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Discrete eigenmodes of filamentation instability in the presence of a q-nonextensive distribution
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Discrete eigenmodes of the filamentation instability in a weakly ionized current-driven plasma in the
presence of a q-nonextensive electron velocity distribution is investigated. Considering the kinetic theory,
Bhatnagar-Gross-Krook collision model, and Lorentz transformation relations, the generalized longitudinal and
transverse dielectric permittivities are obtained. Taking into account the long-wavelength limit and diffusion
frequency limit, the dispersion relations are obtained. Using the approximation of geometrical optics and linear
inhomogeneity of the plasma, the real and imaginary parts of the frequency are discussed in these limits. It is
shown that in the long-wavelength limit, when the normalized electron velocity is increased the growth rate of
the instability increases. However, when the collision frequency is increased the growth rate of the filamentation
instability decreases. In the diffusion frequency limit, results indicate that the effects of the electron velocity
and q-nonextensive parameter on the growth rate of the instability are similar. Finally, it is found that when the
collision frequency is increased the growth rate of the instability increases in the presence of a q-nonextensive
distribution.
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I. INTRODUCTION

Current filamentation instability is an important subject in
laser-plasma and beam-plasma interactions that was inves-
tigated more than 50 years ago [1–3]. This instability has
attracted much attention due to its variety of applications
including inertial confinement fusion [4], charged particle
acceleration [5,6], cosmic rays, and shock waves [7]. The
filamentation instability occurs when a perturbation propa-
gates normal to the beam propagation direction. This mode
is sometimes called the transverse mode. However, for two-
stream instability (longitudinal mode), the perturbations prop-
agate parallel to the direction of the stream. In general,
when the perturbations propagate in the oblique direction,
both two-stream and filamentation instabilities can get ex-
cited within the plasma [8]. However, as mentioned above,
the filamentation instability is the current-driven one. This
instability usually contains two beams: the injected electron
beam and the induced counter-streaming beam. Note that
the injected electron beam induces charges and currents in
the plasma which neutralize the charge and current of the
beam. Therefore, the total current density is approximately
0, i.e., e(Nbub − Npup) ≈ 0, where Nb (Np) and ub (up) are
the beam density (plasma density) and beam velocity (plasma
velocity), respectively. Thus, up ≈ ubNb/Np. Assuming that
the plasma density Np greatly exceeds the electron beam
density Nb, one can neglect the plasma velocity up and the
calculation is valid [9]. The process of the filamentation
instability can be described as follows: At the beginning in
some regions the amplitude of the perturbation increases with
the electron current and the main filaments are produced.
As time passes, the adjacent microfilaments join to the main
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filaments and the formation of the main filaments becomes
complete. At later times, the magnetic pinch force increases
the current density of these filaments, which leads to the en-
hancement of the amplitude of the magnetic field. At the same
time, the charge separation between bunched electrons and
immobile background ions can create an electrostatic field.
This electric field inhibits the growth rate of the filaments,
and consequently the growth of the filaments is suppressed.
The suppression of filaments occurs at a time known as the
saturation time [10].

Filamentation instability has been investigated by many au-
thors theoretically, experimentally, and by computer simula-
tions. Filamentation and magnetic-field generation by charged
particle beams in laser-produced plasmas have been inves-
tigated by Aliev et al. [11]. They found that the kinetic
instability caused by the anomalous skin effect in plasma
penetrated by a fast electron beam may be responsible for
the formation of magnetic fields and current filaments in the
plasma corona. Califano et al. [12] have studied the linear
and nonlinear evolution of the electromagnetic beam-plasma
instability in a collisionless inhomogeneous plasma by using
a set of two fluid electron equations in the nonrelativistic
and relativistic regimes. They concluded that their results
can be used as a signature of the physical mechanism in
the analysis of the numerical and experimental results of the
laser-plasma interaction. Using theoretical methods, eigen-
modes and growth rates of relativistic current filamentation
instability in a collisional plasma have been explored by
Honda [13]. He found that in the stronger collisional regime,
the growing oscillatory mode tends to be dominant for all
wavelengths. In the collisionless limit, these modes vanish,
while maintaining another purely growing mode that exactly
coincides with a standard relativistic Weibel mode. In addition
to this work, Mohammadhosseini et al. [14] have explored
the spatial and temporal evolution of filamentation instability
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in a current-carrying plasma in the nonlinear regime. They
have shown that as time passes, the profile of the electric
and magnetic fields changes from a sinusoidal shape to a
sawtooth one and the electron density distribution becomes
very steep.

