variational modified hypernetted chain approximation [48]
and neglect the electron-ion and electron-electron bridge func-
tions, for which good approximations are not known, but
should only be important when the conduction electrons are
very strongly correlated.

Calculations of vmf
II and vmf

Ie within the present TCP model
have already been applied to problems of diffusive transport
in dense plasmas [35,36,49]. Here we compute gee and vmf

ee
as well. However, before presenting results, we first address
an important conceptual point regarding the application of
Percus’s theorem to electron-electron correlations.

The application of Percus’s theorem to the calculation of
vmf

ee introduces a semiclassical approximation. This is because
the procedure of placing a test electron at rest at the origin
violates Heisenberg’s uncertainty principle, since the test
electron’s position and momentum would be simultaneously
known with perfect certainty [50]. This means that the po-
tential of mean force computed using Percus’s theorem repre-
sents a semiclassical calculation. Since r/�e is the expansion
parameter in semiclassical treatments of pair correlations in
quantum gases [51,52], the validity of Eq. (25) for vmf

ee is not
guaranteed at length scales smaller than �e. If the plasma
temperature is given in electron volts, this means that vmf

ee

should be accurate for r/aB � 5.2T − 1
2 , where aB is the Bohr

radius. As will be shown in Sec. III, the range of vmf
ee for solid

density plasmas is typically on the order of a few Bohr. For
hot dense plasmas with temperatures on the order of hundreds
of eV, the disrespect of the uncertainty principle should only
affect the potential at very short length scales where vmf

ee
differs little from the Coulomb potential.

III. RESULTS

A. Comparison with first-principles simulations

Electron-electron correlation physics in warm and hot
dense plasmas is difficult to assess by first-principles means.
In particular, while Kohn-Sham molecular dynamics (QMD)
simulation is a useful methodology for benchmarking theo-
retical models of ionic correlations, the physics of electron
correlation exists only in the choice of exchange-correlation
functional used to compute the electron density. QMD is thus
not a useful means of assessing the present model’s accuracy.
Path integral Monte Carlo (PIMC) methods, however, offer a
high-fidelity description of electron-electron correlations. A
challenge in connecting the present model with PIMC is that
PIMC studies in general treat a plasma as a system of nuclei
and electrons (both bound and free) whereas the AA-TCP
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g
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rs = 1.0, Θ = 0.125

rs = 1.0, Θ = 1.0

rs = 1.0, Θ = 8.0

RPIMC

FIG. 2. Static structure factors (upper) and pair distribution func-
tions (lower) of jellium. Lines are the jellium model used in AA-TCP.
Circles are restricted-PIMC results by Brown et al. [53]

model assigns some fraction of the electron density to the
nucleus to construct ions. To compare with PIMC results
for gee(r), we are thus limited to materials at high enough
temperatures and densities that there are no electrons bound
to the nucleus.

The simplest such “material” is the jellium model. It is
important even in the present context, since the jellium struc-
ture factor appears a term in the electron-electron structure
factor, as derived in Eq. (16). Figure 2 affirms that the jellium
contribution to electronic correlations is accurately treated
in the AA-TCP model, as compared with restricted-PIMC
simulations by Brown et al. [53]. Comparisons are shown for
electron densities corresponding to rs = 1, where rs = ae/aB

and ae = (4π n̄0
e/3)−

1
3 , which is typical of near-solid density

plasmas.
Turning now to real matter, Fig. 3 compares the pair distri-

bution functions of the AA-TCP model with those computed
from PIMC by Militzer for warm dense deuterium [54]. Due
to computational constraints on the number of particles at the
time, the PIMC pair distribution functions do not asymptote
to unity at large separation, instead taking values up to a
few percent above or below unity. To best connect with
the AA-TCP model, which occurs in the thermodynamic
limit, the PIMC pair distribution functions have been rescaled
gab(r) → gab(r)/gab(rmax), where rmax is the largest tabulated
separation. Furthermore, since the PIMC electrons have spin,
the overall electron-electron pair distribution has been con-
structed as the mean of the two spin orientations [55].
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FIG. 3. Upper: pair distribution functions of warm dense deuterium. Black solid, blue dash-dotted, and red dashed lines are the TCP model
gII (r), gIe(r), and gee(r) respectively. Circles are PIMC results by Militzer [54]. Lower: average-atom electronic density of states. Solid lines
are the DOS of the average-atom model. Dashed lines are the free-electron DOS assumed in constructing the TCP.

