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We consider a formulation for the Hopf functional differential equation which governs statistical solutions
of the Navier-Stokes equations. By introducing an exponential operator with a functional derivative, we recast
the Hopf equation as an integro-differential functional equation by the Duhamel principle. On this basis we
introduce a successive approximation to the Hopf equation. As an illustration we take the Burgers equation and
carry out the approximations to the leading order. Scale invariance of the statistical Navier-Stokes equations
in d dimensions is formulated and contrasted with that of the deterministic Navier-Stokes equations. For the
statistical Navier-Stokes equations, critical scale invariance is achieved for the characteristic functional of the
dth derivative of the vector potential in d dimensions. The deterministic equations corresponding to this choice
of the dependent variable acquire the linear Fokker-Planck operator under dynamic scaling. In three dimensions
it is the vorticity gradient that behaves like a fundamental solution (more precisely, source-type solution) of
deterministic Navier-Stokes equations in the long-time limit. Physical applications of these ideas include study
of a self-similar decaying profile of fluid flows. Moreover, we reveal typical physical properties in the late-stage
evolution by combining statistical scale invariance and the source-type solution. This yields an asymptotic form
of the Hopf functional in the long-time limit, improving the well-known Hopf-Titt solution. In particular, we
present analyses for the Burgers equations to illustrate the main ideas and indicate a similar analysis for the
Navier-Stokes equations.
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I. INTRODUCTION

The problem of Navier-Stokes turbulence remains a major
challenge in theoretical physics and mathematics. In particular
deriving the statistical properties of solutions to the Navier-
Stokes equations (i.e., the governing equations) in a purely
deductive manner has been regarded as a difficult task. On the
other hand there are attempts to describe statistical properties
of turbulence on the basis of approximations relying on phys-
ical ideas. In this paper we consider and revisit a formulation
from first principles.

Roughly speaking, there are two different ways of writing
down equations that govern statistical solutions of the Navier-
Stokes equations. One method uses the characteristic func-
tional of the velocity field as the basic variable, which is the
Fourier transform of the probability measure of the velocity,
and its governing equation is called the Hopf equation. The
other method deals directly with the probability measure of
the velocity field and the corresponding Liouville equation
is called the Hopf-Foias equation (see, e.g., [1–9]). See also
[10–20] for related works and [21–38] for mathematical
works.

It is fair to say that methods of solving the Hopf equation
are at the moment underdeveloped. There are at least two
different approaches to determine the Hopf functional. One is
to try solving the functional equation as is, taking realizability
into account. This approach faces formidable difficulty. The
other one starts from deterministic solutions of a nonlinear
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partial differential equation (PDE), and after taking the aver-
age we can try to determine a functional form of the Hopf
functional at least asymptotically. While the latter approach
is available only when the deterministic PDE is explicitly
solvable, it does give a hint as to how the functional actually
behaves. As our understanding of the Hopf equation is limited
at the moment, it makes sense to combine both approaches.

In view of physical applications, we recall that self-similar
solutions often reveal typical properties of nonlinear problems
in fluid mechanics [39]. To exemplify our approach, here we
first consider the Burgers equations and indicate extensions to
handle the Navier-Stokes equations. The Burgers equations on
their own footing appear as a physical model for compressible
fluid motion (see, e.g., [40]). We show in particular how the
source-type solution (to be defined below) determines the
Hopf functional for the Burgers equations in its long-time
limit through self-similarity, when we choose the dependent
variable suitably. This generalizes the well-known expression
of the Hopf-Titt solution of the final period decay, which
totally neglects the nonlinear terms. It should be noted that
an explicit form of the source-type solutions for the multi-
dimensional Burgers equations is obtained as a by-product,
which has not been reported before. We will clarify which
ideas carry over to the Navier-Stokes equations in two and
three dimensions.

The purpose of this paper is twofold. First, we will recast
the Hopf functional differential equation (FDE) into an inte-
gral equation by introducing a kind of Duhamel principle and
thereby yielding successive approximations systematically.
In so doing we will make use of symbolic manipulations.
Second, we will clarify the concept of scale invariance for the
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statistical Navier-Stokes equations by extending a previous
work by Rosen [41] and combine it with the source-type
solutions of the deterministic equations.

The rest of this paper is organized as follows. In Sec. II,
after reviewing its scaling property, we convert the Hopf
equation for the three-dimensional (3D) Navier-Stokes equa-
tions into an integral equation with the use of an exponential
operator. We introduce a successive approximation on this
basis. In Sec. III, the dynamic scaling property for the one-
dimensional (1D) statistical Burgers equation is described.
In Sec. IV, the dynamic scaling property for d-dimensional
statistical Navier-Stokes equations is described. In Sec. V,
the implications of the source-type solutions on the late-stage
behavior of the Hopf functional are discussed. Section VI is
devoted to a summary and outlook. In Appendix A, a formal
derivation of the action of the exponential operator is stated.
In Appendix B the leading-order approximation is presented
for the Burgers equation. In Appendix C, an error estimate of
the successive approximation is derived. Finally, Appendix D
recalls the self-similar solution of the Burgers equation.

II. HOPF EQUATION FOR THE BURGERS EQUATION

There are many publications on the Hopf equations, for
example, [42–49]. We will revisit this equation from a fun-
damental viewpoint. To illustrate the basic idea, we mainly
consider the Burgers equation for simplicity. Statistical solu-
tions of this equation have been studied in many works, such
as [50–58].

The 1D Burgers equation written in standard notations

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(1)

satisfies invariance under the following set of (static) scaling
transformations:

x → λx, t → λ2t, u → λ−1u,

where λ(>0) is an arbitrary parameter. Hence, we have the
following property.

Property 1. If u(x, t ) is a solution to (1), so is λu(λx, λ2t ).
The characteristic functional for the velocity is defined by

�[θ (x), t] =
〈
exp

(
i
∫ ∞

−∞
u(x, t )θ (x)dx

)〉
,

where 〈 〉 denotes an ensemble average taken with respect to
an initial velocity distribution. It satisfies the FDE

∂�

∂t
= L�, (2)

where [59]

L� ≡ i

2

∫
θ (x)

∂

∂x

δ2�

δθ (x)2
dx + ν

∫
θ (x)

∂2

∂x2

δ�

δθ (x)
dx.

The Hopf functional � satisfies some realizability condi-
tions. It is required that

�[θ (x)]|θ (x)≡0 = 1

and positive-definiteness

n∑
k=1

n∑
l=1

�[θk (x) − θl (x)]ckc∗
l

=
〈∣∣∣∣∣

n∑
k=1

ck exp

(
i
∫

u(x, t )θ (x)dx

)∣∣∣∣∣
2〉

� 0

hold for n = 1, 2, 3, . . . . We are interested in solutions of (2)
that satisfy those conditions at any time t � 0. Even though
it is a linear equation, no general method for its solutions is
known.

Scale invariance of the Hopf equation for the 3D Navier-
Stokes equations has been studied in [41]. For the statistical
solutions of the 1D Burgers equations, the corresponding
argument goes as follows. Under the following set of trans-
formations,

θ (x) → θ (λx), u(x) → λu(λx),

where λ(>0) is an arbitrary parameter, the Hopf equation
becomes

∂�

∂t
= λ2L�[θ (λx), t].