However, most of the aforementioned works have studied
the filamentation or Weibel instabilities in the presence of a
Maxwellian distribution function. Some years ago, multifrac-
tal concepts encouraged Renyi [15] and then Tsallis [16] to
propose a q-nonextensive distribution for nonequilibrium en-
vironments (non-Maxwellian distribution). Non-Maxwellian
distributions have been examined by some observations done
in the Earth’s bow shock [17], in the upper ionosphere of
Mars [18], in the vicinity of the Moon [19], and in the magne-
tosphere of Jupiter and Saturn [20,21]. This q-nonextensive
distribution can be used for systems with long-range inter-
actions, such as plasmas and gravitational systems [22]. Liu
et al. [23] in 1994 provided strong evidence of the exis-
tence of non-Maxwellian velocity distributions in a specific
plasma experiment, where low-pressure argon was exposed
to pulsed discharges. During the afterglow, measurements
of the inverse bremsstrahlung of intense microwaves were
performed. Tsallis and Souza [24] showed in 1997 that their
afterglow experimental data can equally well be fitted with
a q-nonextensive distribution for q � 1. They concluded that
the q parameter depends on the microwave power. Non-
Maxwellian electron distribution functions in glow discharges
(current, 5–50 mA; pressure, 200–1000 Pa) were derived from
the intensities of Ar and He spectral lines and N2 molecular
bands with different excitation thresholds. Experimental ob-
servations of a magnetospheric fractal accelerator of charged
particles [25–29] illustrated that the q-nonextensive parameter
is 2.49 ± 0.07, 2.15 ± 0.07, and 2.49 ± 0.05. Moreover, the
q parameter obtained for cosmic rays was 1.44 ± 0.05 [30].
Dispersion relations for electrostatic plane-wave propagation
in a collisionless thermal plasma have been discussed in the
context of nonextensive statistics by Lima et al. [31]. It was
shown that the experimental results point to a class of Tsallis’s
velocity distribution described by a nonextensive q parame-
ter smaller than unity. Qiu and Liu [32] have obtained the
Weibel instability growth rate in a collisionless, unbounded,
unmagnetized plasma modeled by a nonextensive electron
distribution function with different q parameters. They found
that the nonextensive nature of the electron distribution has an
important effect on the Weibel instability. The filamentation
and ion acoustic instabilities of nonextensive current-driven
plasma in the ion acoustic frequency range have been studied
by Khorashadizadeh et al. [33] using the Lorentz transforma-
tion formulas. Moreover, the evolution of filamentation insta-
bility in a current-driven dusty plasma with a nonextensive
distribution has been investigated by Niknam et al. [34] in
the dust acoustic frequency range. Hashemzadeh [35] has ex-
plored the ion-acoustic and Buneman instabilities in a current-
carrying plasma taking into account the collisional effects and
q-nonextensive distribution function.

Most of the aforementioned works have investigated the
filamentation or Weibel instability in homogeneous plasma.
Although some authors have studied the instabilities in in-
homogeneous plasma [36–39], the filamentation instability
in inhomogeneous bounded plasma in the presence of a

q-nonextensive distribution function has not been explored. In
this work, it is assumed that a plasma slab is located in the x di-
rection (0 � x � L). The plasma is supposed to be collisional,
unmagnetized, and inhomogeneous with linear inhomogene-
ity. It is important to note that, in practice, the plasma pro-
duced in the progress of reentry or entry flights is inhomoge-
neous [40]. Moreover, the plasma corona which forms around
an initially solid target under laser irradiation is presented
by an inhomogeneous plasma model [41]. Electrons have a
q-nonextensive distribution function, while ions are at rest
because they are very massive. Considering the Bhatnagar-
Gross-Krook (BGK) collision model, q-nonextensive veloc-
ity distribution, and kinetic equation, a generalized q di-
electric permittivity is obtained. The dispersion relations of
the filamentation instability in the diffusion frequency limit
and long-wavelength limit are obtained. Results show that
in the long-wavelength limit, when the normalized electron
velocity is increased, both the real and the imaginary parts
of the frequency increase. Opposite to this behavior, when
the normalized collision frequency is increased, the real and
imaginary parts of the frequency decrease. In the diffusion
frequency limit, for normalized electron velocities less than
0.36, the system is stable, while for values greater than this
the plasma system is unstable. This behavior is also seen for
different values of the qe parameter. It is also indicated that
the normalized collision frequency enhances the growth rate
of the instability.

This work is organized in five sections. In Sec. II, the
basic equations are presented. Using the kinetic theory, BGK
collision model, and q-nonextensive velocity distribution, the
generalized dielectric permittivity and, consequently, the q
dispersion relation are obtained. In Sec. III, the dispersion re-
lations of the filamentation instability for the long-wavelength
and diffusion frequency limits are obtained. The effects of
collision, the electron drift velocity, and the q-nonextensive
parameter in these limits are discussed in Sec. IV. Finally in
Sec. V, a summary and conclusions are given.

