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Sandpile modeling of pellet pacing in fusion plasmas
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Sandpile models have been used to provide simple phenomenological models without incorporating the
detailed features of a fully featured model. The Chapman sandpile model [Chapman et al., Phys. Rev. Lett.
86, 2814 (2001)] has been used as an analog for the behavior of a plasma edge, with mass loss events being used
as analogs for edge-localized modes (ELMs). In this work we modify the Chapman sandpile model by providing
for both increased and intermittent driving. We show that the behavior of the sandpile, when continuously fuelled
at very high driving, can be determined analytically by a simple algorithm. We observe that the size of the largest
avalanches is better reduced by increasing constant driving than by the intermittent introduction of “pellets” of
sand. Using the sandpile model as a reduced model of ELMing behavior, we conject that ELM control in a fusion
plasma may similarly prove more effective with increased total fuelling than with pellet addition.
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I. INTRODUCTION

Pellet injection has been extensively used as a candidate for
edge-localized mode (ELM) control and reduction in fusion
plasmas [1–10]. Pellet size, frequency, and location have
all been tested experimentally on ASDEX Upgrade [6,8,11],
DIII-D [2,4], Joint European Torus (JET) [5,8,12], and
Experimental Advanced Superconducting Tokamak (EAST)
[13,14], and ELM control using pellets is being considered
for use in ITER [5,15].

One way of addressing the impact of pellet injection on
both confinement and ELM behavior is to seek to identify
a physical system whose relaxation processes have charac-
teristics similar to those of the ELMing process under con-
sideration. Of particular interest is the sandpile [16], whose
relevance to fusion plasmas is well known [17,18].

Sandpile models generate avalanches, which may either
be internal or systemwide, in which case particles are lost
from the system. These avalanches are the response to steady
fuelling of a system which relaxes through coupled near-
neighbor transport events that occur whenever a critical gra-
dient is locally exceeded. The possibility that, in some cir-
cumstances, ELMing may resemble avalanching was raised
[19] in studies of the specific sandpile model of Ref. [20],
a schematic of which is given in Fig. 1. This simple one-
dimensional (1D) N-cell sandpile model [19,20] incorpo-
rates other established models [16,21] as limiting cases. It
is centrally fuelled at cell n = 1, and its distinctive feature
is the rule for local redistribution of sand near a cell (say
at n = k) at which the critical gradient Zc is exceeded. The
sandpile is conservatively flattened around the unstable cell
over a fast redistribution length scale L f , which spans the
cells n = k − (L f − 1), k − (L f − 2), . . . , k + 1, so that the
total amount of sand in the fluidization region before and
after the flattening is unchanged. Because the value at cell
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n = k + 1 prior to the redistribution is lower than the value of
the cells behind it, the redistribution results in the relocation
of sand from the fluidization region to the cell at n = k + 1.
If redistributions are sequentially triggered outward across
neighboring cells, leading to sand ultimately being output
at the edge of the sandpile, then an avalanche is said to
have occurred. The sandpile is then fuelled again, either after
the sandpile has iterated to stability so that sand ceases to
escape from the system (“classic model”) or immediately
after the first “sweep” through the system has been completed
(“running model”).

The length scale L f , normalized to the system scale N ,
is typically [17,19,22–24] treated as the model’s primary
control parameter L f /N , which governs different regimes of
avalanche statistics and system dynamics. The length scale is
constant across the sandpile in the classic and running models.
Table I summarizes the key features of the model, along with
the maximum and minimum values used for each variable in
this paper. As will be observed from Table I, we are primarily
concerned here with variation in driving.

Unlike some [17,19,22–24] but not all [25,26] implemen-
tations of the Chapman model, Zc is single valued rather
than being randomized. The phenomenology generated by
this model has several features resembling tokamak plasmas,
including edge pedestals, enhanced confinement [19], and
self-generated internal transport barriers [23]. Particularly
relevant here are the systemwide avalanches, or mass loss
events (MLEs), resulting (unlike the more numerous internal
avalanches which are not considered here) in mass loss from
the sandpile. In particular, we have focused on the max MLE
size, being the amount of mass lost in the largest avalanches.

