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Mode-locked rotating detonation waves: Experiments and a model equation
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Direct observation of a rotating detonation engine combustion chamber has enabled the extraction of the
kinematics of its detonation waves. These records exhibit a rich set of instabilities and bifurcations arising from
the interaction of coherent wave fronts and global gain dynamics. We develop a model of the observed dynamics
by recasting the Majda detonation analog as an autowave process. The solution fronts become attractors of
the engine, i.e., mode-locked rotating detonation waves. We find that denotative energy release competes with
dissipation and gain recovery to produce the observed dynamics and a bifurcation structure common to other
driven-dissipative systems, such as mode-locked lasers.
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I. INTRODUCTION

The rotating detonation engine (RDE) is a thrust-producing
device in which self-sustained combustion-driven shock
waves, or detonations, travel azimuthally in an annular com-
bustion chamber. Pressure rises through the detonation pro-
cess, contrasting conventional deflagration-based engines.
Successful implementation of so-called pressure gain com-
bustion implies mechanical simplification of propulsion sys-
tems (for example, pumping requirements for propellant can
be reduced [1]) and an increase of available work for a
given propellant over conventional engines [2], ultimately
resulting in fuel savings. However, a diverse set of exper-
imentally observed instabilities and bifurcations is known
to be ubiquitous in RDEs [3–5], potentially compromising
performance and stable operation. In this article, we develop a
modeling framework that characterizes the underlying global
bifurcation structure of RDEs, showing that the nonlinear
dynamics are governed by the interaction physics of global
gain (fuel) depletion and recovery along with local dominant
balance physics characterized by the Burgers’ equation [6].
Our predictions capture the cascade of bifurcations and flame-
front solutions whose attracting nature we term mode-locked
rotating detonation waves and which are observed experimen-
tally within the RDE. Further, the model shows that the under-
lying energy balance physics of the driven-dissipative RDE
mimics those of mode-locked lasers [7,8], where global gain
dynamics produce a similar cascading bifurcation diagram of
mode-locked states [9].

Conventional RDEs use concentric cylinders to direct the
flow of propellant into a narrow annular gap (see Fig. 1).
Inside this gap, an igniter deposits concentrated energy
into the propellant mixture, creating an ignition kernel that
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promotes the exothermal chemical reaction. By virtue of the
narrow annular gap, the gradients in density and pressure
caused by the heat release self-steepen, eventually forming
shocks strong enough to auto-ignite the propellant. These
combustion-driven shock waves, now detonations traveling at
speeds of the order of km/s, continue to process propellant so
long as there is sufficiently fast refill and mixing of propellant
within the period of the traveling detonation wave to offset
inhibiting phenomena [10,11]. In this manner, the steady
operation of the RDE is the point at which the rates of gain
depletion (combustion), gain recovery (injection and mixing),
and dissipation (exhaust and energy ejection) balance. For
these to exist in an unbalanced state induces a degree of
unsteadiness, typically manifested as a transition to a different
number of waves or modulation of wave speed [3–5,12], i.e.,
the system bifurcates.

In laboratory experiments, typical observables are wave
count, speed, and direction as captured by pressure sensors
or optical instruments. Common in the experimental literature
are a few themes: (i) the observed detonation wave speeds
are significantly less than the Chapman-Jouget (CJ) velocity
(the steady, shock-induced combustion wave in which the
combustion products are sonic relative to the wave front)
for the propellant mixture [13,14], (ii) the number of waves
is tied to the mass flux of propellant through the engine
and the propellant injection scheme [11,15], and (iii) para-
sitic combustion, meaning deflagration not associated with
a traveling wave, is ubiquitous [5,12,14]. We note that to
fully realize theoretical performance gains in RDEs, such
nondetonative heat release must be minimized. Additionally,
we acknowledge the prevalence of counterpropagating waves
in the literature (see [5,14]). However, for the present article,
we restrict our discussion to corotating waves only as a means
to simplify the modeling and analysis.

Computational fluid dynamic modeling of RDEs allows
for detailed investigations of the wave structure and engine

2470-0045/2020/101(1)/013106(11) 013106-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.013106&domain=pdf&date_stamp=2020-01-10
https://doi.org/10.1103/PhysRevE.101.013106


KOCH, KUROSAKA, KNOWLEN, AND KUTZ PHYSICAL REVIEW E 101, 013106 (2020)

FIG. 1. Section view of the rotating detonation engine (RDE)
used for this study. The engine geometry is such that gaseous
methane and oxygen are directed into a narrow annular gap through
a set of propellant injectors. A spark plug ignites the mixture,
which rapidly transitions to a number of circumferentially traveling
detonation waves.

flowfield. Not only do these models agree well with ex-
periments, but they also produce many of the instabilities
and observed bifurcations of RDEs, including mode-locked
states [16–19]. However, these high-fidelity simulations are
computationally expensive, i.e., to extract limit cycle behavior
of the wave dynamics and bifurcation structures is not cur-
rently feasible. Additionally, they fail to identify the leading
order physics responsible for producing the bifurcations. Our
modeling efforts draw on recent experimental observations
of nonlinear dynamics of rotating detonation waves to for-
mulate a reduced-order model that captures the bifurcations
observed in practice. We have identified the dominant energy
balance physics responsible for producing the universally ob-
served physics of the mode-locked states and their interactions
in many RDEs. Indeed, the primary bifurcation parameter

controlling the cascade of bifurcations is easily identified as
the propellant injection and mixing rate. The energy balance
physics is canonical in that it is prevalent in a broader range of
driven-dissipative physical systems, including mode-locked
lasers [7–9,20], Bose-Einstein condensates (BECs) [21], and
some biological systems [22]. Such rich bifurcation structures
pervade spatiotemporal systems driven to instability [23].