II. BASIC EQUATIONS

Consider a weakly ionized inhomogeneous unmagnetized
multicomponent plasma consisting of neutrals (n), ions (i),
and electrons (e) with electrons moving in the z direction.
Ions are assumed to be immobile because they are very
massive. In this plasma, electrons obey the q-nonextensive
distribution function. In the q-nonextensive framework, the
three-dimensional momentum distribution function can be
expressed as [10,35]

f0e(qe, p, Te) = Bqe Ne(x)

[
1 − (qe − 1)

p2

m2
ev

2
T e

] 2−qe
qe−1

, (1)

where Bqe is the normalized constant

Bqe =
�

(
1

1−qe

)
(1 − qe)1/2

�
(

1
1−qe

− 1
2

)
(

1

πv2
T e

)3/2

, −1 < qe < 1, (2)
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and

Bqe =
(

1 + qe

2

)
�

(
1

qe−1 + 1
2

)
(qe − 1)1/2

�
(

1
qe−1

)
(

1

πv2
T e

)3/2

, qe > 1,

(3)

where qe is the strength of the nonextensivity of electrons, �

is the standard gamma function, vTe = ( 2Te
me

)1/2 is the electron
thermal velocity, and Ne(x) is the inhomogeneous (initial)
electron density.

The q-nonextensive electron density distribution is normal-
ized to unity: ∫

f0e(q, p, Te)d3v = 1. (4)

It is noteworthy that in the range qe < −1, Eq. (1) is not nor-
malizable. In the range 0 < qe < 1, the distribution function
has a power-law tail at high energies, and in the range qe > 1,
there is a thermal cutoff of this distribution function, vmax,e =
vTe/(qe − 1)1/2. As expected, in the limit qe → 1, Eq. (1) is
reduced to the well-known Maxwell-Boltzman distribution
function. It is important to note that the constant Te in Eqs. (1)-
(3) is a formal constant with an energy dimension and the
effective electron temperature, Teff , represents the physical
property of the system obtained as [42]

Teff (qe, Te)

= 1

m4
eNe(x)

⎧⎨
⎩

∫ ∞
−∞ p2 f0e(qe, p, Te)d3p, 1

3 < qe < 1,

intvmax,e
−vmax,e

p2 f0e(qe, p, Te)d3p, qe > 1,

= −
�

( − 3
2 + 1

qe−1

)
�

( 1+qe

2−2qe

) Te

qe − 1
, (5)

and vmax,e was presented above. It is easy to show that in the
limit qe → 1, the effective electron temperature goes to Te.

On the other hand, in the beginning, it is assumed that
the plasma is inhomogeneous, collisional, unmagnetized, and
at q-nonextensive equilibrium. When the plasma deviates
slightly from the initial state, the electron distribution function
can be expressed as

fe(p, r, t ) = f0e(p, r) + δ f1e(p, r, t ), δ f1e � f0e, (6)

where δ f1e is the perturbation about f0e. In addition, it is
assumed that the perturbation is in the form exp(i(k · r −
ωt )). Moreover, in order to investigate the collisional effect
in plasmas the Fokker-Planck equation, or at least a Fokker-
Planck-type equation, can be useful. But as we know, this
equation is very complex and the results are complicated.
Instead, another simple model used in weakly ionized plasmas
and known as the Krook model or Bhatnagar-Gross-Krook
collisional model can be applied. The standard formula of
the Boltzmann kinetic equation for electrons with the BGK
collision term is [9,10]

∂δ f1e

∂t
+ v · ∂δ f1e

∂r
+ eE · ∂ f0e

∂p

= −νen(δ f1e − f0e

∫
δ f1edp), (7)

where E(r, t ) is the perturbed electric field, e is the charge
of electrons, v is the velocity of electrons, and νen is the
electron-neutral collision frequency. The left-hand side of
Eq. (7) is the total time derivative of the distribution function
and the right-hand side is responsible for the elastic colli-
sions. On the right-hand side, the following assumptions are
considered: (i) Only binary collisions occur in the plasma;
(ii) the distribution function is slowly varying; and (iii) the
term on the right-hand side is consistent with the energy,
momentum, and particle number conservation laws [43]. It is
important to note that in weakly ionized plasmas, the collision
between charged particles and neutrals is considered, while
electron-electron and ion-ion collisions can be neglected. For
example, in the E region at altitudes 91, 96, 101, 109, 117,
and 125 km and the F region at altitude 278 km the dominant
collision frequency is the ion-neutral collision frequency [44].
Moreover, in radio-frequency glow discharges at temperature
300 K and pressure 1 T, the ion-neutral collision frequency
is 7.84–15.5 MHz. However, in these plasmas filamentation
instability can exist [45]. It is noteworthy that the perturbed
electric field is assumed to be in the form exp(i(k · r − ωt )).
In addition, the frequency ω presented above is known as the
“eigenmodes” that are excited in the filamentation instability.
The charge and current densities in plasma are related to δ f1e

and E(r, t ) by

ρ = e
∫

δ f1edp, (8)