The conditions of Fig. 3 represent a stringent test of the
AA-TCP model because at the temperature shown, 10.8 eV,
the electronic structure of deuterium is sensitive to the den-
sity. It is observed that the AA-TCP model systematically
underestimates the depth of the electron-electron correlation
hole, and that the disagreement is greater at lower density.
The tendency for the AA-TCP model to underestimate the
degree of electron-electron correlation can be qualitatively
understood by inspecting the electronic density of states
(DOS) of the average-atom model. This DOS is obtained in an
ion-sphere average-atom calculation as an intermediate step
to constructing the TCP (see the Appendix and Ref. [32] for
the distinction between the two). In contrast, the conduction
electrons of the TCP should be thought of as being nearly free
with an ideal (∝ √

E ) DOS.
The ion-sphere average-atom DOS exhibits a resonance-

like feature in the low-energy part of the continuum, corre-
sponding to electrons which are not bound to the nucleus
but still strongly interact with it. This feature in the DOS
is sharpest at the lower densities shown, coinciding with the
conditions where AA-TCP model is in greatest disagreement
with PIMC. With increasing density, the nonfree feature in
the DOS broadens and shifts further out into the continuum,
the electrons are less strongly correlated, and the AA-TCP
model is in good agreement with PIMC. The exclusion prin-
ciple offers a simple, if loose, explanation: at higher density
(smaller ion-sphere), the continuum electrons’ spatial distri-
bution compresses, so their energy (momentum) distribution
must broaden.

The onset of strong electron correlation features in the the
DOS is symptomatic of the breakdown of the TCP concept,
rather than our theory for the electron-electron correlations
specifically. This is because the presence of barely free elec-
trons makes it difficult to unambiguously define an “ion”
as a distinct entity. Indeed, the appearance of these long-
lived resonance-like states renders all three AA-TCP pair
distribution functions inaccurate compared with PIMC, not

just gee(r). The Appendix gives a more quantitative discussion
of this breakdown in terms of the accuracy of the AA-TCP
electron-ion closure.

Available PIMC results also allow for verification of the
high-temperature limiting behavior of gee(r) in higher-Z ma-
terials. Figure 4 compares the electron-electron pair distribu-
tion functions of solid-density aluminum (2.7 g/cm3) with the
PIMC results obtained by Driver et al. [56]. At the temper-

FIG. 4. Electron-electron pair distribution functions of solid-
density aluminum. Circles are spin-averaged PIMC results by Driver
et al. [56]. Solid lines are the AA-TCP model. Squares are the jellium
part of the AA-TCP model. Dash-dotted lines are for an ideal and
nearly classical Fermi gas. Each set of data is offset vertically in
increments of one half.
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atures shown, both the PIMC simulations and the AA-TCP
model predict aluminum is fully ionized, so direct compar-
isons between the two methods are possible. All departures
from the classical ideal gee(r) = 1 behavior are confined to
distances less than about one Bohr, which is much smaller
than the relevant interaction range, the Debye length. The
AA-TCP model and PIMC results are in good agreement
with the jellium treatment, in which the ionic correlations are
absent. The electron subsystem of the TCP is thus effectively
decoupled from the ions. Additionally, neither the PIMC
results nor the TCP model differ much from the analytic form
for a nearly classical ideal Fermi gas, for which

g0
e(r) ≈ 1 − 1

2
exp

(
−1

2

r2

�2
e

)
(26)

and all departures from the classical gee = 1 behavior are due
to exchange [57]. The PIMC results do exhibit some slight
fluctuation in regions where the theoretical models predict
gee to be unity. These result from a not-quite-exact cancel-
lation of the parallel- and antiparallel-spin channels, which
are resolved in PIMC but absent from the TCP treatment. It
is unclear whether this is a physical effect or a consequence
of simple statistical variability intrinsic to the PIMC method.
Even if these spin-dependent fluctuations are physical, in this
high-temperature limit they are confined to relatively short
length scales (Bohr versus Debye lengths) and are unlikely
to make any difference in practical applications.

B. Potentials of mean force

Figure 5 shows the electron-electron potentials of mean
force for solid-density aluminum. The asymptotic e2/r depen-
dence as r → 0 is divided out to emphasize the screening part
of the potential. The AA-TCP model is compared with two
simplified treatments. The first is to treat the electron-electron
correlations in the random phase approximation (RPA), corre-
sponding to approximating the polarization potential by the
bare Coulomb interaction, Gee(k, ω) ≈ 0. The second limit
shown is that of high temperatures, where the potential of
mean force reduces to a simple screened interaction [47,58]:

vmf
ee (r) → e2

r
exp(−κr). (27)

Here the inverse screening length is given by κ =√
κ2

I + κ2
e , with κs = √

4π Z̄2
s e2βn0

s being the Debye wave
number of either species. This limit is reached when all
correlations are treated in the RPA and the dynamic electron
screening is treated classically, i.e., the first term of Eq. (13c)
is dropped.