In the “classic” sandpile model, the avalanche may prop-
agate through the sandpile multiple times until the system
ceases to output sand, prior to further fuelling of the sand-
pile. Effectively, fuelling is paused until the system is stable,
which reflects the instantaneous nature of an avalanche by
comparison to the slow addition of single grains of sand.
In the “running model” which was first explored by Bowie,
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FIG. 1. Sandpile schematic, showing the key features of the
sandpile model discussed in this paper. The schematic is the same for
both the classic and running models, which differ only in respect to
whether further sand is added only after an avalanche has concluded
(classic model) or during an avalanche (running model).

Dendy, and Hole [25], the sandpile is fuelled again as soon
as the first iteration of the avalanche is complete, while the
sandpile remains in a critical state. In the low fuelling regime,
little difference is observed between the classic and running
models: The sandpile may take ≈500 iterations to reach
stability, during which time enough sand has been added at
the first cell to cause the critical gradient to be exceeded
between the first and second cells a further one or two times.
Compared to the total amount of sand which may be lost in
the continuing avalanche (up to 3 × 105 units of sand), the
further sand added during the avalanche is of little relevance,
being less than 1% of the sand lost during the avalanche.
By comparison, if a high fuelling rate is employed, then the
extra sand added during the continuing avalanche becomes
significant and can significantly change the overall behavior
of the running model.

Typically, sandpile models are analyzed in the low driv-
ing regime, as low driving is considered to be necessary to
achieve a separation of timescales which is a condition of
self-organized criticality (SOC) [27]. High driving has also
been considered in relation to the Chapman model [24,27]
and been found to lead to the elimination of the smallest-scale
avalanches. Further, an analogy between the Reynolds number
and the relationship between driving and dissipation has been
identified and found to give a means of distinguishing between
turbulence and SOC [28,29]. In this study, we have focused
on the high driving regime and its relationship to the total
potential energy of the system, and to MLEs, rather than
focusing on the relationship between driving and SOC.

Here we make an assumption that the sandpile model is rel-
evant to analysis of the ELMing behavior of a fusion plasma.
While this assumption is supported at low driving rates by
the work of Chapman and Dendy [17,18], we here seek to

TABLE I. Key parameters

Parameter Meaning Range

Zc Critical gradient 100–120
Lf Fluidization length 5–6
dx Drive 1.2–4100
N Total number of cells 500

extend the analogy to high driving behavior in the sandpile.
Specifically, we seek to draw comparisons with pellet pacing
at the core of a fusion plasma by varying the amount of sand,
dx, added at each iteration or time step. We do this in two
separate ways: by setting a high constant dx in order to move
into the high fuelling regime and by varying dx intermittently
(i.e., adding pellets) to seek to trigger avalanches. By doing
this, we are able to compare systems where “pellets” are added
at each time step before the system has an opportunity to
fully relax (using high constant dx in the running model) and
systems in which the system can fully relax between “pellets”
using the classic model at low fuelling with the intermittent
addition of “pellets.” Using high constant dx gives a proxy to
pellet fuelling at the core if the pellet size is sufficient that it
continues to be ablated during the occurrence of an avalanche.

We also briefly comment on the behavior of the classic
model at high fuelling, although our focus is on the behavior
of the running model at high fuelling. Finally, we consider
the behavior of the running model at extremely high driving,
where the shape of the resultant sandpile is determined by a
simple algorithm.

We observe that there is no single relationship among
driving, waiting times, and potential energy that holds in all
regimes. Further, the nature of the relationship is different
for the classic model and the running model. We comment
here on the different relationships in different driving regimes
and offer insights on the reasons for those relationships and
postulate whether there are real world scenarios which may
be informed by those reasons.