Ji = σi jE j = e
∫

vi f1edp, (9)

where σi j is the conductivity tensor and is related to the
dielectric permittivity tensor εi j by

εi j = δi j + 4π i

ω
σi j, (10)

where δi j is the Kronecker delta function. In isotropic plas-
mas, the dielectric permittivity tensor can be obtained as [9]

εi j (ω, k) =
(

δi j − kik j

k2

)
εtr (ω, k) + kik j

k2
εlo(ω, k), (11)

where εtr (ω, k) and εlo(ω, k) are the transverse and longi-
tudinal dielectric permittivities, respectively. Moreover, the
continuity equation is

∂ρ

∂t
+ ∇ · J = 0. (12)

Using Eqs. (1) and (7)– (12), the longitudinal dielectric per-
mittivity can be obtained as

εlo = 1 + 4πe2

ω

∫ v‖
∂ f0e (p‖ )

∂ p‖
ω+iνen−kv‖

dp

1 − iνenk
ω

∫ v‖ f0e(p‖ )
ω+iνen−kv‖

dp
, (13)

where

f0e(p‖) = 2π

∫
f0e(p)d p⊥

= πv2
T e

Bqe Ne(x)

[
1 − (qe − 1)

p2
‖

m2
ev

2
T e

] 1
qe−1

. (14)
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In Eqs. (13) and (14), v‖ (p‖) and v⊥ (p⊥) are the velocity
(momentum) components parallel and perpendicular to the
wave vector k, respectively. Similarly to the longitudinal case,
the transverse dielectric permittivity can be obtained as

εtr = 1 + 2πe2

ω

∫
v⊥ · ∂ f0e

∂ p⊥

dp
ω + iνen − kv‖

. (15)

Substituting Eqs. (1) and (14) into Eqs. (13) and (15),
the longitudinal and transverse dielectric permittivities in a
magnetic-field-free plasma are as follows:

εlo(ω, k) = 1 + 2ω2
pe

(x)

k2v2
Te

qe+1
2 + (

ω+iνen
kvTe

)
Z (1)

qe

(
ω+iνen

kvTe

)
1 + iνen

kvTe
Z (2)

qe

(
ω+iνen

kvTe

) , (16)

εen(ω, k) = 1 − ω2
pe

(x)

ω(ω + iνen)
Z (3)

qe

(
ω + iνen

kvTe

)
, (17)

where ωpe (x) = (4πNe(x)e2/me)1/2 and Z (1)
qe

(y), Z (2)
qe

(y), and
Z (3)

qe
(y) are the generalized q dispersion functions defined as

Z (1)
qe

(y) = B′
qe

vTe

∫ ∞

−∞

[1 − (qe − 1)u2]
1

qe−1 −1

u − y
du

= PB′
qe

vTe

∫ ∞

−∞

[1 − (qe − 1)u2]
1

qe−1 −1

u − y
du

+ iπB′
qe

vTe [1 − (qe − 1)y2]
1

qe−1 −1
,

Z (2)
qe

(y) = B′
qe

vTe

∫ ∞

−∞

[1 − (qe − 1)u2]
1

qe−1

u − y
du

= PB′
qe

vTe

∫ ∞

−∞

[1 − (qe − 1)u2]
1

qe−1

u − y
du

+ iπB′
qe

vTe [1 − (qe − 1)y2]
1

qe−1 ,

Z (3)
qe

(2y) = B′
qe

vTe y
∫ ∞

−∞

[1 − (qe − 1)u2]
1

qe−1

y − u
du

= PB′
qe

vTe y
∫ ∞

−∞

[1 − (qe − 1)u2]
1

qe−1

y − u
du

+ iπB′
qe

vTe y[1 − (qe − 1)y2]
1

qe−1 , (18)

where B′
qe

= πv2
T e

Bqe and P is the principal value. The first
term on the right-hand side of Eqs. (18) (the principal value
term) is responsible for the nonresonant electrons, while the
second term is responsible for the resonant electrons con-
tributing to the Landau damping [46]. As mentioned in Sec. I,
the filamentation instability arises in a current-driven plasma
in which the electrons move thorough a stationary ion back-
ground. In this case, Eqs. (16)–(18) should be modified. Using
the Lorentz transformations in the nonrelativistic regime,

ω′ = ω − k · ue, ξi j (ue) = δi j + k juie

ω − k · ue
,

ηi j (ue) = ω − k · u
ω

δi j + kiu je

ω
, (19)

where ue is the electron velocity. Therefore, the dielectric
permittivity tensor in the presence of moving electrons is
obtained,

εi j (ω, k) = δi j +
∑
α,β

ω′

ω
ξiα (ue)[εαβ (ω′, k − δαβ )]ηβ j (ue),

(20)

where εαβ (ω′, k) is the dielectric permittivity in its respec-
tive moving frame. Taking into account the longitudinal and
transverse dielectric permittivities and using Eqs. (11), (19),
and (20), the dielectric permittivity tensor is presented as

εi j (ω, k) =
(

ω′

ω

)2[(
δi j − kik j

k2

)
(εtr (ω′, k) − 1)

+
{

kik j

k2
+ uik j + u jki

ω′ + uiu jk2

ω′2

}

× (εlo(ω′, k) − 1)

]
. (21)

Considering Eq. (21) and taking into account the general
dispersion equation

∣∣∣∣k2δi j − kik j − ω2

c2
εi j (ω, k)

∣∣∣∣ = 0, (22)

the filamentation instability in a current-driven plasma can be
investigated.