At 1000 eV the aluminum is nearly fully stripped (Z̄ =
12.6) and essentially classical (�e = 32.9). Simple expo-
nential screening is a very good approximation to the full
AA-TCP model at these conditions. At 100 eV (Z̄ = 7.87,
�e = 4.5), the temperature is high enough that the RPA offers
a good description of the electron-electron correlations but
the screening is distinctly nonexponential due to indirect
correlations with the ions, which are strongly coupled due
to their relatively high charge. At 10 eV (Z̄ = 3.02, �e =
0.853), these indirect correlations dominate the screening at

FIG. 5. Screening part of the electron-electron potential of mean
force for solid-density aluminum at temperatures from 10 to 1000 eV.
Solid lines are the AA-TCP model. Dash-dotted lines are the AA-
TCP model with Uee treated in the RPA. Dashed lines are the high-
temperature limit, given in Eq. (27). Each pair of curves is offset
vertically.

distances less than the interionic spacing aI = 2.99aB. This
occurs because in the average-atom calculation underlying the
TCP construction, the continuum electrons are correlated to
the ions’ bound electrons by the condition that all orbitals
be mutually orthogonal. The RPA manages to qualitatively
capture this effect since the electron-ion correlations are still
being treated fully, but it is quantitatively deficient compared
with the full AA-TCP treatment. At 10 eV, it is also clear that
exponential screening is a completely unsuitable description
of the electron-electron mean-force potential. The apparent
attractive feature in vmf

ee (r) near r ≈ 3.5aB is an ionic structure
effect, whereby the accumulation of ions at this distance
induces electron correlations.

IV. CONCLUSIONS

We have derived a formula for the electron-electron static
structure factor that is suitable for plasmas of classical ions
and quantum-mechanical electrons. The formula naturally
completes the quantum Ornstein-Zernike relations which pro-
vide a unified description of ionic and electronic structure
but which could not have been used to treat electron-electron
correlations until now. In the present work, we have focused
on plasmas with a single ion species for definiteness, but the
final analytic formula for the electron-electron structure factor
extends in a straightforward (if algebraically cumbersome)
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way to the case of multiple ion species. Evaluating the theory
for mixtures using average-atom models should give accurate
results at similar conditions as for pure plasmas, provided
that molecular bonds do not form [59]. With the static ap-
proximation for the electron-electron local field corrections,
the electron-electron structure factor may easily be computed
from an average atom model. Comparison with path integral
Monte Carlo results demonstrated that the resulting electron-
electron pair distribution functions are accurate provided that
the conduction electrons are not too strongly correlated with
one another, e.g., due to the appearance of resonances. How-
ever, such conditions represent a breakdown of the underlying
concept of distinct ions and conduction electrons rather than
the theory itself.

Improved knowledge of static pair correlations between
the conduction electrons in dense plasma should stimulate
interest in translating modern theories of electron correlation
in solids to the plasma state, which is more commonly treated
as a mixture of ions and free electrons rather than nuclei and
electrons. In particular, it seems natural to use our results
develop new approximations in the vein of either Green’s
function frameworks such as GW or adiabatic time-dependent
density functional theory.

We have also constructed electron-electron potentials of
mean force which represent an effective electron-electron in-
teraction potential. Comparison with the Debye-Hückel limit
showed that the electron-electron screening can be signifi-
cantly affected both by the indirect influence of strongly cou-
pled ions as well as due to correlations induced by the orthog-
onality of the conduction electron states to the bound elec-
trons. These departures from weak-coupling behavior could
significantly affect the effective binary scattering physics of
the electrons and could influence the electron-electron scat-
tering contributions to electrical and thermal conductivities
of dense plasmas. Such effects could be investigated, for
example, within a mean-force Boltzmann approach [34,60]
or a dynamic-screening generalized linear response approach
[11,12].
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APPENDIX: CLOSURES FOR THE AA-TCP MODEL

This Appendix summarizes the closures used to evaluate
the AA-TCP model in this work. The formulation and closure
of the AA-TCP model is discussed at length in Ref. [32].