II. INTERMITTENT EXTRA SAND: CORE FUELLING

We have taken the classic model and added extra sand
(pellets) in various combinations of intervals and pellet size
by way of comparison to pellet pacing in fusion plasmas. In
each case, pellets are added at the core, consistent with the
“ordinary” fuelling location.

We employ only the classic model for this purpose—as
discussed in Sec. III, low to medium increases in constant
driving do not affect Ep in the classic model, while they do
in the running model. Employing the running model would
add a confounding variable, namely the model-specific effect
of the increase in total driving, as opposed to the effect of the
addition of pellets, although we note that the model-specific
effect would be quite minor at the pellet sizes and times
discussed here, as total fuelling is increased only by about a
factor of two.

Lang [8] discussed pellets added at lower frequencies
(higher waiting time between pellets, �tP) with pellet timing
aligned to ELM onset. These pellets triggered ELMs. Lang
[8] observes that as pellets increase the plasma density, this in
turn increases the L-H threshold.

We have tested these observations against our model. We
observe that while potential energy (Ep, given here by the sum
of the squares of the cell values), used here as a proxy for
plasma pressure, increases with pellet size, maximum MLE
size (i.e., the number of grains of “sand” lost in the largest
avalanche) also increases and at a faster rate.

For this purpose, there is a close relationship between the
high driving regime discussed in Sec. III and the intermittent
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addition of extra sand. If the extra sand is absorbed into the
sandpile without triggering an MLE, then the addition of the
extra sand may serve simply to increase fuelling of the system.
On the other hand, if the intermittent addition of extra sand
triggers an MLE when the extra sand is added, then the system
may behave quite differently.

Three waiting times are considered here: the waiting time
between addition of pellets, �tP; the “natural” waiting time
between MLEs for a given amount of constant fuelling (in-
cluding pellet fuelling), �tN ; and the actual waiting time
observed (including pellet fuelling), �tA. For this purpose,
�tP and �tA are determined by identifying the primary peak in
the resulting probability distribution function (pdf) of waiting
times between MLEs in the particular scenario. These times
will be equal to each other if the pellets do nothing more
than add to total fuelling. They differ if pellet fuelling triggers
“shocks” to the system, triggering an immediate MLE before
the system would otherwise have reached a critical state if the
total fuelling had been constant.

For “macro” pellets, we show here results for two values
of �tP: 70 000 and 100 000. Short and long �tN are typically
[25] observed in the model: The “short” �tN for this model
with dx = 1.2 is ≈ 70 000, with a longer �tN at ≈ 140 000.
The values of �tP selected therefore represent different stages
in build-up prior to, or post, avalanching (recognizing that
the additional fuel added by way of “pellets” also increases
total fuelling).

We observe that the amount of sand lost during the largest
MLE is roughly equal to double the amount of material
added during the longest waiting time. As a result, if the
longest waiting time remains approximately constant while
the amount of material added per unit time increases (due
to the introduction of pellets), then the maximum MLE size
increases.

Figure 2 shows, for �tP = 70 000 and �tP = 100 000,
both potential energy and maximum MLE size increase, with
increasing pellet size. Maximum �tA is constant in each case,
although slightly longer for �tP = 100 000, which is consis-
tent with the fact that driving is higher due to the higher pellet
frequency where �tP = 70 000. In both cases, the general
trend is that max MLE size increases with increasing pellet
size at a faster rate than Ep. We note that a pellet size of 80 000
represents ≈2% of the total number of grains in the sandpile.

It is apparent that, at least in this model, adding pellets at
the core does not, in general, reduce MLE size. In order to
reach the threshold for triggering MLEs with the addition of
each pellet, pellets must be so large that the resulting MLE
is of a greater size than “natural” MLEs [as shown by the
increasing MLE size in Figs. 2(a) and 2(b)] and, further,
that pellets become a significant component of total fuelling.
For example, for a pellet size of 70 000, with �tP = 70 000,
average total fuelling increases from dx = 1.2 to dx = 2.2.
As a result, pellet fuelling at the core is not effective to reduce
MLE size in this model.