III. FILAMENTATION INSTABILITY

In this section, the current-driven filamentation instability
in an inhomogeneous, unmagnetized, nonextensive plasma is
studied in the long-wavelength limit and diffusion frequency
limit. The wave vector is assumed to be in the x direction,
k = (k, 0, 0), and electrons move at a drift velocity along the
z axis, ue = (0, 0, u). Therefore, the propagation is perpen-
dicular to the electron velocity, k · ue = 0. It is also supposed
that the frequency of the wave is low, ω � kc, ωpi , ωpe . In
addition, the plasma is in the diffusion frequency region,
i.e., νin, kvTi � ω � kvTe � νen. Under these conditions, the
longitudinal and transverse dielectric permittivities [Eqs. (16)
and (17)] become

εlo(ω, k) = 1 − ω2
pi

ω2
− ω2

pe

iωνen − 2k2v2
Te

3qe−1

, (23)

εtr (ω, k) = 1 − ω2
pi

ω2
+ i

ω2
pe

ωνen
. (24)

In the above equations, it is supposed that ions oscillate
around their initial positions. Considering the conditions pre-
sented above and using Eqs. (23) and (24), the general disper-
sion relation is reduced to

ε11(ω, k)

(
c2k2

ω2
− ε33(ω, k)

)
+ ε2

13(ω, k)) = 0, (25)
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where

ε11(ω, k) = 1 − ω2
pi

ω2
− ω2

pe

iωνen − 2k2v2
Te

3qe−1

, (26)

ε13(ω, k) = − kuω2
pe

ω
(
iωνen − 2k2v2

Te
3qe−1

) − ukω2
pi

ω3
, (27)

ε33(ω, k) = 1 + ω2
pe

ωνen
− ω2

pi

ω2
− k2u2ω2

pe

ω2
(
iωνen − 2k2v2

Te
3qe−1

) . (28)

This dispersion relation is solved in two limits, the long-
wavelength limit and diffusion frequency limit. In the long-
wavelength limit and under the condition (3qe − 1)ωνen 	
2k2v2

Te
, Eq. (25) is simplified to

( − iω2
pe

(x)u2 + ωνenc2
)
k2 + ωνenω

2
pi

= 0. (29)

In the diffusion frequency limit, (3qe − 1)ωνen � 2k2v2
Te

,
Eq. (25) is reduced to

k2c2 + ω2
pi

− i
ω2

pe
(x)ω

νen
− ω2

pe
(x)u2(3qe − 1)

2v2
Te

= 0. (30)

Equations (29) and (30) are the eikonal equations for an
inhomogeneous plasma with spatial variation. However, the
eigenmodes of the filamentation instability can be obtained
from these equations.

IV. APPROXIMATION OF GEOMETRICAL OPTICS
FOR INHOMOGENEOUS PLASMA

AND QUANTIZATION RULES

In Sec. III, the eikonal equations for an inhomogeneous
plasma with linear variation in two different limits have been
obtained. The plasma is assumed to be in a slab 0–L along
the x-axis region. Plasma is supposed to be weakly inhomo-
geneous on the scale of the wavelength of the electromagnetic
oscillations. This means that the wavelength λ is much smaller
than the characteristic length of the inhomogeneity, i.e., λ �
L. In this case, the dispersion relation or eigenmodes can be
obtained as [9] ∫ L

0
kx(ω, x)dx = nπ, (31)

where n is an arbitrary integer number. Moreover, the inho-
mogeneity of the electron density expressed above is [39]

Ne(x) = Ne0x

L
, (32)

where Ne0 is the initial electron density in the absence of
inhomogeneity. It is noteworthy that according to Eq. (32),
the inhomogeneity of the electron density is linear, which
is applicable for q > 1/3. In the homogeneous plasma the
background electron density is Ne0. These are two separated
models. However, one can couple these models as Ne = Ne0 +
Ne1x/L and obtain the growth rate of the instability again. In
the long-wavelength limit, the wave number has been obtained

FIG. 1. Real part of the frequency �r for different values of the
n parameter.

from Eq. (29) as

kx(ω, x) =
√

ωνenωpi√
iu2ω2

pe0

x
L − ωνenc2

, (33)

where ωpe0 = (4πNe0e2/me)1/2. Substituting Eq. (33) into
Eq. (31), we have

−2iLωpi

√
ωνen

u2ω2
pe0

[√
iu2ω2

pe0
− ωνenc2 −

√
−ωνenc2

] = nπ.