The formally exact ion-ion closure is known from the
theory of classical fluids [47]

ln gII (r) = −β
Z̄2

r
+ gII (r) − 1 − CII (r) + BII (r), (A1)

where gII (r) = 1 + (8π3n0
I )−1

∫
[SII (k) − 1]eik·r d3k is the

ion-ion pair distribution function, and BII (r) is the bridge

FIG. 6. Perturbation in the electron density due to the ion for
deuterium at 10.8 eV and the same densities shown in Fig. 3. The
dotted line at unity indicates where the perturbed density is equal to
the reference uniform density.

function. The bridge function here is computed in the varia-
tional modified hypernetted chain approximation [48].

For the ion-electron closure, we obtain CIe by identifying
the screening density nscr

e in Eq. (1c) with that from a sequence
of two electronic structure calculations. The first obtains
ne(r), the density of electrons about a nucleus assuming a
homogeneous plasma of identical surrounding ions. A fraction
of the electron density is assigned to the nucleus, which
defines an “ion” through the density nion

e . The second electron
structure calculation obtains next

e (r), which is solved for in the
same way as ne(r), except that the central nucleus is omitted;
it is the density of electrons around the nucleus which is
due to the other ions. The screening density is then formed
as nscr

e = ne − next
e − nion

e , which is the density of electrons
responsible for screening an individual ion. The screening
density also determines the mean ionization Z̄ = ∫

nscr
e (r) d3r

and thus also the mean conduction electron density, n̄0
e =

Z̄n0
I . All the electronic structure calculations performed for

this work used Kohn-Sham-Mermin density functional theory
with the KSDT finite-T exchange-correlation functional [61].

For the electron-electron closure, we set Cee to be the direct
correlation function of jellium with the same number density
and temperature as the conduction electrons of the TCP. The
direct correlation function of jellium (or equivalently its local
field corrections) have been parameterized by many authors.
Our implementation uses one by Chabrier, which includes
temperature dependence [62]. One could also interpolate the
tabulated results of PIMC simulations [63]. The electron-ion
closure warrants a few additional comments, since it is closely
connected with the viability of constructing a two-component
plasma model from the average-atom calculation. The closure
can be expected to be accurate wherever the density profile
of free electrons around an ion, n̄0

egIe(r), is small compared
to the mean electron density, n̄0

e . If this is not the case,
the concept of a plasma of ions and nearly free electrons
breaks down. The smallness of the perturbed electron density
�ne(r) = n0

e[gIe(r) − 1] also serves as a rough indicator for
the convergence of the functional Taylor series expansion
of the free energy underlying the variational formulation of
the AA-TCP model, see Eq. (28) of Ref. [32]. In Fig. 6
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TABLE I. Electron-ion closure figures of merit for deuterium at
10.8 eV.

ρ [g/cc] 1.0 1.6 2.8 5.4

r∗ [aB] 0.761 0.663 0.464 0.293
f 0.335 0.277 0.198 0.110

we plot the relative density perturbation for deuterium at
the same conditions shown in Fig. 3. At all conditions, the
electron density perturbation is large near the nucleus, but this
represents only a small amount of the total electron density.
The relevant figure of merit is to see how far, r∗, one must

venture from the nucleus before the perturbation drops below
unity. The fraction of perturbed electrons within this range
gives a good indication for the accuracy of the closure. For
the conditions plotted, these values are tabulated in Table I,
computed as

f =
∫ r∗

0 r2�ne(r) dr∫ ∞
0 r2�ne(r) dr

. (A2)

At high densities, where the AA-TCP model is in fair agree-
ment with PIMC, only about 11% of the perturbed electron
density lies within r∗. At lower densities, where the AA-TCP
model is in poor agreement with PIMC, about one third of the
perturbed electrons are strongly perturbed.
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Clérouin, G. W. Collins, L. A. Collins, J.-F. Danel, N. Desbiens,
M. W. C. Dharma-wardana, Y. H. Ding, A. Fernandez-Pañella,
M. Gregor, P. Grabowski, S. Hamel, S. Hansen, L. Harbour,
X. He, D. Johnson, W. Kang, V. Karasiev, L. Kazandjian,
M. Knudson, T. Ogitsu, C. Pierleoni, R. Piron, R. Redmer,
G. Robert, D. Saumon, A. Shamp, T. Sjostrom, A. Smirnov,
C. Starrett, P. Sterne, A. Wardlow, H. Whitley, B. Wilson, P.
Zhang, and E. Zurek, High Energy Density Phys. 28, 7 (2018).

[5] M. Zaghoo, T. R. Boehly, J. R. Rygg, P. M. Celliers, S. X. Hu,
and G. W. Collins, Phys. Rev. Lett. 122, 085001 (2019).