This can be made invariant by scaling the time variable as
t → λ−2t . Hence, we have the following property.

Property 2. If �[θ (x), t] is a solution to (2), so is
�[θ (λx), λ−2t].

In particular, let us consider the heat diffusion equation

∂u

∂t
= ν

∂2u

∂x2

by ignoring the nonlinear term of the Burgers equation. The
corresponding FDE reads

∂�

∂t
= ν

∫
θ (x)

∂2

∂x2

δ�

δθ (x)
dx,

which can be solved explicitly [1,2] as

�[θ (x), t] = �0

[
1√

4πνt

∫
exp

(
− (x − y)2

4νt

)
θ (y)dy

]
≡ �0[exp (νt	)θ ], (3)

where 	 = ∂2

∂x2 denotes the Laplacian. This is called the Hopf-
Titt solution and it follows from the self-dual property of gt :

(gt ∗ u0, θ ) = (u0, gt ∗ θ ), (4)

where gt (x) = 1√
4πνt

exp (− x2

4νt ) denotes the heat kernel and

( f , g) = ∫
f (x)g(x)dx an inner product. In this case, the

characteristic functional does not essentially change its form,
rather its argument develops following a heat flow. This
method of solutions may be regarded as a FDE version of the
method of characteristics (see, e.g., [60–62]).

We now consider an operator D, defined formally by

D ≡
∫

dxθ (x)
∂2

∂x2

δ

δθ (x)
(5)
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and write the above solution heuristically (symbolically) as
follows:

�[θ (x), t] = exp

(
νt

∫
dxθ (x)

∂2

∂x2

δ

δθ (x)

)
�0[θ ]

≡ exp (νtD)�0[θ ].

In other words we define D by its action on �[θ ] as follows:

exp (νtD)�[θ ] ≡ �[exp (νt	)θ ]. (6)

Note that (5) is a purely symbolic notation the meaning of
which is given by (6).

We may regard the operator on the left-hand side as a func-
tional version of the “shift operator” on the basis of the above
solution [63]. In other words, we turn a particular solution
(3) into a definition of the new operator D. Its meaning is
to update all the arguments, θ (x) in this case, in the operand
functional by convoluting the heat kernel.

With this understanding, we can now recast the Hopf
equation as follows:

exp (νtD)
∂

∂t
exp (−νtD)�[θ, t] = i

2

∫
θ (x)

∂

∂x

δ2�

δθ (x)2
dx.

(7)
This allows us to convert the Hopf equation into an integral
equation by a straightforward application of the Duhamel
principle:

�[θ (x), t] = exp (νtD)�0[θ ]

+ i

2

∫ t

0
exp (ν(t − s)D)

×
∫

θ (x)
∂

∂x

δ2�

δθ (x)2
[θ (x), s]dxds. (8)

It may be in order to compare (8) with the integral form
of deterministic Navier-Stokes equations [64]. Defining yet
another operator G by

G ≡ i

2

∫ t

0
ds exp (ν(t − s)D)

∫
dxθ (x)

∂

∂x

δ2

δθ (x)2
,

the integral form of the Hopf equation can be written

� = �̃ + G�,

where �̃ = �0[exp(νt	)θ ] is the Hopf functional for the heat
flow. See Appendix A for its formal derivation. It is noted
that the operator G depends on time t , while its dependence is
suppressed for simplicity. In passing we note that (8) resem-
bles the Lipmann-Schwinger equation in scattering theory in
quantum mechanics.

We are in a position to introduce a successive
approximation

�n+1 = �̃ + G�n (n = 0, 1, 2, . . .)

to derive a Neumann series for the Hopf functional

� = (I − G)−1�̃ = (I + G + G2 + G3 + . . .)�̃.

The zeroth-order approximation is given by the above (3). The
first-order approximation is given by

� ≈ (I + G)�̃,

which is reminiscent of the Born approximation in scattering
theory.

In order to apply this approximation in practice, numerical
evaluation of the above integral would be needed. Here we
restrict attention to leading-order analysis to see how the suc-
cessive approximations look and what conditions are required
to assure convergence of the successive approximations. Tak-
ing the initial Hopf functional of the following Gaussian form,

�0[θ ] = exp

(
−1

2

∫∫
Q(x′, x′′)θ (x′)θ (x′′)dx′dx′′

)
,

where Q(x′, x′′) = 〈u(x′, 0)u(x′′, 0)〉 denotes the initial veloc-
ity correlation function, we find

G�̃ = − i

2

∫ t

0
ds

{ −1

4πνs

∫∫∫
dxdx′dx′′eν(t−s)	θ (x)Q(x′, x′′)

x′ + x′′ − 2x

2νs
e− (x′−x)2

4νs − (x′′−x)2

4νs

+ 1

2πνs

∫
dxeν(t−s)	θ (x)

∫∫
dx′dx′′Q(x′, x′′)e− (x′−x)2

4νs eνt	θ (x′′)

×
∫∫

dx′dx′′Q(x′, x′′)
x′ − x

2νs
e− (x′−x)2

4νs eνt	θ (x′′)
}
�0[eνt	θ ], (9)

where we have denoted a function of x′′eνt	θ (x′′) = 1√
4πνt

∫
exp (− (x′′−y)2

4νt )θ (y)dy. See Appendix B for the derivations.
It is in order to derive a sufficient condition for the convergence of the above successive approximation. Define the operator

norm of G by

‖G‖ ≡ sup
�̃

‖G�̃‖
‖�̃‖ .

By a standard argument [65,66], provided that ‖G‖ < 1 we have

‖(I − G)−1 − (I + G + . . . + Gn−1)‖ �
∞∑

m=n

‖G‖m = ‖G‖n(1 − ‖G‖)−1 → 0, as n → ∞.
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Because

‖G�̃‖ � ‖�̃‖
2

∥∥∥∥∥
∫ t

0
ds

∫
eν(t−s)	θ (x)

∂

∂x

{
eνs(	′+	′′ )Q(x′, x′′) −

(∫
dx′′eνs	′

Q(x′, x′′)eνt	θ (x′′)
)2

}
dx

∥∥∥∥∥,

we find that

1

2

∥∥∥∥∥
∫ t

0
ds

∫
eν(t−s)	θ (x)

∂

∂x

{
eνs(	′+	′′ )Q(x′, x′′) −

(∫
dx′′eνs	′

Q(x′, x′′)eνt	θ (x′′)
)2

}
dx

∥∥∥∥∥ < 1

is sufficient for the convergence. It is shown in Appendix C
that the condition is satisfied, for example, if

C

ν

∥∥∥∥∂θ

∂x

∥∥∥∥
L1

‖Q(x, y)‖L1(R2 )

(
1 + ‖Q(x, y)‖L1(R2 )‖θ‖2

L∞
)

< 1,

(10)
where C is a nondimensional constant. In particular, it is
satisfied when ν is large.

III. DYNAMIC SCALING FOR THE HOPF EQUATION FOR
THE BURGERS EQUATION

In [41], scale invariance of the 3D Navier-Stokes equations
has been discussed and used to study a self-similar decaying
process of turbulence. We present a variant of its argument
adapted to one spatial dimension.