In Sec. II, we describe the experimental apparatus and
display recent observations of nonlinear dynamics within the
engine. Building on these observations, a model system is pro-
posed in Sec. III with a goal of reproducing, qualitatively, the
observed dynamics. Numerical experiments of the proposed
model are presented in Sec. IV and follow with a discussion
of the model and observations in Sec. VI.

II. EXPERIMENTS

For the present study, an RDE (Fig. 1) and test cell were de-
signed and constructed to investigate rotating detonation wave
dynamics. The engine used for this study is unique in that
the engine internal components are modular. Engine cores can
be swapped out to give different annular gaps and combustor
lengths. The injectors can be similarly exchanged to investi-
gate injector-combustion coupling and mixing strategies. The
test cell is a backpressure controlled facility. Engine exhaust
is routed to an appropriately sized vacuum chamber with
a known backpressure. The test cell is optically accessible,
which allows for recording the complete kinematic history
of all detonation waves with high spatiotemporal resolution
[Fig. 2(a)]. Each experiment is a 0.5 second burn of a known
proportion and feed rate of gaseous methane and oxygen.
In a successful experiment, a spark ignites the mixture and
produces an accelerating flame that transitions into a num-
ber of traveling detonation waves. A complete description
of the experimental apparatus and procedures is detailed
in [24].

A fundamental assumption of this study is that the ob-
served luminosity in these experiments correlates to com-
bustion progress, meaning brighter regions exhibit higher

FIG. 2. (a) A high-speed camera frame from an experiment shows the location of rotating detonation waves in the annulus of a RDE.
Overlaid is a rendering of the propellant injection scheme. (b) Tracking the detonations through time yields a spatial-temporal view of their
kinematics. Line slopes correspond to speed. The vertical cut in (b) is synchronized with the states of (a) and (c). (c) The phase difference �

for the waves seen in (a) is not π , though eventually the phase difference approaches this stable value.
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(a)

(b)

(c)

FIG. 3. Representative wave nucleation process in a startup tran-
sient (a) in an experiment and (b) in a simulation of the proposed
model, displayed as pseudocolor plots of amplitude (arb. units). As
seen in the wave reference frame of (a) and (b), the oscillatory
phase difference between the two waves immediately after nucleation
decays through time as the two waves become mode locked. (b) s =
3.5. The instantaneous speeds of the waves along � = 0 in (a) and
(b) are given in (c).

heat release than darker regions. Supposing this to be true,
we examine example waveforms extracted from the high-
speed camera footage. For each experiment, the azimuth-time
history is extracted from high-speed video footage through
a pixel-intensity integration algorithm [25]. The wave kine-
matics can be recorded in this manner and displayed as a
θ − t diagram, an example of which is shown in Fig. 2(b).
Furthermore, these records can be recast in the wave-attached
frame, in which case the phase differences between waves are
an explicit output (the tracked wave appears steady in this
reference frame). Figure 3(a) is the data in Fig. 2(b) shifted
to the wave reference frame. The corresponding velocity of
the tracked wave is displayed in Fig. 3(c). For these figures,
we nondimensionalize time as τ = t (Dwave/L), where L is the
length of the periodic domain and Dwave is the speed of the
wave in its mode-locked state.

In Fig. 3(a), an observed transition from one wave to two
waves during the startup transient is shown. In this mode
transition, after a point of criticality, a second detonation wave
forms and begins to travel around the annulus. However, the
spacing between the two waves in the annulus is asymmetric,
causing an imbalance in the amount of propellant consumed
by each of the waves. The wave with coordinate θ1 trailing
the preceding wave θ2 exists with a phase difference of � =
θ2 − θ1 < π [see Fig. 2(a)]. At that instant, assuming the
propellant refresh rate is approximately constant, the trailing
wave has less than half of available propellant in the chamber
for its consumption. The local balance of gain (heat release),
gain recovery (injection and mixing), and dissipation (energy
ejection processes) is not satisfied. Since propellant heat re-
lease directly affects the speed of a detonation, the trailing

(a)

(b)

(c)

FIG. 4. Representative destruction of a wave (a) in an experiment
and (b) in a simulation of the model, shown in the wave-attached
reference frame as pseudocolor plots of amplitude (arb. units). Os-
cillations in � grow exponentially until one wave overruns the other.
For a given injection function β and loss ε, the oscillation period and
phase difference growth rate are parameterized by the change in s and
up. (b) s = 2 with a −20% change in s applied to the mode-locked
state. The instantaneous speeds of the waves along � = 0 in (a) and
(b) are given in (c).