III. HIGH DRIVING: CONSTANT FUELLING

We now consider the impact of increasing constant fu-
elling, primarily in the running model. We have also briefly
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FIG. 2. Ep, max MLE, and max �tA for varying pellet sizes,
with �tP = 70 000 (top) and �tP = 100 000 (bottom). In all cases,
fuelling occurs at the core.

considered, in Sec. IV, increasing constant fuelling in the
classic model.

Before commenting on the high driving regimes, we first
comment on some relationships observed at low and medium
driving for the purposes of observing the changes in those
relationships as driving increases. For all examples, Zc = 120,
meaning that for dx = 1.2, dx/Zc = 0.01.

We first consider changes in the driving regime for the
classic and running models up to dx = 30. Figure 3 shows that
the classic and running models produce very similar results in
terms of Ep at low dx but vary significantly above dx ≈ 2. We
explore in subsequent sections the reasons why Ep changes
with dx at low-medium dx in the running model but not the
classic model.

10
11

E p
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Running

0 15 30

0.5

1

FIG. 3. Ep versus dx up to dx = 30, for classic and running
models. It is notable that Ep is effectively constant for all values of
dx shown here in the classic model, while Ep gradually increases in
the running model.
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FIG. 4. Potential energy/maximum potential energy vs. dx/Zc

(all unitless). The potential energy measured is the average potential
energy (given by the sum of the squares of the cells) after the
system has evolved from a nil sandpile to a “steady state,” which
typically takes several hundred thousand iterations. The maximum
Ep is calculated on the basis that actual gradient is equal to Zc, i.e.,
that the sandpile is in a maximally critical state. The three curves
which largely coincide represent data for different values of Zc but
common values of Lf . The other curve represents data for a changed
value of Lf .

Relationship between driving and potential energy:
Running model

We now turn to consider the behavior of the running model
at high constant driving. Unlike the classic model, significant
changes in behavior of the system are observed as driving
increases in the running model, until finally, at very high
driving, the amount of sand entering and leaving the system
at each iteration equalizes. While we comment in Sec. IV
below on the reasons for this behavior at very high driving,
our attention is primarily drawn to the behavior of the system
as driving increases up to that point.

We show, in Fig. 4, Ep/Epmax against dx/Zc for four
different sets of values of Zc and L f . A clear upward trend
is observable for dx/Zc up to about 0.3, with a subsequent
general decline, subject to significant detailed structure. In
Fig. 4, we focus on this region of detailed structure. It is
notable that fine structure, i.e., abrupt changes in behavior, is
seen around integer ratios of dx/Zc.

The primary peak is situated at approximately dx/Zc =
0.3, which is to say that the energy of the sandpile is maxi-
mized if the amount of sand added at each time step is about
1/3 of that sufficient to provoke an avalanche (assuming an
otherwise nil gradient at the top of the sandpile). In most
cases, the avalanche will not be systemwide but will terminate
before it reaches the edge; if all avalanches reached the edge,
then �tN would �Zc/dx. Ignoring fine structure, there is a
systematic decrease of max MLE with increasing dx over
the range 0 < dx < 60. Figure 4 demonstrates that the fine
structure relates to integer ratios of dx/Zc. Further, the shape
of this potential energy curve is unchanged with variations in
Zc, although it is not constant with changes in L f .

Figure 5 shows the dependency between driving (dx) and
maximum MLE size. Over the subinterval 0 < dx < 35 there
is a systematic increase of Ep with increasing dx, while
maximum MLE size falls in the same subinterval. For dx >

35, both Ep and maximum MLE size generally fall, while step
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FIG. 5. Ep (blue dotted line) and max MLE (red solid line) versus
dx for the running model. Max MLE size decreases with increasing
dx, while Ep peaks at about dx = 35 (i.e., dx/Zc = 0.3). Both Ep and
max MLE size show elements of fine structure, although changes in
Ep are more pronounced.

changes in maximum MLE size coincide with changes in Ep,
although the direction of correlation is not constant.