A. Dynamic scaling: Deterministic version

We will be interested in a decaying process of the Burg-
ers “turbulence.” We consider solutions with forward self-
similarity, where the relevant scaling parameter is

√
2a(t + t∗)

with a constant a(>0).
We generalize static scaling transformations using a dy-

namically rescaled time variable. Applying a set of dynamic
scaling transformations

ξ = x√
2a(t + t∗)

, τ = 1

2a
log

t + t∗
t∗

,

u(x, t ) = 1√
2a(t + t∗)

U (ξ, τ )

to the Burgers equation with 2at∗ = 1, we obtain

∂U

∂τ
+ U

∂U

∂ξ
= a

∂

∂ξ
(ξU ) + ν

∂2U

∂ξ 2
. (11)

Note that the dynamically scaled Burgers equation, when
linearized, coincides with a linear Fokker-Planck equation,
that is, a Fokker-Planck equation with a linear drift term,
associated with the Ornstein-Uhlenbeck process. It should be
noted that the associated stochastic process reaches station-
arity while Brownian motion (i.e., the Wiener process) does
not. Note the distinction in behaviors of D and D∗ below. It
has a conservative term in the form a∂ξ (ξU ), rather than the
drift term aξ∂ξU only. It is known that the solution to (11)
converges to a steady solution as τ → ∞. See Sec. V and
Appendix D for the steady solution.

B. Dynamic scaling: Statistical version

In principle there are two ways to derive the Hopf equation
for the dynamically scaled Burgers equation. We will show
that they actually lead to the same result. To avoid prolifer-
ation of notations, we use the same symbol � for the Hopf
functional for the dynamically scaled equations, which can be
distinguished by the argument.

Method 1. We first apply dynamic scaling and then move
onto a statistical description.

By (11) it is straightforward to check that the characteristic
functional of the velocity

�[θ (ξ ), τ ] =
〈
exp

(
i
∫ ∞

−∞
U (ξ, τ )θ (ξ )dξ

)〉
satisfies

∂�

∂τ
= i

2

∫
θ (ξ )

∂

∂ξ

δ2�

δθ (ξ )2
dξ + ν

∫
θ (ξ )

∂2

∂ξ 2

δ�

δθ (ξ )
dξ

+ a
∫

θ (ξ )
∂

∂ξ

(
ξ

δ�

δθ (ξ )

)
dξ

= i

2

∫
θ (ξ )

∂

∂ξ

δ2�

δθ (ξ )2
dξ + ν

∫
∂2θ

∂ξ 2

δ�

δθ (ξ )
dξ

− a
∫

δ�

δθ (ξ )
ξ
∂θ

∂ξ
dξ, (12)

that is,

∂�

∂τ
= i

2

∫
θ (ξ )

∂

∂ξ

δ2�

δθ (ξ )2
dξ

+
∫

θ (ξ )

(
ν

∂2

∂ξ 2
+ a

∂

∂ξ
ξ

)
δ�

δθ (ξ )
dξ . (13)

Method 2. We first consider a statistical description and then
apply dynamic scaling.

We write

�[θ (x), t] = �[ζ (y), τ ],

where ζ (y) ≡ θ (
√

2a(t + t∗)x), y = √
2a(t + t∗)x. By ∂ζ

∂t =
1

2(t+t∗ ) y
∂θ
∂y we find

∂�

∂t
=

∫
δ�

δζ

∂θ

∂t
dy + ∂�

∂τ

∂τ

∂t

=
∫

δ�

δζ

1

2(t + t∗)
y
∂θ

∂y
dy + ∂�

∂τ

1

2a(t + t∗)
.

By the scaling of �, the right-hand side equals 1
λ2 L, that is,

1

2a(t + t∗)

(
i

2

∫
ζ (y)

∂

∂y

δ2�

δζ (y)2
dy + ν

∫
ζ (y)

∂2

∂y2

δ�

δζ (y)
dy

)
.
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Hence we obtain
∂�

∂τ
+ a

∫
δ�

δζ
y
∂ζ

∂y
dy

= i

2

∫
ζ (y)

∂

∂y

δ2�

δζ (y)2
dy + ν

∫
ζ (y)

∂2

∂y2

δ�

δζ (y)
dy,

which matches the previous expression (13) by rewriting
ζ (y) → θ (ξ ).

C. Operator D∗ for the modified heat kernel

Consider a linearization of (11), the linear Fokker-Planck
equation:

∂V

∂τ
= a

∂

∂ξ
(ξV ) + ν

∂2V

∂ξ 2
.

Its solution is given by

V (ξ, τ ) = g̃τ ∗ V0 ≡
(

a

2πν(1 − e−2aτ )

)1/2

×
∫
R1

eaτV0(eaτ y) exp

(
− a

2ν

(ξ − y)2

1 − e−2aτ

)
dy,

where g̃τ denotes a modified heat kernel and * denotes
convolution as defined above. It is convenient to define an
operator D∗ and write symbolically the solution to the above
Fokker-Planck solution as

V (ξ, τ ) = exp(ντD∗)V0 = exp[τ {ν	 + a∂ξ (ξ ·)}]V0.

In the limit of τ → ∞ we have

V (ξ, τ ) → exp
( ν

2a
D

)
V0(ξ )

∣∣∣
V0=Mδ

= M

√
a

2πν
exp

(
− a

2ν
ξ 2

)
,

where M = ∫
V0(η)dη. Here we have made use of the formula

1

ε
f
(x

ε

)
→ Mδ(x), as ε → 0,

which holds for any localized function f with M = ∫
f (x)dx.

D. Duhamel principle for the scaled Hopf equation

Replacing ν	 with ν	 + a∂ξ (ξ ·) in (7) we can write the
dynamically scaled version of the Hopf equation as

exp(ντD∗)
∂

∂τ
exp(−ντD∗)�[θ (ξ ), τ ]

= i

2

∫
θ (ξ )

∂

∂ξ

δ2�

δθ (ξ )2
dξ,

from which we find

�[θ (ξ ), τ ] = exp(ντD∗)�0[θ (ξ )] + i

2

∫ τ

0
exp[ν(τ − s)D∗]

×
∫

θ (ξ )
∂

∂ξ

δ2�

δθ (ξ )2
[θ (ξ ), s]dξds. (14)

We are interested in studying the long-time limit �[θ (ξ )] =
limτ→∞ �[θ (ξ ), τ ], but the evaluation of the second term
on the right-hand side faces difficulty. In Sec. V we will

show how we may obtain an asymptotic expression �[θ (ξ )],
working directly from the definition of the Hopf functional.

For the scaled-version of the Hopf equation for the lin-
earized equation, that is, the first term on the right-hand side
of (14), we have

exp(ντD∗)�0[θ (ξ )] = 〈exp(i(g̃τ ∗ V0, θ )〉.
Unlike the original heat kernel, self-duality (g̃τ ∗ V0, θ ) =
(V0, g̃τ ∗ θ ) does not hold in general for the modified kernel
g̃τ . It holds when V0 is a homogeneous function of degree
−1, that is, λV0(λx) = V0(x) for all λ > 0 (just like the Dirac
delta function).

IV. DYNAMIC SCALING FOR HOPF EQUATION FOR
NAVIER-STOKES EQUATIONS

Dynamic scaling can be applied to the Hopf equation for
the Navier-Stokes equations without any problem. Scaling
properties of the Hopf equation have been discussed in [41],
which we generalize here into d spatial dimensions. We will
show that if a critical condition in the statistical solution
is achieved the Hopf functional takes the simplest form of
self-similarity. This is crucial in improving the Hopf-Titt
solution with a “near-Gaussian” solution associated with the
heat kernel. The final form would be more complicated with
other choices of dependent variables.