wave begins to decelerate. The preceding wave, however,
can process the remaining portion of available propellant and
accelerates through this excess. In this manner, these two
waves behave dispersively, where they seek a stable state with
maximum and symmetric phase differences. For the single-
wave portion in Fig. 3(a), the quasisteady wave has a velocity
that is 20% to 30% below the Chapman-Jouget velocity for the
propellant mixture. This metric is a direct observable of the
energy that is necessary to sustain the detonation wave subject
to dissipation and gain recovery in the combustion chamber.
As the transition to two waves occurs and the dynamics settle
to a steady state, the wave speed reduces to about 90% of the
single-wave speed.

The opposite scenario occurs upon ramp-down of the
propellant feed at the end of each experiment. Figure 4(a)
exemplifies a ramp-down transition of 2 waves to 1 wave
over the span of about 10 ms. The two waves compete for
the increasingly scarce propellant, as opposed to the case
of excessive propellant exhibited in Fig. 3(a). Because of
an initial perturbation in phase difference, the waves begin
to exchange strength (speed and amplitude) in a regular
fashion, producing the exponential instability growth. As the
phase difference oscillations grow, a catastrophic interaction
between the waves occurs, resulting in the overrunning of the
weaker wave by the stronger wave during one of the large-
amplitude oscillations. After the bifurcation, the velocity of
the remaining wave is about 10% higher than that of the wave
prior to the instability.

Wave instabilities that do not lead to a change in the
number of waves are common in the tested set of hardware.
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(a)

(b)

(c)

FIG. 5. Space-time history of mode-locked modulation of wave
speeds (a) in an experiment and (b) in a simulation, in the wave
reference frame. The instantaneous speeds of the waves along � = 0
in (a) and (b) are shown in (c). The accompanying spectra show clear
sidebands symmetric about the carrier frequency. The frequency
shown in the spectra is scaled by the average transit time of the
mode-locked wave, L/Dwave. The abscissa magnitude corresponds
to a count of the waves in the domain. As shown, the dominant
frequency is three waves with sidebands near two and four waves.

Figure 5 exhibits a periodic wave velocity and amplitude
observed in an experiment with three corotating waves. This
is a clear modulational instability as spectral sidebands ac-
company the carrier frequency corresponding to the mean
traveling wave velocity in the combustion chamber. This mode
of operation is stable in the sense that it does not lead to a
bifurcation of the number of waves unless the flow condition
is perturbed significantly.

Pulsating modes of operation have also been observed in
some experiments with very large injector areas (relative to
the area of the annular combustion chamber). This mode of
operation is characterized by a binary “on/off” behavior of
the injectors and, subsequently, mixing and combustion. The
oscillatory plane waves from an example pulsating mode are
given in Fig. 6.

III. A QUALITATIVE MODEL

We propose a model that captures the dominant physics in-
volved in the processes of wave formation, mode locking, and
mode bifurcations for further study of these phenomena. The
detonation analogs of Majda [6], Fickett [26], Rosales [27],
and Faria and Kasimov [28] have enabled the rigorous mathe-
matical description of detonation stability [29] and detonation
dynamics in one (limit cycles and chaos) and two dimensions
(cells and pattern formation). These analyses typically occur
in the Lagrangian, shock-attached framework under assump-
tions of complete combustion. We use the formulation of
Majda’s analog as a starting point as it sufficiently captures
the dominant shock-chemistry interplay found in detonation
waves. Specifically, we aim to recast Majda’s analog in terms

(a)

(b)

(c)

(d)

FIG. 6. Space-time history of plane-wave pulsation mode of
operation (a),(b) in an experiment and (c),(d) in a simulation. Simu-
lation parameters are those listed in Table I with q0 = 6 and ε = 1.0.
The deactivation and reactivation of the injectors give rise to a
resonance between the combustion and propellant injection.

of autowave-producing variables [30,31]. Our model captures
the dominant physics of gain depletion, gain recovery, and
dissipation, whose structure is given by

∂η

∂t
+ η

∂η

∂x
= (1 − λ)ω(η)q0 + εξ (η), (1a)

∂λ

∂t
= (1 − λ)ω(η) − β(η, ηp, s)λ. (1b)

In keeping with the convention of the field of detonation
analogs, η(x, t ) is an intensive property of the working fluid
(here taken to be specific internal energy; see [6] and [32])
and λ is a combustion progress variable (λ = 0 is unburnt and
λ = 1 is complete combustion). Gain is modeled with a heat
release function ω(η) with heat release q0 as a proportionality
constant. Losses are modeled with a generic loss function
εξ (η), where ε is a loss magnitude constant. Lastly, the gain
recovery is dictated by the injection model β(η, ηp, s), where
ηp and s are injection parameters. The domain is restricted to
a one-dimensional (1D) periodic line in the Eulerian reference
frame. A control volume-based derivation of the model system
is provided in Appendix A.