We have observed that the pdf of waiting times between
MLEs also overlaps for common values of dx/Zc, keeping L f

constant. Figure 6 shows combined waiting time pdfs in the
classic model for a fixed value of dx/Zc by incrementing both
dx (upward) and Zc (downward). Although 10 pdfs are shown,
they overlap to the extent that only one line is observed.
Figure 6 shows that, for this model, dx/Zc influences waiting
time behavior, while the specific values of dx and Zc are not
relevant. As a result, it is necessary only to vary either dx or
Zc and not both. Here we consider variations only of dx.

We also observe that while all significant changes appear
to correspond with integer ratios, not all integer ratios cor-
respond with significant changes. To the best of the authors’
knowledge, this integer ratio behavior at high driving is a new
result which has not previously been reported.

A qualitative explanation for this behavior may be sug-
gested as follows. As shown in Fig. 7, the amount of sand to
be distributed at each time step will increase as dx increases
but will decrease just at or after integer ratios of dx/Zc. In a
particular example, the point at which the amount of sand to
be distributed increases or decreases will also be dependent
on the local gradient of the sandpile at that time, i.e., it is
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dx 0.60
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dx 0.24
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FIG. 6. Combined pdfs of waiting times between MLEs (classic
model) dx/Zc = 0.01 for dx = 0.12 to 1.20 in increments of 0.12
and Zc = 12 to 120 in increments of 12. The pdfs overlap entirely,
suggesting that waiting times are identical for identical values of
dx/Zc, regardless of the specific values of dx or Zc.
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FIG. 7. Schematic sandpile at iteration prior to MLE for (a)
dx = 32, Zc = 30. Iteration n + 1 will trigger an avalanche, as one
iteration is enough for gradient to exceed Zc. Thirty-two grains to
be distributed. (b) dx = 29, Zc = 30. Iteration n + 2 will trigger
an avalanche, as two iterations required for gradient to exceed Zc.
Fifty-eight grains to be distributed.

the difference between the critical gradient and the gradient
at a particular location in the sandpile which is relevant. In
the example, the sandpile in Fig. 7(a) at iteration n + 1 will
experience an avalanche, as dx > Zc, whereas the sandpile in
Fig. 7(b) will undergo an avalanche at iteration n + 2. The
closer the actual gradient to the critical gradient following an
avalanche, the lesser the amount of sand which must be added
to trigger the following avalanche. The larger the amount of
sand to be redistributed in a particular avalanche, the less
likely it is that the sand will be assimilated within the sandpile
rather than causing a systemwide avalanche [27].

This heuristic explanation suggests that the behavior may
be observable in real-world scenarios involving large discrete
fuelling.

IV. LIMITS OF MODELS AT VERY HIGH DRIVING

We now explore the limits of the models at very high
driving in both the running and classic models. We observe
that in the running model, the algorithm becomes exactly
solvable at very high driving. We discuss below the solution
to the algorithm at very high driving, and the conditions under
which this solution is valid.

As shown in Fig. 8, further increases in driving in the
running model lead to an inflection point beyond which the
relationship between driving and system size is approximately
linear. This linear relationship continues indefinitely, regard-
less of the extent to which driving is increased.

Figure 9 shows that the linear relationship, for L f = 5,
occurs for values of dx/Z (where Z is the actual gradient)
slightly less than 15, and for L f = 6, for values slightly below
21. These relationships are explained below, and indeed, for
very high driving (which will be discussed further below),
the behavior and values of the sandpile at steady state are
completely predictable. The behavior is predicted precisely
for a given value of dx using a simple formula beginning at
the edge (right-hand side), and can also be largely explained
using a simple formula beginning at the core (left-hand side).