A. Dynamic scaling (deterministic version)

For the incompressible Navier-Stokes equations written in
standard notations

∂u
∂t

+ u · ∇u + ∇p = ν	u, ∇ · u = 0, (15)

static scale invariance implies the following.
Property 1’. If u(x, t ) is a solution to (15), so is

λu(λx, λ2t ).
By applying the dynamic scaling transforms

u(x, t ) = 1√
2a(t + t∗)

U (ξ, τ ),

ξ = x√
2a(t + t∗)

, τ =
∫ t

0

ds

λ(s)2
= 1

2a
log

t + t∗
t∗

,

we obtain the scaled version of the Navier-Stokes equations,
also known as the Leray equations:

∂U
∂τ

+ U · ∇ξU = −∇ξP + ν	ξU + a(ξ · ∇ξU + U ),

∇ξ · U = 0.

B. Dynamic scaling (statistical version)

The characteristic functional of the velocity

�[θ, t] =
〈
exp

(
i
∫

u(x, t ) · θ(x)dx
)〉

satisfies

�[θ, t] = �[θ⊥, t], �[θ, t]∗ = �[−θ, t], |�[θ, t]| � 1,

where θ⊥ denotes a solenoidal projection of θ.
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The Hopf equation can be written

∂�

∂t
= L�, (16)

where

L ≡ i
∫

dx θ⊥
j (x)

∂

∂xk

δ2

δθ j (x)δθk (x)
+ ν

∫
dx θ j (x)	 δ

δθ j (x)
.

Note that a set of dilation transforms θ(x) →
λd−1θ(λx), u(x) → λu(λx) leaves

∫
u · θdx invariant. Also

note that functional derivatives transform as

δ

δθ j (x)
→ λ

δ

δθ j (λx)

to ensure [
δ

δθ j (x)
, θk (x′)

]
= δ jkδ(x − x′),

where δ(·) denotes the Dirac delta function. On the other hand,
the operator L transforms as

L → iλd+1
∫

dx θ⊥
j (λx)

∂

∂xk

δ2

δθ j (λx)δθk (λx)

− νλd
∫

dx θ j (λx)	 δ

δθ j (λx)
= λ2L,

where the last line follows by x → λ−1x. The Hopf equation
then takes the form(

∂

∂t
− λ2L

)
�[λd−1θ(λx), t] = 0,

or (
∂

∂t
− L

)
�[λd−1θ(λx), λ−2t] = 0,

after rescaling t . Hence we conclude the following.
Property 2’. If �[θ(x), t] is a solution to (16), so is

�[λd−1θ(λx), λ−2t].
It is important to observe that, unlike the deterministic

case, the invariance property depends on the spatial dimension
d . In particular, statistics of the velocity field attains criticality
when and only when d = 1 in the sense that the argument of
�[·] takes a simplified form as θ (t1/2x). It is noted that, with
the choice of velocity, θ (x) of the characteristic functional
for the 1D Burgers equation acquires the same physical di-
mension as that of 1/ν. We may contrast the situation with
the deterministic counterpart of invariance Property 1’ for
the Navier-Stokes equations, which is not critical with the
use of the velocity variable. We would have used the vector
potential to achieve criticality for the deterministic Navier-
Stokes equations [67].

In Property 2’, if we consider the Hopf functional of
the vorticity, we have �[λd−2θ(λx), λ−2t] for the scaled
functional. Likewise, if we consider the Hopf functional of
the vorticity gradient, we have �[λd−3θ(λx), λ−2t] for the
scaled functional. Thus, by choosing the variable suitably we
can make the prefactor of θ(λx) vanish, achieving statistical
criticality, which renders the analysis of the Hopf equation
the simplest possible one. It is noted that, with the choice
of vorticity gradient, θ(x) of the characteristic functional for

the 3D Navier-Stokes equations acquires the same physical
dimension as that of 1/ν.

To be more specific, we derive the dynamically scaled Hopf
equation following the two different ways as above.

Method 1. We apply dynamic scaling to the Navier-Stokes
equations and move onto the statistical description:

∂�

∂τ
= i

∫
θ⊥

j (ξ)
∂

∂ξk

δ2�

δθ j (ξ)δθk (ξ)
dξ

+ ν

∫
θ j (ξ)	ξ

δ�

δθ j (ξ)
dξ

+ a
∫

θ j (ξ)(ξ · ∇ + 1)
δ�

δθ j (ξ)
dξ, (17)

or

∂�

∂τ
= i

∫
θ⊥

j (ξ)
∂

∂ξk

δ2�

δθ j (ξ)δθk (ξ)
dξ

+ ν

∫
θ j (ξ)	ξ

δ�

δθ j (ξ)
dξ

− a
∫

δ�

δθ j (ξ)
(ξ · ∇ + d − 1)θ j (ξ)dξ. (18)

It should be noted that when d = 1 the final term simplifies
(that is, reduces to the drift term only).

Method 2. We start with the statistical formulation and
apply dynamic scaling to it.

We apply the following set of transformations,

� = �[ζ, τ ],

ζ = [2a(t + t∗)]
d−1

2 θ[
√

2a(t + t∗)x], τ = 1

2a
log

t + t∗
t∗

,

to the Hopf equation. Setting y = √
2a(t + t∗)x, we have

∂ζ j

∂t
= 1

2(t + t∗)

(
(d − 1)ζ j + yk

∂ζ j

∂yk

)

and

∂�

∂t
=

∫
δ�

δζ j

∂ζ j

∂t
dy + ∂�

∂τ

∂τ

∂t

=
∫

δ�

δζ j

1

2(t + t∗)

(
(d − 1)ζ j + yk

∂ζ j

∂yk

)
dy

+ ∂�

∂τ

1

2a(t + t∗)
,

which equals

= 1

2a(t + t∗)

∫ (
iζ⊥

j

∂

∂yk

δ2�

δζ j (y)δζk (y)
+ νζ j	 δ�

δζ j (y)

)
dy

by virtue of a substitution L → 1
λ2 L. Hence we find

∂�

∂τ
+ a

∫
δ�

δζ j

(
(d − 1)ζ j + yk

∂ζ j

∂yk

)
dy

=
∫ (

iζ⊥
j

∂

∂yk

δ2�

δζ j (y)δζk (y)
+ νζ j	 δ�

δζ j (y)

)
dy,

which agrees with the above result (18) when a replacement
ζ(y) → θ(ξ) is made.
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We make a set of two observations.
(1) For the Hopf equation, critical scale invariance is

attained when we use a characteristic functional of the dth
derivatives of the vector potential.

(2) For the corresponding scaled Navier-Stokes equations
(i.e., the Leray equations), the dissipative term takes the form
of the linear Fokker-Planck operator.

This in principle provides a method of deriving long-time
asymptotics of the Hopf functional for the Navier-Stokes
equations, just as for the Burgers equations (see below).