The exact functional forms of the gain depletion, gain
recovery, and loss terms are not critical to produce mode-
locked rotating detonation waves. However, the inclusion
of each of these terms in the model system is critical: to
omit any one will destroy the balance required to provide
the necessary properties and dynamics relevant to RDEs. In
the opinion of the authors, presented herein are the simplest
viable functional forms to provide the dynamics observed in
real engines. These terms undoubtedly require modifications
and/or parameter changes to mimic a specific set of hardware,
but the underlying physical principles modeled by these terms
are hypothesized to persist among all RDEs.
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A. Gain depletion

The heat release function ω(η) is dictated by a simpli-
fied version of Arrhenius kinetics with a explicitly defined
“ignition energy” ηc, activation energy α, and preexponential
factor k,

ω(η) = ke( η−ηc
α

). (2)

For a steadily traveling detonation wave, the expectation is
that this gain term dominates the dynamics, providing a rapid
release of energy into the domain saturable only by exhaustion
of fuel or another nonlinear effect (such as a nonlinear loss
term).

B. Losses

The loss of energy in the domain is taken to be a generic
restoring force to a natural state by thermal conduction or
energy advection processes. Assuming the working fluid has
constant specific heat at constant volume (cv), one can relate
states of internal energy (η) to temperature (T ) by η2 − η1 =
cv (T2 − T1). Therefore, we model heat conduction by

εξ (η, η0) = ε(η0 − η), (3)

where the proportionality constant ε assumes responsibility
for the specific heat of the fluid and heat transfer coefficient,
and η0 is the ambient state of the system.

Advection of energy away from the domain is modeled by
an imposed axial pressure gradient that ejects flow from the
combustor (see Appendix B), whose form is given by

εξ (η) = −εη2. (4)

These loss functions are generic in that the relative signif-
icance of losses compared to gain can be modified by the
proportionality constant ε. In this paper, we explore both
linear (heat conduction) and quadratic (energy advection)
losses independently. For simplicity, we take η0 = 0 such that
the loss terms become −εη or −εη2 in the linear and quadratic
loss cases, respectively.

C. Gain recovery

The gain recovery term β(η, ηp, s) works against gain
depletion to “refill” the domain towards a λ = 0 state. In
gaseous injection, injectors are typically “choked” orifices,
meaning that perturbations in the combustor cannot influ-
ence the injection process as no characteristics can travel
upstream past the choke point. However, in the presence of
large-amplitude pressure oscillations (such as those present in
detonation engines), the peak pressures may be comparable
to those of the propellant plenums. This implies a loss of the
sonic condition of the injectors. Should this occur, the state
of the combustor becomes coupled to the injection scheme
and can lead to unsteady behavior. In RDEs, the pressures
generated by the detonation waves can be an order of mag-
nitude larger than the propellant feed pressures. The injectors
are periodically blocked (cutoff of injection) and backflow
may be induced into the plenum chambers, further disrupting
the injection process. To include these phenomena into the
model, we use an activation function-based injector term that
responds to the periodic forcing by the rotating detonation

FIG. 7. The influence of the state of the domain, η, on the gain
recovery function β following the functional form of Eq. (5). The
solid line is the activation function used for simulations in Sec. IV.

waves. The proposed activation function is given by

β(η, s) = s

1 + er(η−ηp)
, (5)

where s is a parameter analogous to injection area, ηp is the
injector “plenum pressure,” and r is a parameter adjusting
the “steepness” of the activation function. Increasing injection
area (s), plenum pressure (ηp), or both increases the mass
flux into the engine. However, the dynamic response to these
increases differs significantly. In the case of a high plenum
pressure (a “stiff” injector), the influence of the detonation
pressure becomes insignificant and the injector can deliver a
consistent supply of propellant. In the case of a large injection
area (holding the plenum pressure constant), the injectors
are susceptible to large fluctuations of mass flux in response
to this periodic forcing. Example activation function-based
injector models are shown in Fig. 7. Mixing is assumed to
be exponential with time: in the absence of combustion, λ

asymptotically approaches 0.

IV. NUMERICAL EXPERIMENTS

Numerical simulations are performed with the PYCLAW

open-source finite volume software [33] on a converged grid.
The parameters used for the numerical simulations in this ar-
ticle are given in Table I. Exceptions are noted as appropriate.

A. Planar fronts

We first examine the existence of planar solutions to the
model system, including limit cycle behavior. The initial value
problem was solved with initial condition η(x, 0) = 1 and
λ(x, 0) = 0.75. A plane wave oscillates about the point in
phase space where gain depletion and gain recovery match
[βλ = (1 − λ)ω(η)], subject to the balance of energy input
and energy rejection and dissipation [εξ = (1 − λ)ω(η)q0].
Low-energy oscillations decay to a planar deflagration front
without oscillations. Pulsating fronts, such as those seen in
recent experiments, are characterized by periodic “activation”

TABLE I. Simulation parameters.