At very high driving, the system is completely stable, as the
amount of sand injected at each time step is exactly equal to
the amount of sand lost at each time step, and further, the value
of the each cell can be determined analytically and remains
stable at that analytic value.
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FIG. 8. Actual gradient (Z) of the resulting sandpile in steady
state, as a function of dx/Zc, for driving up to dx/Zc ≈ 4.1. Elements
of fine structure are observed up to dx/Zc ≈ 3.1 after which Z
increases linearly with dx/Zc. The actual gradient of the sandpile is
closely related to Ep, as the total size of the sandpile is determined
by its gradient. It is also related to Ep/Epmax. We have shown
actual gradient, rather than Ep/Epmax in order to show the straight
line relationship between dx/Zc and actual gradient for values of
dx/Zc > 3.1.

The system will be in a stable state if the last L f cells at the
edge (right-hand side) are equal in value to each other and to
dx. If this occurs, then each of those cells will also be equal
in value to the amount of sand lost at each time step, as the
fluidization formula will equally distribute sand across the last
L f cells plus the following cell, which is the cell at which the
sand is lost. Stability will be achieved because the amount of
sand entering the system at each time step equals the amount
of sand leaving the system at each time step. The sandpile is
exactly solvable in this state as xn, the amount of sand in cell
n, is in each case able to be determined using the values of
cells xn+1 to xn+L f +1. This is because at each cell the avalanche
evolves by distributing sand across L f + 1 cells, meaning that
at each following step 1/L f of the difference between the cells
has been left behind. Each of these 1/L f is totalled to give the
difference between cells. As a result, the value of each cell
(xn), where n < (N − L f ), is given by:

xn = xn+1 + xn+1 − xn+L f +1

L f
. (1)

For n � (N − L f ), xn = dx as the last L f cells will all be equal
to each other and to dx.

We can also determine the ratio between the actual gradi-
ent, Z , and dx by first considering the core (left-hand side)
of the sandpile. If there is a value of dx for which the system
enters a steady state (i.e., the number of particles added equals

d
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Z
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10
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FIG. 9. dx/Z as a function of dx: Lf = 5 and Lf = 6.
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the number of particles lost at each time step, and the shape
of the sandpile also remains unchanged), then each cell will
have the same value before and after the addition of sand
to the system. The amount of sand in cell 1 (at the core or
left-hand side of the system) will change when particles are
added, and as the avalanche propagates through the system. If
Z is constant, then the first L f + 1 cells will have the following
values prior to the addition of sand: NZ, (N − 1)Z, . . . , (N −
L f )Z . Following the addition of sand, and assuming that the
amount of sand introduced is sufficient to trigger an avalanche
which runs for at least L f steps, then after L f steps of the
avalanche the values of the L f + 1 cells will be equalized, so
that each cell will take on the average of the initial values of
those cells, plus dx/(L f + 1). At this point in the avalanche,
the value of each of the first L f + 1 cells will be identical and
given by:

(nZ + (n − 1)Z + ... + (n − L f )Z )

(L f + 1)
+ dx

(L f + 1)
,

which, after gathering the nZ terms, reduces to:

nZ (L f + 1) − (1 + 2 + ... + L f Z )

(L f + 1)
+ dx

(L f + 1)
.

Cell 1 will retain this value as the avalanche propagates
to cell L f + 1, although the values of the following cells will
change as the avalanche propagates (and indeed will revert
to their former values prior to the addition of sand). The
amount of sand in cell 1 will be unchanged before and after
the addition of dx if, prior to the addition of sand, nZ is
given by:

nZ = nZ (L f + 1) − (1 + 2 + ... + L f Z )

(L f + 1)
+ dx

(L f + 1)
.

By manipulation of this equation, we can then determine
the necessary value of dx in terms of L f and Z:

1 + L f

2
L f Z = dx.

For L f = 5,
1+L f

2 L f = 15, and therefore if 15Z = dx, then
the value of the first cell will remain unchanged. If this is true
for cell 1, it will also be true for all other cells n, other than for
those cells at the right-hand side, which is discussed above.