V. SOURCE-TYPE SOLUTIONS AND THEIR
IMPLICATION ON HOPF FUNCTIONALS

To illustrate physical applications of the ideas developed
here, we revisit the Burgers equations in one and two spatial
dimensions. A source-type solution [68] is a forward self-
similar solution, which starts from the Dirac delta function (in
a variable attaining statistical criticality) and ends in a near-
Gaussian universal profile associated with the heat kernel. We
will show how it is crucial to choose a dependent variable
to have the source-type solutions in the analysis of statistical
solutions and the role they play in the determination of Hopf
functionals in the late stage. Source-type solutions for the
Burgers equations have been studied extensively [69–72],
where their existence has been established in multidimen-
sions, but an explicit functional form has been given only in
one dimension.

A. One-dimensional Burgers equation

We will find a steady solution of (11) by taking the long-
time limit τ → ∞. By the Cole-Hopf transform, the scaled
velocity can be written

U (ξ, τ ) = −2ν
∂ξ

∫
R1 ψ0(λη) exp

( − a
2ν

(ξ−η)2

1−e−2aτ

)
dη∫

R1 ψ0(λη) exp
( − a

2ν

(ξ−η)2

1−e−2aτ

)
dη

,

where ψ0 is the initial velocity potential. The numerator can
be written by taking the derivative under the integral sign and
integration by parts:∫

R1
λψ ′

0(λη) exp

(
− a

2ν

(ξ − η)2

1 − e−2aτ

)
dη.

Now, noting λ = eaτ ,

λψ ′
0(λη) → Kδ(η) as τ → ∞,

where K = ∫ ∞
−∞ ψ ′

0(ξ )dξ=ψ0(∞)−ψ0(−∞). The numerator
tends to

K exp
(
− a

2ν
ξ 2

)
,

whereas the denominator tends to its indefinite integral. Hence
U (ξ ) = limτ→∞ U (ξ, τ ) is given by

U (ξ ) = −2ν
K exp

( − a
2ν

ξ 2
)

C + K
∫ ξ

0 exp
( − a

2ν
η2

)
dη

,

where C is a constant. Fixing C as U (0) = −2νK/C, we find

U (ξ ) = U (0) exp
( − a

2ν
ξ 2

)
1 − U (0)

2ν

∫ ξ

0 exp
( − a

2ν
η2

)
dη

= −2ν
∂

∂ξ
log

{
1 − U (0)

2ν

∫ ξ

0
exp

(
− a

2ν
η2

)
dη

}
.

See Appendix D for an alternative derivation.
In the literature [69–71] it is often written U (0) = F (M )

for some function F , but we need to be more specific here.
Defining M = ∫ ∞

−∞ U (ξ )dξ, it can be readily computed that

U (0) =
√

8aν

π
tanh

M

4ν
.

In fact, we know that K[= − C
2ν

U (0)] is invariant because of
the conservation of the L1 norm of the velocity under time
evolution of the Burgers equation. This fact will be used
below.

B. Higher-dimensional Burgers equations

Let us consider the two-dimensional case. Again using the
Cole-Hopf transform, the scaled velocity reads

Ui(ξ, τ ) = −2ν
∂ξi

∫
R2 ψ0(λη) exp

(− a
2ν

|ξ−η|2
1−e−2aτ

)
dη∫

R2 ψ0(λη) exp
(− a

2ν

|ξ−η|2
1−e−2aτ

)
dη

.

We know that limτ→∞ Ui(ξ, τ ) exists, however it is impossible
to tell what it is from the expression above. The numerator can
be written∫

R2
λ∂iψ0(λη) exp

(
− a

2ν

|ξ − η|2
1 − e−2aτ

)
dη,

where ∂i = ∂
∂ (ληi )

denotes differentiation with respect to the
argument. It is important to realize that, in two dimensions, to
make use of

λ2 f (λη) → Kδ(η) as τ → ∞
for localized f with K = ∫

f dη, we must take higher
derivatives:

∂2

∂ξi∂ξ j

∫
R2

ψ0(λη) exp

(
− a

2ν

|ξ − η|2
1 − e−2aτ

)
dη.

It then has the definite limit∫
R2

λ2∂i∂ jψ0(λη) exp

(
− a

2ν

|ξ − η|2
1 − e−2aτ

)
dη

→ Mi j exp

(
−a|ξ|2

2ν

)
,

as τ → ∞, where Mi j = ∫
R2

∂2ψ0

∂ηiη j
dη (i, j = 1, 2) denote

constants. This is why we ought to choose the second deriva-
tives of the velocity potential to achieve criticality.

The argument above identifies a choice of the velocity
potential, e.g.,

φ = log

[
1 − M12

2ν

∫ ξ1

0

∫ ξ2

0
exp

(
− a

2ν
(ξ 2 + η2)

)
dξdη

]
,

013104-7



KOJI OHKITANI PHYSICAL REVIEW E 101, 013104 (2020)

giving rise to ∂U1
∂ξ2

= −2ν
∂2φ

∂ξ1∂ξ2
. To summarize, the source-

type solutions can be written using the velocity gradient,
rather than the velocity, as

∂U1

∂ξ2
= M12

[1 − R(ξ1, ξ2)]2 exp
(
− a

2ν

(
ξ 2

1 + ξ 2
2

))

= −2ν
∂2

∂ξ1∂ξ2
log[1 − R(ξ1, ξ2)],

where

R(ξ1, ξ2) = M12

2ν

∫ ξ1

0
exp

(
−aξ 2

2ν

)
dξ

∫ ξ2

0
exp

(
−aη2

2ν

)
dη.

Observe that the velocity gradient has a near-Gaussian form,
slightly moderated by R(ξ1, ξ2), which is small because of the
late stage of evolution.

The idea can be extended to any dimension, noting that we
have in d dimensions

λd f (λη) → Kδ(η) as τ → ∞
with K = ∫

f dη. This explains why we need to choose the
dth derivative of the vector (or tensor) potential to achieve
criticality.

C. Late-stage behavior of the Hopf functional
for the Burgers equation

We consider an initial-value problem of the Hopf equation
(2) for the Burgers equation and its scaled counterpart (13).
Needless to mention, the Burgers equation and the scaled
Burgers equation describe the same initial-value problem.
Likewise, the Hopf equation for the Burgers equation and its
scaled counterpart describes the same statistical initial-value
problem, with a common initial probability measure of the

velocity field. To realize this, it helps to recall that the ex-
ponent of the characteristic functional, in abridged notations,
reads∫ ∞

−∞
u(x, t )θ (x)dx =

∫ ∞

−∞

1

λ(t )
U

(
x

λ(t )
,

t

λ(t )2

)
θ (x)dx

=
∫ ∞

−∞
U (ξ, τ )ζ (ξ )dξ,

where x = λξ, t = λ2τ, ζ (ξ ) = θ (λξ ).
Once a source-type solution is obtained we can deter-

mine an asymptotic form of the Hopf functional in the late
stage. Let us illustrate how this works using the 1D Burgers
equation.

We recall that by substituting the Cole-Hopf solution

u(x, t ) =
∫ ∞
−∞

x−y
t exp

( − 1
2ν

∫ y u0(x′)dx′ − (x−y)2

4νt

)
dy∫ ∞

−∞ exp
( − 1

2ν

∫ y u0(x′)dx′ − (x−y)2

4νt

)
dy

into the definition of the Hopf functional

�[θ (x), t] =
〈
exp

(
i
∫ ∞

−∞
u(x, t )θ (x)dx

)〉
we can in principle obtain the time-dependent Hopf func-
tional. However, the above expression is obscure in that we
must carry out infinite-dimensional (functional) integration
because 〈. . .〉 = ∫

. . . dμ(u0) denotes an average over initial
velocity, which is generally a formidable task.