[6] J. F. Benage, Phys. Plasmas 7, 2040 (2000).
[7] J. Clérouin, P. Noiret, P. Blottiau, V. Recoules, B. Siberchicot,

P. Renaudin, C. Blancard, G. Faussurier, B. Holst, and C. E.
Starrett, Phys. Plasmas 19, 082702 (2012).

[8] T. Nagayama, J. E. Bailey, G. P. Loisel, G. S. Dunham, G. A.
Rochau, C. Blancard, J. Colgan, P. Cossé, G. Faussurier, C. J.
Fontes, F. Gilleron, S. B. Hansen, C. A. Iglesias, I. E. Golovkin,
D. P. Kilcrease, J. J. MacFarlane, R. C. Mancini, R. M. More,
C. Orban, J.-C. Pain, M. E. Sherrill, and B. G. Wilson, Phys.
Rev. Lett. 122, 235001 (2019).

[9] G. Fontaine, P. Brassard, and P. Bergeron, Pub. Astron. Soc.
Pac. 113, 409 (2001).

[10] E. E. Salpeter and H. M. V. Horn, Astrophys. J. 155, 183
(1969).

[11] H. Reinholz and G. Röpke, Phys. Rev. E 85, 036401 (2012).
[12] H. Reinholz, G. Röpke, S. Rosmej, and R. Redmer, Phys. Rev.

E 91, 043105 (2015).
[13] M. P. Desjarlais, C. R. Scullard, L. X. Benedict, H. D. Whitley,

and R. Redmer, Phys. Rev. E 95, 033203 (2017).
[14] J. Dufty, J. Wrighton, K. Luo, and S. B. Trickey, Contrib.

Plasma Phys. 58, 150 (2018).
[15] S. X. Hu, L. A. Collins, T. R. Boehly, J. D. Kress, V. N.

Goncharov, and S. Skupsky, Phys. Rev. E 89, 043105 (2014).
[16] F. Lambert, V. Recoules, A. Decoster, J. Clérouin, and M.

Desjarlais, Phys. Plasmas 18, 056306 (2011).
[17] B. Holst, M. French, and R. Redmer, Phys. Rev. B 83, 235120

(2011).

[18] S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress, R. L.
McCrory, and S. Skupsky, Phys. Plasmas 23, 042704 (2016).

[19] H. Reinholz, R. Redmer, G. Röpke, and A. Wierling, Phys. Rev.
E 62, 5648 (2000).

[20] S. H. Glenzer and R. Redmer, Rev. Mod. Phys. 81, 1625 (2009).
[21] B. J. B. Crowley and G. Gregori, High Energy Density Phys.

13, 55 (2014).
[22] A. D. Baczewski, L. Shulenburger, M. P. Desjarlais, S. B.

Hansen, and R. J. Magyar, Phys. Rev. Lett. 116, 115004 (2016).
[23] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237

(1998).
[24] R. M. Martin, Electronic Structure (Cambridge University

Press, New York, 2004).
[25] M. A. L. Marques, N. T. Maitra, F. M. S. Nogueria, E. K. U.

Gross, and A. Rubio (Eds.), Fundamentals of Time-Dependent
Density Functional Theory, Lecture Notes in Physics (Springer-
Verlag, 2012), Vol. 837.

[26] J. Dufty, K. Luo, and S. B. Trickey, Phys. Rev. E 98, 033203
(2018).

[27] S. X. Hu, L. A. Collins, V. N. Goncharov, T. R. Boehly, R.
Epstein, R. L. McCrory, and S. Skupsky, Phys. Rev. E 90,
033111 (2014).

[28] N. R. Shaffer, N. G. Ferris, J. Colgan, D. P. Kilcrease, and C. E.
Starrett, High Energy Density Phys. 23, 31 (2017).

[29] P. Hollebon, O. Ciricosta, M. P. Desjarlais, C. Cacho, C.
Spindloe, E. Springate, I. C. E. Turcu, J. S. Wark, and S. M.
Vinko, Phys. Rev. E 100, 043207 (2019).

[30] J. Chihara, Prog. Theor. Phys. 50, 409 (1973).
[31] J. A. Anta and A. A. Louis, Phys. Rev. B 61, 11400 (2000).
[32] C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013).
[33] P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).
[34] S. D. Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001

(2013).
[35] J. Daligault, S. D. Baalrud, C. E. Starrett, D. Saumon, and

T. Sjostrom, Phys. Rev. Lett. 116, 075002 (2016).
[36] C. E. Starrett, High Energy Density Phys. 25, 8 (2017).
[37] J. Chihara, J. Phys. C: Solid State Phys. 17, 1633 (1984).
[38] S. Ichimaru, Statistical Plasma Physics Volume I: Basic Princi-

ples (Addison-Wesley, Redwood City, 1992).
[39] W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum

Statistics of Charged Particle Systems (Plenum Press, London,
1986).