For dx = 4000, L f = 5, the difference between cells 1 and
2, as determined by iterating the running sandpile model to
stability using these values, is 266.66, i.e., 15/4000, which
confirms the above result. As observed above, this value is
also given by the formula beginning at the edge (right-hand
side).

The requirement that dx/Z = 15 is a necessary, but not
sufficient, condition, which is not dependent on Zc. However,
there is a further necessary condition mentioned above which
is dependent upon Zc, namely that the avalanche must con-
tinue to propagate such that it reaches cell L f + 1. For this to
occur, the additional sand added at each time step must exceed
the sum of the differences between Z and Zc in each of the first
L f + 1 cells. We show this schematically in Fig. 10. The blue
(lower) area represents the state of the sandpile prior to the
addition of dx, with the difference between each cell equal to
Z . When dx is added, an avalanche results which propagates
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FIG. 10. dx necessary to trigger systemwide avalanche in steady
state for Lf = 4.

through the first L f + 1 cells so that each the value of each cell
is equal to the initial value of cell n = 1 (which is a necessary
consequence of the process of fluidizing). If the amount of
sand which has been added (dx) is slightly greater than that
necessary to reach the state in which the first L f + 1 cells are
equal to the initial value of cell n = 1, then the avalanche will
continue to propagate and our condition will be met.

Figure 10 shows that the total amount to be added is equal
to the total amount by which the cells from 2 to 5 exceed
the height of cell 6, i.e., the amount which is necessary to
complete the square shown in Fig. 10. The step height of
the blue (lower) area is, by definition, equal to Z , the actual
gradient. The orange hatched (upper) area is given by the sum
of cells 2 to 5, multiplied by Z which is 1+L f

2 L f Z (i.e., our
formula above for dx). If Z = 1, and L f = 4, then this means
that the amount of sand to be added is 10Z , as shown above.
We can also see that cell 6, which is equal in height to Zc,
would contain, if filled, 5Z , which is dx/2 . This means that
our second condition will be satisfied where dx is < 2 × Zc.

The condition can be generalized for all values of L f . In
order to complete the square in Figure 10, dx = 1+L f

2 L f Z , and
the value of cell L f + 1 (which is equal to Zc) is (L f + 1)Z .
Substituting, we get dx

Zc
= (1+L f )/2(L f Z )

(L f +1)Z . Simplifying and rear-
ranging gives us dx = L f Zc/2. The avalanche will propagate
if dx exceeds this value, so that our second condition is that
dx > L f Zc/2 .

Our two conditions are then that dx = 1+L f

2 L f Z and dx >
L f Zc

2 . If both conditions are satisfied, then the system can
continuously avalanche, and the total system size will be given
by the sum of the cells calculated as above.

Figure 9 shows that the inflection point for Zc = 120, L f =
5 occurs at dx = 370, which is greater than 300, and that
for Zc = 120, L f = 6, the inflection point occurs at dx = 490,
which is greater than 360. For Zc = 120, L f = 1 (not shown),
the inflection point occurs at dx = 61, which is greater
than 60.

As with our observations in relation to the shape of the
Ep/Epmax curve at medium values of dx (Fig. 4) and the pdf
of MLE waiting times (Fig. 6), the key is the relationship
between dx and Zc, not their absolute values.
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FIG. 11. Classic model: Ep as a function of dx, up to dx =
4100, for Lf = 5. Ep remains constant up to dx ≈ 480, after which
elements of fine structure appear.

We have also considered the behavior of the classic model
at very high driving. Typically, parameters for the classic
model are set such that dx/Zc ≈ 0.01. The Ep of the classic
sandpile remains constant as driving increases up to dx/Zc ≈
3.3, a range of two orders of magnitude. Above this value,
nonlinear behavior is observed, as shown in Fig. 11.

The cause of the nonlinear behavior at very high driving
can be attributed to the fact that the sandpile is swept only
once between each addition of sand, in the absence of a
systemwide avalanche. If dx is high enough, then sand is not
swept from the core to the edge before further sand is added.
When driving becomes high enough, the gradient at the core
(left-hand side) exceeds Zc.