We will show that if we focus on the late stage of the
decaying process we can obtain an asymptotic form of the
Hopf functional up to a quadrature. This is done by combining
the dynamically scaled Hopf equation and the source-type
solution in the late stage. In taking the limit of τ → ∞ almost
all the information of the initial data will be lost through
the emergence of the delta function; the information will be
squeezed into that of K alone:

�[θ (ξ )] =
∫

exp

⎛
⎝i

∫ ∞

−∞

√
8aν
π

tanh K
4ν

exp
(− a

2ν
ξ 2

)
1 − 1

2ν

√
8aν
π

tanh K
4ν

∫ ξ

0 exp
( − a

2ν
η2

)
dη

θ (ξ )dξ

⎞
⎠dμ(K ), (19)

where dμ(K ) = P(K )dK denotes the probability measure of
the L1 norm of the initial velocity, with P(K ) its density. Note
that the above average is just a definite integral (a quadrature),
the meaning of which is clear and the denominator of which
never hits zero, because

1

2ν

√
8aν

π
tanh

K

4ν

∫ ξ

0
exp

(
− a

2ν
η2

)
dη

<
1

2ν

√
8aν

π

1

2

√
2πν

a
= 1.

Note also that the above expression generalizes the Hopf-Titt
solution. For small |K/ν|, in fact, we have

�[θ (ξ )] ≈
∫

exp

(
iK

∫ ∞

−∞
g̃(ξ )θ (ξ )dξ

)
dμ(K ),

where g̃(ξ ) = √ a
2πν

exp (− a
2ν

ξ 2). Because we have a source-
type solution as τ → ∞ with U0 = Kδ(·), the exponent can
be written [73]

i
∫ ∞

−∞
(g̃ ∗ U0)(ξ ) θ (ξ )dξ = i

∫ ∞

−∞
U0(ξ )(g̃ ∗ θ )(ξ )dξ

= i exp
( ν

2a
D

) ∫ ∞

−∞
U0(ξ )θ (ξ )dξ .

Hence, we find

�[θ (ξ )] ≈ exp
( ν

2a
D

)
�0[θ (ξ )],

which in the original variables corresponds to

�[θ (x)] ≈ exp (νtD)�0[θ (x)].
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TABLE I. Self-similar (source-type) solutions.

Equations
Deterministic criticality

achieved with
Statistical criticality

achieved with Source-type solutions

1D Burgers Velocity potential φ Velocity u Known explicitly

n-D Burgers Velocity potential φ ∂nφ
Existence known,
made explicit here

2D Navier-Stokes Stream function ψ Vorticity ω
Known explicitly

as the Burgers vortex

3D Navier-Stokes Vector potential ψ Vorticity gradient ∇ × ω
Existence known,

explicit form unknown

This is nothing but the Hopf-Titt solution. Thus the expression
(19) is an improvement of the Hopf-Titt solution.

D. Source-type solutions for the Navier-Stokes equations

Let us clarify how the results obtained for the Burgers
equations can carry over to the Navier-Stokes equations. As
confirmed in Sec. IV, the derivation of the Hopf equation
for the dynamically scaled Navier-Stokes equations stands
parallel to that of the Burgers equations. It is also known
that there exist self-similar solutions of the 3D Navier-Stokes
equations for small data [74–76]. See also, e.g., [77,78] for
recent developments. A self-similar profile is known to exist,
but its functional form is unknown.

A connection of the late-stage behavior of the Hopf func-
tional to the source-type solution with a suitably chosen
dependent variable also holds, if smoothness of solutions is
assumed for the 3D Navier-Stokes equations. It should be
noted that this connection itself is valid, even though the
universal profile is not known explicitly. See Table I for a com-
parison of studies on source-type solutions of the Burgers and
Navier-Stokes equations. No method of exact linearization is
known for the Navier-Stokes equations, but the existence of
forward self-similar solutions and the conservation of its L1

norm of the suitably chosen unknown suffice to apply the
current methods to the the Navier-Stokes equations.

The source-type solution for the two-dimensional (2D)
Navier-Stokes equations is known explicitly as the Burgers
vortex [79]:

�(ξ ) = a�

2πν
exp

(
−a|ξ|2

2ν

)
,

where � = ∫
R2 �(ξ )dξ denotes a circulation invariant. Fol-

lowing the current approach, the late-stage Hopf functional is
clearly given by

�[θ (ξ )] =
∫

exp

[
i

a�

2πν

∫ ∞

−∞
exp

(
− a

2ν
ξ 2

)
θ (ξ )dξ

]
dμ(�).

However, the Burgers vortex solves not only the linearized
equation but also the fully nonlinear equations accidentally,
because of its radial symmetry (dependent on |ξ| only). For
this reason the above Hopf functional is precisely equivalent
to, and not an improvement of, the Hopf-Titt solution for the
2D Navier-Stokes equations.

For the 3D Navier-Stokes equations the existence of self-
similar solutions is known (in velocity) in a number of func-
tion spaces. The corresponding vorticity gradient gives the
source-type solution implicitly. With this variable it is near

Gaussian and we have the scaled vorticity curl

X (ξ) close to ′ exp
(
− a

2ν
|ξ|2

)′
,

where the effects of nonlinear terms and incompressibility
should be taken into account. We can in principle write

X (ξ) = F
[
exp

(
− a

2ν
|ξ|2

)
; K

]
,

where F denotes a near-identity nonlocal functional and K =∫
R3 X (ξ)dξ is an invariant. With this understanding the late-

stage Hopf functional can be written

�[θ(ξ )]

=
∫

exp

{
i
∫ ∞

−∞
F

[
exp

(
− a

2ν
|ξ|2

)
; K

]
θ(ξ )dξ

}
dμ(K ).

This motivates a determination of the self-similar profile
X (ξ), at least approximately.

VI. SUMMARY AND OUTLOOK

We have studied basic issues of statistical solutions of
the Navier-Stokes equations. After presenting the main ideas
using the Burgers equations, we have shown how those ideas
carry over to the Navier-Stokes equations.

First, we have introduced the exponential operator G,

which enables us to write the Hopf equations as an integral
equation (in time). By applying the Duhamel principle on this
basis, a successive approximation is formulated. The leading-
order approximation is presented for the Burgers equation for
an illustrative purpose. This can in principle be extended to
the the Navier-Stokes equations, while the algebra involved
would be lengthy because of the incompressibility condition.

Second, we have seen that the suitable choice of dependent
variables, that achieve critical scale invariance of statistical so-
lutions of the Burgers and Navier-Stokes equations, depends
on spatial dimensions. It should be noted that this recognition
holds valid for the Navier-Stokes equations for which exact
linearization is not available. It may be in order to summarize
statistical criticality, comparing to more conventional depen-
dent variables for the 3D Navier-Stokes equations (Table II).