[40] H. Reinholz, Ann. Phys. Fr. 30, 1 (2005).

013208-9

https://doi.org/10.1080/14786436108243361
https://doi.org/10.1080/14786436108243361
https://doi.org/10.1080/14786436108243361
https://doi.org/10.1080/14786436108243361
https://doi.org/10.1103/PhysRev.89.977
https://doi.org/10.1103/PhysRev.89.977
https://doi.org/10.1103/PhysRev.89.977
https://doi.org/10.1103/PhysRev.89.977
https://doi.org/10.1103/PhysRevLett.104.235003
https://doi.org/10.1103/PhysRevLett.104.235003
https://doi.org/10.1103/PhysRevLett.104.235003
https://doi.org/10.1103/PhysRevLett.104.235003
https://doi.org/10.1016/j.hedp.2018.08.001
https://doi.org/10.1016/j.hedp.2018.08.001
https://doi.org/10.1016/j.hedp.2018.08.001
https://doi.org/10.1016/j.hedp.2018.08.001
https://doi.org/10.1103/PhysRevLett.122.085001
https://doi.org/10.1103/PhysRevLett.122.085001
https://doi.org/10.1103/PhysRevLett.122.085001
https://doi.org/10.1103/PhysRevLett.122.085001
https://doi.org/10.1063/1.874025
https://doi.org/10.1063/1.874025
https://doi.org/10.1063/1.874025
https://doi.org/10.1063/1.874025
https://doi.org/10.1063/1.4742317
https://doi.org/10.1063/1.4742317
https://doi.org/10.1063/1.4742317
https://doi.org/10.1063/1.4742317
https://doi.org/10.1103/PhysRevLett.122.235001
https://doi.org/10.1103/PhysRevLett.122.235001
https://doi.org/10.1103/PhysRevLett.122.235001
https://doi.org/10.1103/PhysRevLett.122.235001
https://doi.org/10.1086/319535
https://doi.org/10.1086/319535
https://doi.org/10.1086/319535
https://doi.org/10.1086/319535
https://doi.org/10.1086/149858
https://doi.org/10.1086/149858
https://doi.org/10.1086/149858
https://doi.org/10.1086/149858
https://doi.org/10.1103/PhysRevE.85.036401
https://doi.org/10.1103/PhysRevE.85.036401
https://doi.org/10.1103/PhysRevE.85.036401
https://doi.org/10.1103/PhysRevE.85.036401
https://doi.org/10.1103/PhysRevE.91.043105
https://doi.org/10.1103/PhysRevE.91.043105
https://doi.org/10.1103/PhysRevE.91.043105
https://doi.org/10.1103/PhysRevE.91.043105
https://doi.org/10.1103/PhysRevE.95.033203
https://doi.org/10.1103/PhysRevE.95.033203
https://doi.org/10.1103/PhysRevE.95.033203
https://doi.org/10.1103/PhysRevE.95.033203
https://doi.org/10.1002/ctpp.201700102
https://doi.org/10.1002/ctpp.201700102
https://doi.org/10.1002/ctpp.201700102
https://doi.org/10.1002/ctpp.201700102
https://doi.org/10.1103/PhysRevE.89.043105
https://doi.org/10.1103/PhysRevE.89.043105
https://doi.org/10.1103/PhysRevE.89.043105
https://doi.org/10.1103/PhysRevE.89.043105
https://doi.org/10.1063/1.3574902
https://doi.org/10.1063/1.3574902
https://doi.org/10.1063/1.3574902
https://doi.org/10.1063/1.3574902
https://doi.org/10.1103/PhysRevB.83.235120
https://doi.org/10.1103/PhysRevB.83.235120
https://doi.org/10.1103/PhysRevB.83.235120
https://doi.org/10.1103/PhysRevB.83.235120
https://doi.org/10.1063/1.4945753
https://doi.org/10.1063/1.4945753
https://doi.org/10.1063/1.4945753
https://doi.org/10.1063/1.4945753
https://doi.org/10.1103/PhysRevE.62.5648
https://doi.org/10.1103/PhysRevE.62.5648
https://doi.org/10.1103/PhysRevE.62.5648
https://doi.org/10.1103/PhysRevE.62.5648
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1016/j.hedp.2014.08.002
https://doi.org/10.1016/j.hedp.2014.08.002
https://doi.org/10.1016/j.hedp.2014.08.002
https://doi.org/10.1016/j.hedp.2014.08.002
https://doi.org/10.1103/PhysRevLett.116.115004
https://doi.org/10.1103/PhysRevLett.116.115004
https://doi.org/10.1103/PhysRevLett.116.115004
https://doi.org/10.1103/PhysRevLett.116.115004
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1103/PhysRevE.98.033203
https://doi.org/10.1103/PhysRevE.98.033203
https://doi.org/10.1103/PhysRevE.98.033203
https://doi.org/10.1103/PhysRevE.98.033203
https://doi.org/10.1103/PhysRevE.90.033111
https://doi.org/10.1103/PhysRevE.90.033111
https://doi.org/10.1103/PhysRevE.90.033111
https://doi.org/10.1103/PhysRevE.90.033111
https://doi.org/10.1016/j.hedp.2017.02.008
https://doi.org/10.1016/j.hedp.2017.02.008
https://doi.org/10.1016/j.hedp.2017.02.008
https://doi.org/10.1016/j.hedp.2017.02.008
https://doi.org/10.1103/PhysRevE.100.043207
https://doi.org/10.1103/PhysRevE.100.043207
https://doi.org/10.1103/PhysRevE.100.043207
https://doi.org/10.1103/PhysRevE.100.043207
https://doi.org/10.1143/PTP.50.409
https://doi.org/10.1143/PTP.50.409
https://doi.org/10.1143/PTP.50.409
https://doi.org/10.1143/PTP.50.409
https://doi.org/10.1103/PhysRevB.61.11400
https://doi.org/10.1103/PhysRevB.61.11400
https://doi.org/10.1103/PhysRevB.61.11400
https://doi.org/10.1103/PhysRevB.61.11400
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevLett.110.235001
https://doi.org/10.1103/PhysRevLett.110.235001
https://doi.org/10.1103/PhysRevLett.110.235001
https://doi.org/10.1103/PhysRevLett.110.235001
https://doi.org/10.1103/PhysRevLett.116.075002
https://doi.org/10.1103/PhysRevLett.116.075002
https://doi.org/10.1103/PhysRevLett.116.075002
https://doi.org/10.1103/PhysRevLett.116.075002
https://doi.org/10.1016/j.hedp.2017.09.003
https://doi.org/10.1016/j.hedp.2017.09.003
https://doi.org/10.1016/j.hedp.2017.09.003
https://doi.org/10.1016/j.hedp.2017.09.003
https://doi.org/10.1088/0022-3719/17/10/005
https://doi.org/10.1088/0022-3719/17/10/005
https://doi.org/10.1088/0022-3719/17/10/005
https://doi.org/10.1088/0022-3719/17/10/005
https://doi.org/10.1051/anphys:2006004
https://doi.org/10.1051/anphys:2006004
https://doi.org/10.1051/anphys:2006004
https://doi.org/10.1051/anphys:2006004