L q0 α ηc η0 ηp k ε r DCJ

2π 1.0 0.3 1.1 0 0.5 1 0.11 5 2
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FIG. 8. Nucleation and mode locking of detonations from a single pulse initial condition (s = 3.5). Vertical lines in the θ − t diagram
correspond to the shown simulation snapshots. The initial sech-pulse rapidly transitions to a CJ detonation. In regions where η is low, the
injectors behave steadily. However, as the wave reaches its tail, η is everywhere elevated and the injection is severely curtailed. A second wave
forms from the self-steepening of parasitic deflagration. After wave nucleation, the two waves behave dispersively and their phase differences
approach π .

and “deactivation” of the injectors, first resonating with the
heat release and subsequently saturated by the loss mecha-
nisms. An example of a plane-wave pulsating front can be
seen in Fig. 6(d) for a single location in the annulus through
time. The corresponding space-time history for the pulsating
mode of operation is given in Fig. 6(c). Pulsating plane-
wave solutions of the full model are stable for planar initial
conditions, but are unstable to perturbations as they grow into
traveling detonation waves.

B. Traveling waves

For traveling wave simulations, the initial value prob-
lem with initial condition η(x, 0) = (3/2)sech2(x − xo) and
λ(x, 0) = 0 was solved under varying refill (s, holding ηp

constant) conditions and with linear and nonlinear loss terms.
As in [6], we find the analogous CJ velocity of the reduced

system (the inviscid, steady wave in which all energy has been
released to the wave in a infinitesimally thin reaction zone).
This steady wave speed is defined as the minimum speed that
fulfills the Rankine-Hugoniot conditions for the prescribed
heat release. In the absence of losses, this minimum speed (CJ
velocity, DCJ ) is DCJ = (η1 + q0) + √

q0(q0 + 2η1), where η1

is the upstream state of a steady, shock-attached framework
of the Majda model. In the case of η1 = 0, the speed of
the CJ wave becomes DCJ = 2q0. This speed is the metric
upon which the traveling waves in the proposed model are
benchmarked.

The evolution of a typical simulation is given in Fig. 8.
Because the initial sech-pulse is well above ηc, the medium
locally and rapidly releases heat. The wave steepens and forms
a detonation. This initial pulse travels at the CJ speed until
it reaches its tail, at which point the wave begins to rapidly
dissipate and decelerate: the limited amount of gain recovery
cannot continue to sustain the wave at DCJ = 2q0. Addition-
ally, the rapid heat release (compared to the timescale of the

dissipation of energy) of the initial CJ wave acts to raise the
average η in the domain substantially above the ambient value
η0 and ignition value ηc. In this manner, the effective activation
energy of the active medium is lowered and parasitic deflagra-
tion, or slow-scale heat release not associated with the travel-
ing waves, is promoted in the entirety of the domain. Because
the transit time of the initial traveling wave has been increased
through dissipation, the parasitic deflagration has ample time
to complete the deflagration-to-detonation (DDT) process and
form multiple, lower-amplitude detonation waves.

To induce a mode transition from an already mode-locked
state, a step change in s is applied to the steady state, inducing
a bifurcation. An example of such a transition is shown in
Fig. 4(b), where two initially mode-locked rotating detonation
waves become unstable and destructively bifurcate. Low-
amplitude phase difference oscillations grow exponentially,
much like the experimental observations in Fig. 4(a). During
the period of oscillations, the two waves exchange strength
(amplitude) and speed. For a given injection function β and
loss ε, the instability growth rate and oscillation period are
parameterized by the severity of the applied step in s and ηp.

Upon nucleation of a new wave or destruction of an
existing wave, the collection of waves in the chamber act
dispersively, eventually forming a mode-locked state. The
spatial imbalance of gain and dissipation in the domain allows
for the characteristic modulation of detonation wave speed
and amplitude. In transients of gain recovery, such as when
the mass flow rate of an experiment is not constant, a local
imbalance of the gain and dissipation is seen that either
nucleates a new wave or amplifies asymmetric perturbations
between waves, eventually causing a catastrophic destructive
interaction.

Bifurcation diagrams showing the dependence of the num-
ber of waves, wave speed, and wave amplitude on s and the
loss term are shown in Fig. 9 for the parameters of Table I. As
s is increased from zero, steady planar deflagration fronts form
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FIG. 9. Number of waves and wave speed through a sweep of
the bifurcation parameter s for linear and nonlinear loss terms. The
final states have been approached from “above,” i.e., via a relaxation
of three waves to two or one wave. In the transition from one to
two waves for the nonlinear loss case, a series of period-halving
bifurcations increase order in the system to eventually form two
mode-locked waves with zero oscillation in the phase difference. The
qualitatively similar experimental bifurcation structure is published
in Bykovskii et al. [11]. The energy balance dynamics in laser
cavities produce a similar cascaded bifurcation structure, including
chaotic interpulse regimes [9,34].

for small values. Once the value of s can support a traveling
wave, the waves follow the staircase behavior in Fig. 9, where
the wave speed increases until another bifurcation occurs.
These waves nucleate from the parasitic deflagration through
a DDT process [as in Figs. 3(b) and 8]. At each bifurcation to
an increased number of waves, there is a drop in wave speed,
though this drop in speed becomes less severe as the number
of waves increases. This phenomenon is consistent with the
presented experiments as well as the observations of many in
the literature [11]. In the limit as s becomes large, the number
of waves increases until the wave fronts are low in amplitude
(relative to the mean state of the domain) and merge into a
planar deflagration front.