We also observe that there are a couple of anomalous data
points, at dx = 800, dx = 820, where the sandpile demon-
strates the high driving behavior of the running model, namely
that the amount of sand exiting the sandpile at each time step is
equal to dx. The actual gradient (Z) for these anomalous cases
is also consistent with the results for the running model. For
example, at dx = 820, Z = 54.667 so that dx/Z = 15, which
is the same result as obtained for the running model.

Increasing the driving rate for the classic model to the
extent that sand is not fully swept across the system between
iterations contradicts the central premise of the classic model,
which operates on the assumption that the sandpile fully
relaxes before further sand is added. We have therefore not
discussed in detail the behavior of the classic model at very
high driving. It is sufficient to observe that Ep in the classic
model is unaffected while the model continues to obey its
central premise, that of full relaxation before sand is added. As
discussed above, MLE size is also unaffected in this regime,
while waiting times reduce as driving increases.

V. CONCLUSIONS

We have employed a simple sandpile model that emulates
pellet pacing in a fusion plasma. The model is a 1D centrally
fuelled nonconservative sandpile which exhibits avalanching
behavior (noting that while 2D models might also be consid-
ered, they are not our focus here). While the model is typically
used at low constant driving, we have adapted it in two
alternative ways: first by providing for high constant driving
and, second, by adding intermittent “pellets” of sand at the
core concurrent with low constant driving. We have employed
two versions of the model, a classic model in which fuelling is
paused during a systemwide avalanche, and a running model
in which fuelling continues during an avalanche.

In the low to medium constant driving regime, average
potential energy in steady state (Ep) varies with dx in the
running model, while it remains constant with changes in
dx in the classic model. For the running model, analysis of
Ep/Epmax against dx/Zc for increasing dx shows that step
changes occur, often at integer ratios. A heuristic explanation
is suggested for this behavior. At very high constant driving,
the behavior of the running model can be analyzed, such
that the exact value of each cell of the sandpile can be
determined analytically given the value at cell n = 1. For
the classic model, Ep increases with dx at very high driving.
This behavior appears to arise as significant fuelling occurs
during nonsystemwide avalanches, which is inconsistent with
the central premise of the classic model that the system should
relax to stability between time steps.

In the intermittent fuelling regime, Ep slowly increases
with pellet size, while max MLE size increases more quickly.
By contrast, in the constant fuelling regime, using the running
model, Ep/Epmax increases up to about dx/Zc ≈ 0.3, then
slowly decreases, while max MLE size slowly decreases
through this range.

This suggests that MLE control is more successful with
increased constant fuelling, than with intermittent fuelling.

We can compare these results to pellet pacing in fusion
plasmas. For example, in ELM pacing experiments at JET,
while an increase in ELM frequency was observed, which
might be expected to reduce ELM size, virtually no reduction
in peak heat flux was observed [8,30]. This lack of reduction
in peak heat flux appears consistent with our results which
suggest that max MLE size is not reduced by the introduction
of pellets in our sandpile model.

An aspect of pellet pacing in fusion plasmas which is not
captured in our model is that pellets for ELM mitigation are
typically added at the top of the pedestal—pellets injected
into the core are typically used for fuelling rather than pellet
pacing. In future work, we propose to adapt a version of
the sandpile model which incorporates a pedestal [26] to
determine whether that will produce a better comparison with
experimental results. Longer term, the extension to a 2D
sandpile offers the possibility of capturing the radial-varying
poloidal and toroidal twist of the magnetic field. Such a
model could capture this dependence by making the second
dimension a periodic poloidal angle, in which the poloidal
angle increment is nonuniformly spaced in radius. The model
would thus capture sandpile transport for spatially localized
sand grains that take the magnetic topology to the plasma
edge. Such transport might be a proxy for radially localized
modes. It is unclear how such a 2D model might capture
transport from modes with global radial extent.
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