SHAFFER AND STARRETT PHYSICAL REVIEW E 101, 013208 (2020)

[41] In the analysis of Sec. II B, we treat all species as fermions. This
is not necessarily true of the ions, but the distinction does not
matter once the classical limit is taken. The same final results
would be obtained assuming the ions were bosons.

[42] S. Tanaka and S. Ichimaru, J. Phys. Soc. Jpn. 55, 2278
(1986).

[43] J. Daligault and G. Dimonte, Phys. Rev. E 79, 056403 (2009).
[44] P. A. Martin, Rev. Mod. Phys. 60, 1075 (1988).
[45] T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, Phys. Rev.

Lett. 121, 255001 (2018).
[46] J. K. Percus, Phys. Rev. Lett. 8, 462 (1962).
[47] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids,

4th ed. (Academic Press, London, 2013).
[48] Y. Rosenfeld, J. Stat. Phys. 42, 437 (1986).
[49] C. E. Starrett, Phys. Plasmas 25, 092707 (2018).
[50] A. A. Louis, H. Xu, and J. A. Anta, J. Non-Cryst. Solids 312–

314, 60 (2002).
[51] G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79

(1932).
[52] J. G. Kirkwood, Phys. Rev. 44, 31 (1933).
[53] E. W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceperley,

Phys. Rev. Lett. 110, 146405 (2013).

[54] B. Militzer, Ph.D. thesis, University of Illinois at Urbana-
Champaign (2000).

[55] In general, the parallel and antiparallel spin contributions to
gee(r) should be weighed not by 1

2 but by 1
2

N−2
N−1 and 1

2
N

N−1 ,
respectively (N being the number of electrons). In neglecting
this, we incur errors of order 1/N in forming the PIMC gee(r),
which is consistent with our treatment in processing the PIMC
data as if in the thermodynamic limit.