For sweeps of the bifurcation parameter s with an imposed
quadratic loss, a series of period-halving bifurcations increase
order in the system (from chaotic propagation to constant
wave phase differences) during the transition from one to
two waves [Fig. 9(d)]. In the regime of chaotic propagation,
there is aperiodic nucleation, destruction, and modulation of
the waves. As the gain is increased, the waves transition
to periodic modulation of wave speed and phase difference.
This characteristic modulation is also seen in the transition
from two to three waves (as in Fig. 5). These intermediate
modes are stable (persist for long durations). A significant
degree of hysteresis is also noted in the regions near mode
changes. Approaching criticality for any bifurcation-inducing
parameter from above or below gives different behavior near
the bifurcation. For example, a portion of the chaotic region
in Fig. 9 exhibits single-wave and dual-wave chaotic multista-
bility depending on a single- or double-wave initial condition.

V. DISCUSSION

The model system presented in this paper qualitatively
reproduces the nonlinear dynamics of collections of rotating
detonation waves observed in experiments. The proposed
system is an adaptation of the Majda detonation analog to
a periodic domain with gain depletion, gain recovery, and
generic restoring forces included in the system. These terms
sufficiently mimic real-engine processes such as heat release,
propellant injection, and rejection of energy to an ambient
condition. While we have neither explicitly captured all phys-
ical processes involved in real engines, nor perfectly identified
the functional forms for the included terms, we do claim
to have identified the dominant balance physics involved in
the nonlinear dynamical behavior seen in real engines. These
phenomena include wave nucleation (Fig. 3), mode locking
of multiple waves (Fig. 8), wave destruction (Fig. 4), wave
modulation (Fig. 5), and pulsating plane waves (Fig. 6).

In this section, we wish to emphasize several of the
key findings of this study. First is the establishment of the
communication pathways and dispersive properties of the
collection of waves within the domain. Second, we establish
the acceleration of chemical kinetics, subject to weak loss
terms, as the physical mechanism responsible for parasitic
deflagration and wave-front bifurcations. Lastly, we relate the
rotating detonation wave phenomenon to the more established
field of mode locking in driven-dissipative systems.

A. Communication pathways

In a steady operation of an RDE and in the mode-locked
state of the proposed model system, a number of traveling
detonation waves coexist in the periodic domain with max-
imum possible phase differences between the waves. Sup-
posing these traveling waves to be detonations, there is an
implied lack of communication between the waves: deto-
nations travel supersonically and, if steady, in a condition
where the combustion products are sonic relative to the wave
front. For the waves to behave dispersively, as in Figs. 3
and 4 near the bifurcation points, implies a significant com-
munication pathway or coupling mechanism, in an apparent
contradiction to standard detonation theory. We note that the
propellant injection scheme is responsible for providing a
consistent combustible medium through which the detona-
tions can propagate. However, it is known that detonations
induce blockages or backflow into propellant plenums. This
phenomenon is captured in our proposed functional form of
β in Eq. (5), providing a necessary feedback mechanism
between the detonations and the injection scheme. In this
manner, the presence of all detonation waves is impressed
upon the dynamic response of the injection scheme and long-
range communication is established, allowing for dispersive
behavior of the detonation waves. We therefore conclude that
the coupling of the injectors and the detonation waves is the
physical mechanism that drives the observed dynamics in
both experiments and in the proposed model, subject to the
constraint of the generic losses inside of the chamber. In the
presence of this nonlocality, domain periodicity, and nonlinear
energy balance, chaotic solutions have been found to exist, as
shown in Fig. 9.
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(a) (b)

(c) (d)

FIG. 10. Integrated pixel intensity displayed through θ for an
experiment through which a mode transition from (a) one to (b) two
waves occurs. A similar induced bifurcation in a simulation is
displayed in (c) and (d). Of note is (i) the decrease of wave ampli-
tude between one and two waves, (ii) the increase in background
luminosity (or, in the simulation, base state of η), and (iii) the local
increase of the magnitude of the state preceding the waves. The
wave speeds decrease about 10% through the bifurcation, though this
decrease is attributable to both a reduction in wave amplitude and an
increase in parasitic deflagration. Once the parasitic deflagration can
self-steepen to form a shock (see Fig. 8), a bifurcation of the number
of waves occurs.

B. Bifurcations and Arrhenius kinetics

The presence of parasitic deflagration and weak restoring
forces are the key physical mechanisms identified in the model
system for inducing bifurcations. Within the model system,
the timescale for detonative energy release is significantly
shorter than those of deflagration and the generic losses.
Therefore, at the onset of detonation, there is the local accu-
mulation of energy that will take a significant amount of time
to dissipate to return the domain to a natural state (longer than
the time of flight of a traveling detonation wave). However,
gain depletion is governed by simplified Arrhenius kinetics,
given by Eq. (2), where the base state of the domain, η, is
now elevated because of the slow-scale energy dissipation. In
effect, the weak restoring force acts to accelerate kinetics in
the chamber. Analogous physical mechanisms in real engines
include preheating of the propellant and insufficient expulsion
of burnt propellant from the combustion chamber. These phe-
nomena lead to an increase of temperature in the domain and
subsequently faster kinetics and an increased susceptibility to
parasitic deflagration.