(34)

Using the dimensionless parameters, νen/ωpe0 = ν, ω/ωpe0 =
�, u/c = U , ωpi/ωpe0 = �i, and Lωpe0/c = L′, Eq. (34)
becomes

−2iL′�i

√
�ν

U 2
[
√

iU 2 − �ν − √−�ν] = nπ. (35)

Using numerical techniques, i.e., the Newton-Raphson
method, the real �r and imaginary � parts of the frequency
can be obtained. In Fig. 1 the �r parameter for different
values of n is plotted. The parameters used in this figure are
U = 0.05, ν = 0.5, L′ = 10, and �i = 0.025. The imaginary
part of the frequency � for all n parameters is the same, 0.005.
It is clear in this figure that when the n parameter is increased,
�r increases. In addition, a positive value of the � parameter
indicates that the system is unstable. Comparing the results
obtained in Fig. 1 vs Eq. (18) in Ref. [10], one can easily
find that for homogeneous plasma the frequency is purely
imaginary, while for the inhomogeneous case the frequency
contains both real and imaginary parts. It is important to
note that when the plasma system is bounded in a certain
region, standing waves can be formed, and consequently, it is
expected that the frequency has a discrete value. In Fig. 2, �r

and � for different values of the normalized electron velocity
are drawn. Parameters used in this figure are n = 10, ν =
0.25, L′ = 10, and �i = 0.025. k′ = ck/ωpe0 is also 0.1 for
the homogeneous case [see Eq. (29)]. In addition, the growth
rate has been obtained in the presence of inhomogeneity
and homogeneity of the electron density. It is important to
note that �r in the homogeneous case is 0. It is obvious
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FIG. 2. Real �r and imaginary � parts of the frequency for
different values of the U parameter.

in this figure that when the electron velocity is increased,
the growth rate of the instability � increases. Moreover, �r

increases upon increasing the U parameter. As we know,
the filamentation instability is a current-driven instability in
which the energy can exchange between (electron or ion)
beam and plasma. When the electron velocity is increased,
the energy of the beam increases, and consequently more
energy can be transferred to the plasma wave and its amplitude
increases. It is noteworthy that the plasma wave is propor-
tional to exp[i(k · r − ωt )]. Furthermore, Fig. 2 indicates that
the effect of inhomogeneity of the electron density on the
� parameter is the same as in the homogeneity case. The
effect of the normalized collision frequency on the real and
imaginary parts of the frequency is depicted in Fig. 3. In
this figure U = 0.05 and other parameters are similar to those
in Fig. 2. One can see in Fig. 3 that when the collision
frequency is increased, both �r and � decrease. This means
that the collision frequency can stabilize the plasma system.

FIG. 3. Real �r and imaginary � parts of the frequency for
different values of the ν parameter.

FIG. 4. Imaginary part of the frequency � for different values of
the n parameter.

In other words, collisions cause detuning between the particle
density perturbations and the reactive fields which attenuate
the current filamentation instability [47]. Comparing results
obtained for the inhomogeneous vs homogeneous cases shows
that the effect of the electron velocity on the growth rate is
similar in both cases. This confirms the results achieved in
Ref. [10].

Similar to the procedure presented above, the real and
imaginary parts of the frequency can be obtained in the
diffusion frequency limit. From Eq. (30), the wave number
can be obtained as

kx(ω, x) =
√√√√ω2

pe0

x

L

(
u2(3qe − 1)

2v2
Te

+ i
ω

νen

)
− ω2

pi
. (36)

Substituting Eq. (36) into Eq. (31), we have

2L

cω2
pe0

( u2(3qe−1)
2v2

Te
+i ω

νen

)
⎧⎨
⎩

[
ω2

pe0

(
u2(3qe − 1)

2v2
Te

+i
ω

νen

)
−ω2

pi

]3/2

+ iω3
pi

}
= nπ. (37)

Using the dimensionless parameters, νen/ωpe0 = ν, ω/ωpe0 =
�, u/vTe = U , ωpi/ωpe0 = �i, and Lωpe0/c = L′, Eq. (37) is
reduced to

2L′
U 2(3qe−1)

2 + i �
ν

{[
U 2(3qe − 1)

2
+ i

�

ν
−�2

i

]3/2

+i�3
i

}
=nπ.