[56] K. P. Driver, F. Soubiran, and B. Militzer, Phys. Rev. E 97,
063207 (2018).

[57] M. Diesendorf and B. W. Ninham, J. Math. Phys. 9, 745 (1968).
[58] N. R. Shaffer, S. K. Tiwari, and S. D. Baalrud, Phys. Plasmas

24, 092703 (2017).
[59] C. E. Starrett, D. Saumon, J. Daligault, and S. Hamel, Phys.

Rev. E 90, 033110 (2014).
[60] S. D. Baalrud and J. Daligault, Phys. Plasmas 26, 082106

(2019).
[61] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, Phys.

Rev. Lett. 112, 076403 (2014).
[62] G. Chabrier, J. Phys. France 51, 1607 (1990).
[63] T. Dornheim, S. Groth, and M. Bonitz, Phys. Rep. 744, 1

(2018).

013208-10

https://doi.org/10.1143/JPSJ.55.2278
https://doi.org/10.1143/JPSJ.55.2278
https://doi.org/10.1143/JPSJ.55.2278
https://doi.org/10.1143/JPSJ.55.2278
https://doi.org/10.1103/PhysRevE.79.056403
https://doi.org/10.1103/PhysRevE.79.056403
https://doi.org/10.1103/PhysRevE.79.056403
https://doi.org/10.1103/PhysRevE.79.056403
https://doi.org/10.1103/RevModPhys.60.1075
https://doi.org/10.1103/RevModPhys.60.1075
https://doi.org/10.1103/RevModPhys.60.1075
https://doi.org/10.1103/RevModPhys.60.1075
https://doi.org/10.1103/PhysRevLett.121.255001
https://doi.org/10.1103/PhysRevLett.121.255001
https://doi.org/10.1103/PhysRevLett.121.255001
https://doi.org/10.1103/PhysRevLett.121.255001
https://doi.org/10.1103/PhysRevLett.8.462
https://doi.org/10.1103/PhysRevLett.8.462
https://doi.org/10.1103/PhysRevLett.8.462
https://doi.org/10.1103/PhysRevLett.8.462
https://doi.org/10.1007/BF01127720
https://doi.org/10.1007/BF01127720
https://doi.org/10.1007/BF01127720
https://doi.org/10.1007/BF01127720
https://doi.org/10.1063/1.5053124
https://doi.org/10.1063/1.5053124
https://doi.org/10.1063/1.5053124
https://doi.org/10.1063/1.5053124
https://doi.org/10.1016/S0022-3093(02)01650-2
https://doi.org/10.1016/S0022-3093(02)01650-2
https://doi.org/10.1016/S0022-3093(02)01650-2
https://doi.org/10.1016/S0022-3093(02)01650-2
https://doi.org/10.1103/PhysRev.41.79
https://doi.org/10.1103/PhysRev.41.79
https://doi.org/10.1103/PhysRev.41.79
https://doi.org/10.1103/PhysRev.41.79
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1103/PhysRevLett.110.146405
https://doi.org/10.1103/PhysRevE.97.063207
https://doi.org/10.1103/PhysRevE.97.063207
https://doi.org/10.1103/PhysRevE.97.063207
https://doi.org/10.1103/PhysRevE.97.063207
https://doi.org/10.1063/1.1664637
https://doi.org/10.1063/1.1664637
https://doi.org/10.1063/1.1664637
https://doi.org/10.1063/1.1664637
https://doi.org/10.1063/1.4999185
https://doi.org/10.1063/1.4999185
https://doi.org/10.1063/1.4999185
https://doi.org/10.1063/1.4999185
https://doi.org/10.1103/PhysRevE.90.033110
https://doi.org/10.1103/PhysRevE.90.033110
https://doi.org/10.1103/PhysRevE.90.033110
https://doi.org/10.1103/PhysRevE.90.033110
https://doi.org/10.1063/1.5095655
https://doi.org/10.1063/1.5095655
https://doi.org/10.1063/1.5095655
https://doi.org/10.1063/1.5095655
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1051/jphys:0199000510150160700
https://doi.org/10.1051/jphys:0199000510150160700
https://doi.org/10.1051/jphys:0199000510150160700
https://doi.org/10.1051/jphys:0199000510150160700
https://doi.org/10.1016/j.physrep.2018.04.001
https://doi.org/10.1016/j.physrep.2018.04.001
https://doi.org/10.1016/j.physrep.2018.04.001
https://doi.org/10.1016/j.physrep.2018.04.001