To exemplify these phenomena, Fig. 10 includes snapshots
in time of the waveforms within the domains of an experi-
ment and a simulation of the model system. Once parasitic
deflagration preceding the detonation can self-steepen, a new

FIG. 11. Increasing the magnitude of the loss coefficient ε from
0.11 to 0.3 increases the traveling wave speed to 117% (up from
74%) of the CJ value referenced to an ambient state of η0 = 0. The
simulation is otherwise identical to that of Fig. 8.

wave is nucleated and begins the mode-locking process. With
an additional wave, the base state of the domain is elevated
further and parasitic deflagration is exacerbated. Although the
wave speeds before and after bifurcations in the model system
are comparable (of the order of 10% jumps in velocity), the
developed speeds are the manifestation of both changes in
wave amplitudes and the mean combustor state. Therefore, to
increase wave speeds and the proportion of heating via deto-
nation (compared to deflagration) is analogous to increasing
the strength of the restoring force. For example, increasing
the restoring force coefficient from ε = 0.11 to 0.3 of the
simulation in Fig. 8 results in a single wave traveling at 117%
of the CJ speed of the propellant (compared to two waves each
traveling at 74% of the CJ speed). The waveform is shown
in Fig. 11. Note that this is not an overdriven detonation, but
rather a reference to the CJ wave with a nonelevated base state
of the domain (η0 = 0).

C. Mode-locking and bifurcations in laser systems

The electromagnetic field in an optical fiber laser cavity
is described by the nonlinear Schrödinger (NLS) equation—a
slowly varying envelope field approximation that relates the
dominant balance physics of wave dispersion and nonlinearity
[8]. The NLS equation admits soliton solutions, or wave-
forms, where nonlinearity and dispersive phenomena exactly
balance, allowing for stable and steady wave propagation. In
ring fiber lasers (Fig. 12), these soliton pulses are subject
to localized gain and loss, as imposed on the system by an
external energy feed source (pump) and energy sink (an output
coupler and saturable absorber, for example).

In such laser configurations, the timescales of gain absorp-
tion can be significantly different than that of the gain recov-
ery. The implication is that an intensity discrimination exists:
the pulses in the cavity experience pulse-shaping phase shifts
biased towards higher-intensity gain due to a saturable absorp-
tion mechanism [8]. In this manner, should multiple pulses
exist in the system, the pulses establish a communication link
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FIG. 12. Ring fiber laser configuration with localized gain
(pump) and loss (output coupler where a fraction of the energy is
directed out of the system). The collection of soliton pulses within
the cavity are formed by the intensity discrimination (nonlinear loss)
provided by the saturable absorber. The solitons seek maximal and
symmetric phase differences between one another in an analogous
process to that of rotating detonation waves.

via the gain and loss mechanisms. The pulses become mode
locked in that they experience phase shifts (once per round trip
through the ring fiber) that adjust the interpulse spacing such
that through time, the pulses experience equivalent amounts
of gain [35].

Should the gain in the system be increased, the local
balance of nonlinearity and dispersion no longer holds and
the soliton is destabilized. Specifically, as a soliton pulse is
subject to increasing gain, its spectral width grows beyond
the gain bandwidth and becomes unstable. After a point of
criticality, the pulse will destabilize and split into two separate
pulses of lower amplitude and smaller bandwidth. These
pulses become mode locked through the same phase-shifting
processes.

The balance between gain, losses, dispersion, and nonlin-
earity in the fiber ring laser system dictates the quasisteady
behavior of the pulses and the interpulse dynamics, includ-
ing bifurcations. Each component of this canonical balance
physics has an analogous counterpart in the RDE. The balance
between dispersion and nonlinearity of the soliton pulse is
analogous to the solitary detonation wave—a stably traveling
wave whose shape is governed by heat release and injection
dynamics. Laser cavity losses via dissipation and output cou-
pling are analogous to ejection of energy through advection
and/or heat conduction. The competition for gain between
pulses is also present in both the laser cavity [35] and the
RDE.

VI. CONCLUSION

The significance of the proposed model is twofold. First,
although we claim no engineering predictive capabilities, our
model does relate the dominant physics of gain depletion,
gain recovery, and energy dissipation of rotating detonation
waves in a simple mathematical framework that recovers,
qualitatively, the nonlinear dynamics and bifurcation structure
of these waves. Our model is a significant departure from the
state-of-the-art computational fluid dynamic simulations of
rotating detonation engines. However, this departure allows
for a broad and comprehensive exploration of the physics

governing wave behavior in a context that is hardware inde-
pendent. Such an investigation is not currently feasible with
high-fidelity, hardware-specific computational fluid dynamic
simulations.