(38)

Similarly to the process presented above, Eq. (38) can be
solved using numerical techniques. In Fig. 4, the � parameter
for different values of n is obtained. The parameters used
in this figure are U = 0.2, ν = 0.1, L′ = 10, qe = 2, and
�i = 0.025. The real part of the frequency not presented
in this figure is 0. One can easily see from this figure that
for n < 2 the plasma system is unstable, while for n > 2
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FIG. 5. Imaginary part of the frequency � for different values of
the U parameter.

the imaginary part of the frequency is less than 0, which
leads to the stability of the system. In Fig. 5, the effect of
the normalized electron velocity on the growth rate of the
instability is plotted. The parameters used in this figure are
n = 3, ν = 0.2, L′ = 10, qe = 1.5, �i = 0.025, and k′ = 0.5.
For comparison, results are also shown in three cases: in
the presence of inhomogeneity of the electron density and
q-nonextensive electron distribution function, in the presence
of homogeneity of the electron density and q-nonextensive
electron distribution function, and in the presence of ho-
mogeneity of the electron density and Maxwellian electron
distribution function. It is obvious from this figure that by
increasing the normalized electron velocity, the growth rate
of instability increases. However, in the presence of inhomo-
geneity of the electron density and q-nonextensive electron
distribution function, for electron velocities less than 0.36 the
system is stable, while for higher values the plasma system
is unstable. In the presence of homogeneity of the electron
density and q-nonextensive electron distribution function, for
electron velocities less than 0.38 (not shown in this figure) the
system is stable, while for higher values the plasma system
is unstable. In the presence of homogeneity of the electron
density and Maxwellian electron distribution function, for
electron velocities less than 0.5 (not shown in this figure), the
system is stable, while for higher values the plasma system
is unstable. The reason for this behavior is as follows: This
work presents the current-driven filamentation instability. In
a plasma with a current, a magnetic field can be generated
around its axis, i.e., B ≈ 4πnu/(kc). This force can compress
the plasma layer. It is concluded from this field that by
increasing the electron velocity (u parameter), the generated
magnetic field becomes stronger. On the other hand, the elec-
tron velocity must be higher than a certain value, which leads
to the magnetic pressure becoming higher than the kinetic
pressure, and consequently the pinch filaments increase. This
leads to an increase in the growth rate of the filamentation
instability. Allen et al. [48] have shown that the filament size
is of the order of the plasma skin depth (c/ωpe ). When the

FIG. 6. Imaginary part of the frequency � for different values of
the qe parameter.

filaments reach the plasma skin depth the instability saturates.
At this point the filaments no longer focus, the high space
charge and larger emittance dominate, and the filaments first
defocus and then merge. Comparing this work and results
obtained in Ref. [10] for homogeneous plasma, it is deduced
that for homogeneous plasma the instability conditions are
k2

0 > k2 and u2(3qe − 1) > 2v2
s (see Eq. (21) in Ref. [10]),

while for inhomogeneous plasma the instability condition is
U > 0.36. In order to investigate the nonextensive effect on
the filamentation instability, in Fig. 6 the growth rate for
different values of the qe parameter is drawn in the presence
of inhomogeneity and homogeneity of the electron density.
The different parameter used in this figure is U = 0.5 and
other parameters are similar to those in Fig. 5. It is easy
to see in this figure that in the presence of inhomogeneity
of the electron density for qe < 0.93, the plasma system is
stable, while for values higher than 0.93 the growth rate is
greater than 0 and the instability appears. In the presence of
homogeneity of the electron density, this condition is qe < 1.
However, when the qe parameter is increased the growth rate
of the instability increases. The reason for this behavior is
as follows: As we know, when the nonextensive parameter is
increased the effective electron temperature decreases. Since
the formed filaments can be disturbed by the thermal effects,
when the electron temperature is increased the plasma system
goes to the stable equilibrium state. This means that at a lower
temperature, the plasma tends toward instability. Furthermore,
according to Fig. 5 in Ref. [42], when the qe parameter is in-
creased the electron distribution function becomes wider. This
point indicates that the number of energetic electrons which
are in the tail of the electron distribution function increases.
This is equivalent to electrons with higher values of the elec-
tron velocity, and according to Fig. 5 the growth rate of the in-
stability increases. In addition, some authors have investigated
the physics of the q-nonextensive parameter. Du [49] has
shown that the q-nonextensive parameter is proportional to the
gradient of the temperature. Therefore, q �= 1 is responsible
for the spatial inhomogeneity of the temperature as well as the
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FIG. 7. Imaginary part of the frequency � for different values of
the qe parameter.

systems with long-range interactions. However, it is rationally
related to the nonisothermal nature of the long-range interac-
tion systems in the nonequilibrium state. Lima et al. [43] have
shown that the collisional equilibrium is given by the Tsallis
q-nonextensive velocity distribution. They obtained that when
q < 0, the entropy of a given volume element decreases with
time. Therefore, it is concluded that according to the second
law of thermodynamics, the q parameter should be restricted
to positive values. Another important point is that if q = 0, the
entropy of the system does not change with time. Naturally,
the q-nonextensive parameter may be further restricted by
other physical requirements, such as a finite total number of
particles. In point of fact, appropriate normalization of the
Tsallis distribution requires a q parameter greater than 1/3.
Moreover, using weak-turbulence theory, Yoon et al. [50] have
shown that the “plasma parameter” g = 1/(nλ3