Furthermore, we have seen that when we choose a depen-
dent variable satisfying statistical criticality the variable will
take a near-Gaussian form in the long-time limit for the corre-
sponding deterministic problem. On this basis, the late-stage
evolution of statistical solutions of the Burgers and Navier-
Stokes equations can be determined most conveniently by
using the source-type solutions of the deterministic problem.
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TABLE II. Characteristic functionals for the scaled Navier-
Stokes equations. To attain criticality, the temporal prefactor in front
of θ(·) must be absent, i.e., t0 in the scale-invariant form.

Variables General forms Scale-invariant forms

Vector potential ψ �[λdθ (λx), λ−2t] �[t
d
2 θ(t1/2x)]

Velocity u �[λd−1θ(λx), λ−2t] �[t
d−1

2 θ(t1/2x)]
Vorticity ω �[λd−2θ(λx), λ−2t] �[t

d−2
2 θ(t1/2x)]

Vorticity gradient ∇ × ω �[λd−3θ(λx), λ−2t] �[t
d−3

2 θ(t1/2x)]

We have employed the Cole-Hopf transform for the Burgers
equations for illustration. The method itself, however, can also
be applied to the Navier-Stokes equations, where self-similar
solutions of the 3D Navier-Stokes equations are known to
exist, but not explicitly.

In two dimensions it is the vorticity the statistics of which
satisfies statistical criticality. In fact, the late evolution of the
2D Navier-Stokes solutions is dominated by a collection of
Burgers vortices (source-type solutions; see, e.g., [80]), which
are steady solutions of the two-dimensional linear Fokker-
Planck equation. The late-stage asymptotics for the Hopf
functional is equivalent to the Hopf-Titt solution.

In three dimensions it is the vorticity gradient the statistics
of which satisfies a critical condition. We can still argue that
the late-stage asymptotics for the Hopf functional is given
modulo a near-identity functional of the Gaussian function.
It is of interest to determine their functional form, at least
approximately, as a 3D analog of the Burgers vortex in two
dimensions. This is left for future study.

Finally, we note that criticality for the statistical equations
is achieved with a dynamical variable, the dissipative term
of which is given by the linear Fokker-Planck operator, and
is closely related to the self-adjoint property (duality) of the
dissipative operators in the long-time limit.
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APPENDIX A: FORMAL DERIVATION OF THE FORMULA FOR OPERATOR G

We give a formal derivation on the action of the operator G:

�[θ (x), t] = exp (νtD)�0[θ ] − i

2

∫ t

0
exp(ν(t − s)D)

∫
θ (x)

∂

∂x

δ2�

δθ (x)2
[θ (x), s]dxds,

where

D ≡
∫

dxθ (x)
∂2

∂x2

δ

δθ (x)
.

Proof. Consider the Liouville equation (also known as the Hopf-Foias equation)

d

dt

∫
ei(θ,u(t ))dμ(u0) = i

∫
(θ,	u(t ))ei(θ,u(t ))dμ(u0) − i

2

∫
(θ, ∂xu(t )2)ei(θ,u(t ))dμ(u0),

where

(θ, u(t )) =
∫ ∞

−∞
θ (x)u(x, t )dx.

Setting θ (t ) = e(T −t )	θ0, we write

d

dt

∫
ei(θ (t ),u(t ))dμ(u0) = i

∫
[(θ̇ (t ), u(t )) + (θ (t ), u̇(t ))]ei(θ (t ),u(t ))dμ(u0)

= − i

2

∫
ei(θ (t ),u(t ))(θ, ∂xu(t )2)dμ(u0).

Integrating with respect to time in 0 � t � T , we get∫
ei(θ (T ),u(T ))dμ(u0) =

∫
ei(θ (0),u(0))dμ(u0) − i

2

∫ T

0
ds

∫
ei(θ (s),u(s))(θ (s), ∂xu(s)2)dμ(u0),

that is, ∫
ei(θ0,u(T ))dμ(u0) =

∫
ei(eT 	θ0,u(0))dμ(u0) − i

2

∫ T

0
ds

∫
ei(e(T −s)	θ0,u(s))(e(T −s)	θ0, ∂xu(s)2)dμ(u0).
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Replacing T → t and θ0 → θ, we find∫
ei(θ,u(t ))dμ(u0) =

∫
ei(et	θ,u(0))dμ(u0) − i

2

∫ t

0
ds

∫
ei(e(t−s)	θ,u(s))(e(t−s)	θ, ∂xu(s)2)dμ(u0).

Now, the left-hand side is �[θ, t], and the first term on the right-hand side is �(et	θ ). Noting that in the second term on the
right-hand side

∂xu(s)2� = −∂x
δ2�

δθ2
,

we obtain the desired result by noting that the first term on the right-hand side equals
∫

ei(θ,et	u(0))dμ(u0) by self-adjointness of
the heat semigroup. �

APPENDIX B: LEADING-ORDER APPROXIMATION

The zeroth-order functional is

�̃[θ ] = �0[exp (νt	)θ ]

= exp

(
−1

2

∫∫
dx′dx′′Q(x′, x′′)

1√
4πνt

∫
e− (x′−y′ )2

4νt θ (y′)dy′ 1√
4πνt

∫
e− (x′′−y′′ )2

4νt θ (y′′)dy′′
)

= exp

(
− 1

8πνt

∫∫
dx′dx′′Q(x′, x′′)

∫
e− (x′−y′ )2

4νt θ (y′)dy′
∫

e− (x′′−y′′ )2

4νt θ (y′′)dy′′
)

. (B1)

It is straightforward to compute

δ�̃

δθ (x)
= − 1

4πνt

∫∫
dx′dx′′Q(x′, x′′)e− (x′−x)2

4νt

∫
e− (x′′−y′′ )2

4νt θ (y′′)dy′′ × �̃, (B2)

δ2�̃

δθ (x)2
= − 1

4πνt

∫∫
dx′dx′′Q(x′, x′′)e− (x′−x)2

4νt − (x′′−x)2

4νt × �̃

+
(

1

4πνt

∫∫
dx′dx′′Q(x′, x′′)e− (x′−x)2

4νt

∫
e− (x′′−y′′ )2

4νt θ (y′′)dy′′
)2

× �̃, (B3)

∂

∂x

δ2�̃

δθ (x)2
= − 1

4πνt

∫∫
dx′dx′′Q(x′, x′′)

x′ + x′′ − 2x

2νt
e− (x′−x)2

4νt − (x′′−x)2

4νt × �̃

+ 2

(
1

4πνt

∫∫
dx′dx′′Q(x′, x′′)e− (x′−x)2

4νt

∫
e− (x′′−y′′ )2

4νt θ (y′′)dy′′
)

×
(

1

4πνt

∫∫
dx′dx′′Q(x′, x′′)

x′ − x

2νt
e− (x′−x)2

4νt

∫
e− (x′′−y′′ )2

4νt θ (y′′)dy′′
)

× �̃. (B4)

Hence we find

∫
dxθ (x)

∂

∂x

δ2�̃

δθ (x)2
(t ) = −1

4πνt

∫∫∫
dxdx′dx′′θ (x)Q(x′, x′′)

x′ + x′′ − 2x

2νt
e− (x′−x)2

4νt − (x′′−x)2

4νt × �̃

+ 2

(4πνt )2

∫
dx θ (x)