Second, the experimental observations and model extend
the well-established physical phenomenon of mode locking
to rotating detonation waves. The energy balance in the RDE
combustion chamber is generic, producing mode-locked states
that interact through the global gain dynamics. These dom-
inant balance physics are also observed in well-established
laser systems where an analysis of the energy balance pro-
duces the global bifurcation structures [9]. Possessing knowl-
edge of the mode-locking process and bifurcation structure
of the waves is crucial to the development and deployment
of the rotating detonation engine. Because the amount of
performance-inhibiting parasitic deflagration is directly tied to
the mode of operation, effective performance metrics can be
defined (ratio of heating from detonation versus deflagration,
for example) and optimized with respect to model parame-
ters. Furthermore, although the presented model is primitive,
stability criteria can be derived and actuation and control
schemes can be conceptualized to drive the system to a stable,
high-performing state.
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APPENDIX A: CONTROL VOLUME DERIVATION

We follow a derivation process laid out by Mi and Higgins
[32] with the key difference being our inclusion of a second
dimension, as depicted in the control volume in Fig. 13. The
aim is to capture the dynamics of an intensive property, here
taken to be internal energy (denoted η), through time. The
time rate of change of η in the control volume is equal to the
difference in fluxes into and out of the volume. Additionally, a
source term mimicking chemical heat release releases energy
within the domain. Mathematically,

Ėcv = �x�y[qλ̇] + �y[ f (ηx ) − f (ηx+�x )]

+�x[ f (ηy) − f (ηy+�y)], (A1)

FIG. 13. 2D control volume for model derivation.
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where x and y are coordinates in the circumferential (periodic)
and axial directions, respectively, q is the propellant specific
heat release, λ is a combustion progress variable, and f (η) is
the flux of η across a boundary. The property η is defined to
be the specific internal energy E

�x�y .
Dividing by the dimensions of the control volume, one

arrives at

η̇cv = qλ̇ + f (ηx ) − f (ηx+�x )

�x
+ f (ηy) − f (ηy+�y)

�y
. (A2)

As in Majda’s original paper [6] and in Mi and Higgins’
derivation [32], we choose the simplest flux to satisfy the
convexity required for the Lax entropy condition, i.e., that
f (η) = 1

2η2. Taking the limits as �x → 0 and �y → 0 and
moving the spatial terms to the left-hand side yields

∂η

∂t
+ ∂ 1

2η2

∂x
+ ∂ 1

2η2

∂y
= q

∂λ

∂t
. (A3)

APPENDIX B: QUADRATIC LOSSES

Because of the restriction of the domain to the periodic 1D
line in the x coordinate, the axial (y) gradient will be modeled.
The control volume is chosen to exist adjacent or attached to
the front endwall of a RDE. At this front endwall, the flux of η

entering the domain is assumed to have a negligible effect on
the evolution of energy in the domain when compared to the
circumferential flux terms and source term. As such, f (ηy) =
f (ηy=0) ≈ 0, so the approximation of the gradient becomes

∂ 1
2η2

∂y
≈ lim

�y→0

1
2η2

y+�y − 0

�y
. (B1)

To simplify further, we assume that the detonation waves
in real engines are approximately planar and the properties
immediately before and after the passage of a wave are
approximately uniform. Therefore, we assume that from the

axial location y = 0 (attached to the front endwall of the
engine) to y = yc (where yc is the height of the detonation
wave), the properties are uniform. Exploiting this approximate
uniformity, the limit of Eq. (B1) is taken to �y → yc (instead
of zero). Any further reduction in the value of �y will,
in effect, overpredict the magnitude of the gradient. This
simplified limit now takes on a polynomial form,

lim
�y→0

1
2η2

y+�y

�y
≈ lim

�y→yc

1
2η2

�y
= ε0

1

2
η2 = εη2, (B2)

where ε = 1
2ε0 are constants reflecting the severity of the axial

gradient of flux through the engine. Note that the flux function
f (η) = 1

2η2 acts as an equation of state relating the property η

to another whose gradient drives flow—this derived property
1
2η2 is analogous to pressure in the momentum equation for
fluid flows. In real engines whose axial flow is thermally
choked (the Mach number at the exit of the engine is 1),
the axial pressure gradient near the front wall of the RDE is
proportional to pressure at that location, i.e., ∂ p

∂y |y=0 = cpy=0,
where c is some parameter intrinsic to the engine. Experi-
mental evidence supports this assumption; for this, we refer
to [36]. The proposed functional form of the axial gradient in
Eq. (B2) enforces the same behavior.

The equation governing the evolution of energy in the
circumferential domain is now given as

∂η

∂t
+ η

∂η

∂x
= q

∂λ

∂t
− εη2. (B3)

This is equivalent to the inviscid Burgers’ equation with
a chemical reaction source term and loss of energy to an
ambient condition. The physical mechanism for the loss is
the lateral relief from lack of confinement on one side of the
traveling waves. Regularization with a viscous term (ν ∂2η

∂x2 )
completes the comparison to the classic Burgers’ equation,
though for this study we exclude viscous effects.
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