D), where λD =
(Te/(4πNee2))1/2 turns out to play a pivotal role. They found
that a small but moderately finite value of g is necessary for
a superthermal tail to be generated. Since in the presence of a
Tsallis distribution, the q-nonextensive parameter is inversely
proportional to the effective temperature, it is concluded that
the plasma parameter is related to the q parameter. This
means that the nonextensive parameter is responsible for the
superthermal tail and high-energy particles. However, purely
collisionless (g = 0) Vlasov theory cannot produce a su-
perthermal population. In Fig. 7, the effect of the normalized
collision frequency on the growth rate is shown. In this figure
the parameters U = 0.4 and qe = 1.5 are used, and the other
parameters are similar to those in Fig. 6. For comparison,
results are also indicated in three cases: in the presence of in-
homogeneity of the electron density and q-nonextensive elec-
tron distribution function, in the presence of homogeneity of
the electron density and q-nonextensive electron distribution
function, and in the presence of homogeneity of the electron
density and Maxwellian electron distribution function. One
can see for the q-nonextensive electron distribution function
that when the normalized collision frequency is increased, the
growth rate of the filamentation instability increases, while

for the Maxwellian electron distribution function the system
is stable. The physical interpretation of the first case can
be explained as follows: The collision frequency between
electrons and neutrals can decrease the velocity of electrons.
Consequently, the number of electrons having enough energy
to leave the filaments decreases, which leads to an increase
in the instability growth rate. However, for a Maxwellian
electron distribution function, the condition presented above
is k2

0 < k2, which leads to stability of the plasma. Finally,
it is important to note that according to Eq. (33) or (36)
and for a certain value of x, kx becomes 0 or ∞. That
Eq. (33) can be ∞ for x = −iLωνenc2/(uωpe0 )2 becomes
impossible because x must be real. Equation (36) is 0 for
x = Lω2

pi
/(ω2

pe0
(u2(3qe − 1)/(2v2

Te
) + iω/νen )). This value of

x is clearly complex. However, for νen = 0, kx becomes 0.
Since νen is not 0, kx nowhere becomes 0 or ∞. Therefore,
there are no turning points or clustering points arising in
this problem. It is worthwhile to mention some practical
values. For example, Allen et al. [48] have experimentally
studied the current filamentation instability. They have used
the electron densities of 1.6 × 1016, 1.2 × 1017, and 1.9 ×
1017 cm−3. Therefore, in this work we use these numerical
values. Considering Ne0 = 1.9 × 1017 cm−3 (ωpe0 = 2.5 ×
1013 Hz), the physical parameters are u = 3.9 × 108 cm/s
(U = 3 and vTe = 1.3 × 108 cm/s), n = 3, νen = 5 × 1012 Hz
(ν = 0.2), L = 1.2 × 10−2 cm (L′ = 10), qe = 3, �i =
6.25 × 1011 Hz, and k = 4.2 × 102 cm−1 (k′ = 0.5). Using
these values, the growth rate of the instability is 4 × 1012

Hz (� = 0.16).

V. SUMMARY AND CONCLUSION

In this work, using the q-nonextensive electron velocity
distribution and linear inhomogeneity of plasma, discrete
eigenmodes of the filamentation instability are studied in
a weakly ionized current-driven plasma. Considering the
moving electrons, immobile ions, and BGK collision model,
the generalized longitudinal and transverse dielectric permit-
tivities of collisional current-driven plasmas are obtained.
Results are discussed in two limits: long wavelength and
diffusion frequency. In the long-wavelength limit, when the
n and U parameters are increased �r increases. Although
� for all n parameters is the same, when the U parameter
is increased the growth rate of the instability increases. It
is also indicated that when the ν parameter is increased,
the growth rate of the instability decreases. Results of the
diffusion frequency limit show that when the n parameter
is increased the plasma goes from an unstable mode to a
stable one. Moreover, in the presence of inhomogeneity of
the electron density and a q-nonextensive electron distribution
function, for a U parameter less than 0.36 the plasma is
stable, while for greater amounts the plasma is unstable. The
effect of the qe parameter on the � parameter illustrates
that the filamentation instability occurs for qe > 0.93 in the
presence of a q-nonextensive electron distribution function.
Although in the long-wavelength limit, the collision frequency
decreases the growth rate of the instability, in the diffusion
frequency limit and in the presence of a q-nonextensive elec-
tron distribution function, when the collision frequency is in-
creased the growth rate of the instability increases. However,
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in the presence of the Maxwellian electron distribution func-
tion, the plasma system is stable. Finally, it is concluded
that there are no turning points or clustering points in
this problem.
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