∫∫
dx′dx′′Q(x′, x′′)e− (x′−x)2

4νt

∫
e− (x′′−y′′ )2

4νt θ (y′′)dy′′

×
∫∫

dx′dx′′Q(x′, x′′)
x′ − x

2νt
e− (x′−x)2

4νt

∫
e− (x′′−y′′ )2

4νt θ (y′′)dy′′ × �̃

= −1

4πνt

∫∫∫
dxdx′dx′′θ (x)Q(x′, x′′)

x′ + x′′ − 2x

2νt
e− (x′−x)2

4νt − (x′′−x)2

4νt × �0[eνt	θ ]

+ 1

2πνt

∫
dxθ (x)

∫∫
dx′dx′′Q(x′, x′′)e− (x′−x)2

4νt eνt	θ (x′′)

×
∫∫

dx′dx′′Q(x′, x′′)
x′ − x

2νt
e− (x′−x)2

4νt eνt	θ (x′′) × �0[eνt	θ ],
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which for convenience we may write in a compact form:

= −�0[eνt	θ ]
∫

dxθ (x)
∂

∂x

{
eνt (	′+	′′ )Q(x′, x′′) −

(∫
dx′′eνt	′

Q(x′, x′′) eνt	θ (x′′)
)2

}
.

Here eνt (	′+	′′ )Q(x′, x′′) and eνt	′
Q(x′, x′′) denote functions of x in the relevant arguments, that is,

eνt (	′+	′′ )Q(x′, x′′) = 1

4πνt

∫∫
exp

(
− (y − x)2 + (z − x)2

4νt

)
Q(y, z)dydz,

eνt	′
Q(x′, x′′) = 1√

4πνt

∫
exp

(
− (y − x)2

4νt

)
Q(y, x′′)dy.

Thus we find

G�̃ = i

2

∫ t

0
dseν(t−s)D

∫
dxθ (x)

∂

∂x

δ2�̃

δθ (x)2
(s)

= − i

2
�0[eνt	θ ]

∫ t

0
ds

∫
dxeν(t−s)	θ (x)

∂

∂x

{
eνs(	′+	′′ )Q(x′, x′′) −

(∫
dx′′eνs	′

Q(x′, x′′) eνt	θ (x′′)
)2

}
.

Spelling this out more explicitly, we obtain (9).

APPENDIX C: DERIVATION OF THE ERROR ESTIMATE

We shall estimate

I ≡
∥∥∥∥∥
∫ t

0
ds

∫
eν(t−s)	 ∂θ

∂x

{
eνs(	′+	′′ )Q(x′, x′′)

−
(∫

dx′′eνs	′
Q(x′, x′′) eνt	θ (x′′)

)2
}

dx

∥∥∥∥∥.

We first divide it in two parts to consider

I1 =
∫

eν(t−s)	 ∂θ

∂x
eνs(	′+	′′ )Q(x′, x′′)dx,

I2 =
∫

eν(t−s)	 ∂θ

∂x

(∫
eνs	′

Q(x′, x′′) eνt	θ (x′′)dx′′
)2

dx.

By the Hölder inequality∫
| f (x)g(x)|dx � ‖ f ‖Lp‖g‖Lq , for

1

p
+ 1

q
= 1,

and an estimate for the heat-kernel (see, e.g., [76]),

‖eνt	θ‖Lp � 1

(4πνt )
1
2 ( 1

q − 1
p )

‖θ‖Lq ,

we bound I1 as

I1 � C1

{ν(t − s)} 1
2 ( 1

q − 1
p )(νs)

1
2 ( 1

u − 1
q )

∥∥∥∥∂θ

∂x

∥∥∥∥
Lq

‖‖Q(x, y)‖Lr (dx)‖Lu(dy),

where 1 � q � p � ∞, 1 � r � q � ∞, 1 � u � r � ∞,
1
p + 1

q = 1, and C1 is a nondimensional constant. Taking

p = ∞, q = 1, r = u = 1, and noting
∫ t

0
ds√

s(t−s)
= π (<∞),

we find

I1 � C

ν

∥∥∥∥∂θ

∂x

∥∥∥∥
L1

‖Q(x, y)‖L1(R2 ),

where C(=πC1) is another constant. Similarly, we bound
I2 as

I2 � C2

{ν(t − s)} 1
2 ( 1

q − 1
p )

1

(νs)
1
2 ( 1

r − 1
2q )

1

(νt )
1
2 ( 1

w
− 1

v )

∥∥∥∥∂θ

∂x

∥∥∥∥
Lq

‖‖Q(x, y)‖2
Lr (dx)‖Lu(dy)‖θ‖2

Lw ,

where 1 � q � p � ∞, 1 � r � 2q � ∞, 1 � w � v �
∞, 1

p + 1
q = 1, 1

u + 1
v

= 1, and C2 is a constant. Choosing,
for example, r = u = 1, p = ∞, q = 1, v = ∞,w = ∞, we
find

I2 � C′

ν

∥∥∥∥∂θ

∂x

∥∥∥∥
L1

‖Q(x, y)‖2
L1(R2 )‖θ‖2

L∞,

with C′(= πC2). Combining those two results and writing
C = max(C,C′), we obtain (10). It is readily checked that
those bounds are nondimensional, noting that the physical
dimension of θ is the same as that of ν for the 1D Burgers
equation.

APPENDIX D: SELF-SIMILAR DECAY

In the case of forward self-similarity, we take the length
scale as λ(t ) = √

2a(t + t∗) to write the Leray equation of the
form

U
∂U

∂ξ
= ν

∂2U

∂ξ 2
+ a

(
ξ
∂U

∂ξ
+ U

)
.

This can be exactly solved as follows.
Upon integration we find, after taking a constant to be zero,

dU

dξ
= 1

2ν
U (U − 2aξ ).

By V = 1/U in this Bernoulli equation, we have

dV

dξ
= − 1

2ν
(1 − 2aξV ),
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which is a linear inhomogeneous equation. Solving it we find

V (ξ ) = eaξ 2/(2ν)

(
V (0) − 1

2ν

∫ ξ

0
e−aη2/(2ν)dη

)
or

U (ξ ) = e−aξ 2/(2ν)

U (0)−1 − 1
2ν

∫ ξ

0 e−aη2/(2ν)dη
.

Note that by making U (0) small enough such that U (0) <√
8aν
π

we can make the denominator nonzero for all ξ . This
means that the particular self-similar solution is valid for small
initial data.

In passing we comment on backward self-similar solutions.
By reversing the sign of a, a possibility of blowup can be
studied using backward self-similarity with the length scale√

2a(t∗ − t ). (Of course, it is known that there is no blowup).
In this case, the steady equation is

U
∂U

∂ξ
+ a

(
ξ
∂U

∂ξ
+ U

)
= ν

∂2U

∂ξ 2
,

the smooth solution of which is U ≡ 0 only. The solution is
nonetheless obtained as

U (ξ ) = eaξ 2/(2ν)

U (0)−1 − 1
2ν

∫ ξ

0 eaη2/(2ν)dη
.

Note that U (ξ ) → 1
|ξ | as ξ → ±∞. More importantly, this

has a singular point (a pole) somewhere, say at ξ = ξ∗, at
which

U (0)−1 −
∫ ξ∗

0
eaη2/(2ν)dη = 0.

Hence, U (ξ ) ∝ 1/(ξ − ξ∗) near there and it is nonintegrable,
U /∈ L1.
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