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Drag forces on nanoparticles in the free-molecule regime: Effect of the particle temperature
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In the present paper, we theoretically study the drag force on nanoparticles in the free-molecule regime. It has
been widely assumed that the particle temperature is equal to the gas media temperature in the open literature.
However, this assumption can be invalid in some real applications. Based on the kinetic theory, we obtain the
generalized formulas for the drag force on nanoparticles in the free-molecule regime. It is found that there exists
a significant error induced by the assumption of equal temperature between the particle and the surrounding
gas. Therefore, it is necessary to consider the effect of the particle temperature in the analysis of the particle
transport properties.
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I. INTRODUCTION

Nanoparticles suspended in a gas can find applications in
a wide range of fields, including combustion [1–3], biology
[4,5], chemical engineering [6,7], micro- and nanoscale fab-
rication [8,9], and aerosol science [10]. An important issue
is to predict the transport properties of nanoparticles, or even
control the motion of nanoparticles. The transport of nanopar-
ticles in a gas is dominated by the drag force. According
to the Einstein relation [11], the diffusion coefficient of a
suspended particle in a fluid is inversely proportional to the
drag coefficient. This clearly necessitates a deep in-depth
understanding of the drag force on nanoparticles in gas media.

Consider a nanoparticle with its characteristic size on the
order of 10 nm. The mean free path of a gas in the standard
state is about 100 nm, so the Knudsen number Kn � 1 and
the transport of nanoparticles is in the free-molecule regime
[12]. Here, Kn = λ/Lc, λ is the mean free path of the gas,
and Lc is the characteristic size of the nanoparticle. In the
free-molecule regime, the force exerted on the particle can
be calculated based on the gas kinetic theory [13,14], i.e.,
by calculating the momentum transfer from the gas to the
particle upon gas-particle collisions. Based on the assumption
of rigid-body collisions between the gas molecules and the
particle, Epstein obtained the formula of drag force [15],

FD = − 8
3δ

√
2πmgkBT NR2V. (1)

Here, the parameter δ depends on the reflection scenario
of the incident gas molecule. δ = 1 and δ = (8 + π )/8 refer
to the two limiting cases of specular and diffuse scatterings
[16], respectively. kB is the Boltzmann constant. mg, T, and
N are the gas molecule mass, gas temperature, and number
density of gas molecules, respectively. V is the velocity of
the suspended particle relative to the gas. Equation (1) can be
used to predict the electric mobility of a microscale spherical
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particle for large Kn [17]. However, as the particle size grad-
ually decreases to the nanometer scale, the nonrigid-body in-
teractions between the particle and gas molecules can play an
important role in the gas-particle collision process and in turn
the particle transport properties [18–23]. Experimental evi-
dence includes the disagreement between the mobility sizes of
nanoparticles measured by the differential mobility analyzer
and those measured by the transmission electronic microscopy
[24,25], the binary diffusion coefficient measurement of long-
chain alkanes [26], and the size dependence of thermophoretic
velocity in the nanoparticle deposition experiments [27]. It has
been reported that the gas-particle nonrigid-body interactions
cannot be neglected for nanoparticles with radius roughly
smaller than 20–30 nm, depending on the temperature and the
gas-particle interactions [16,28,29].

In the free-molecule regime, Li and Wang derived the gen-
eralized drag force for nanoparticles by taking into account
the gas-particle nonrigid-body interactions [30],

FD = − 8
3

√
2πmrkBT NR2�

(1,1)∗

s/d V, (2)

where mr is the reduced mass of the gas molecule and particle,
mr = mgmp/(mg + mp); and mp is the mass of the particle,
mp � mg in most cases. �

(1,1)∗
s/d is the reduced collision inte-

gral, where the subscript “s/d” represents the cases of specular
and diffuse scatterings, respectively. For rigid-body collisions,
�(1,1)∗

s = 1 and �
(1,1)∗
d = (8 + π )/8, so Eq. (2) turns out to be

consistent with Eq. (1), and is a generalized expression.
It is worth noting that the theoretical analyses of the

particle transport properties are usually on the basis of the
assumption that the temperature of the particle Tp is equal
to that of the surrounding gas T [15,30]. However, in some
applications, the particle temperature is not equal to the
media temperature (Tp �= T ), or even differs greatly. Exam-
ples include soot formation in the combustion process [3],
fabrication of nanoparticles by vacuum evaporation [9], and
heated nanoparticles by the photothermal effect [31]. Phys-
ically, the reflection of the gas molecules from the particle

2470-0045/2020/101(1)/013103(8) 013103-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9708-5092
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.013103&domain=pdf&date_stamp=2020-01-08
https://doi.org/10.1103/PhysRevE.101.013103


JUN WANG, JUNJIE SU, AND GUODONG XIA PHYSICAL REVIEW E 101, 013103 (2020)

surface depends on the particle temperature and the gas-
particle interaction [16,32]. For specular scatterings, the gas
molecules are reflected elastically, so the influence of the
particle temperature can be ignored. For diffuse scatterings,
the impinging gas molecules are adsorbed on the particle
surface and then reemitted in equilibrium with the particle
surface [13,33], which significantly affects the momentum
transfer between the particle and gas. The drag force on
a nonuniformly heated spherical particle in a rarefied gas
has been studied by considering the momentum and energy
transfer between the particle and the surrounding gas for the
whole range of Knudsen numbers [34]. In the free-molecule
regime, Dahneke obtained the analytical formula for the drag
force on a sphere body in the case of Tp �= T [35],

Fs = − 8
3

√
2πmkBT NR2V, (3)

and

Fd = −
8 + π

√
Tp

/
T

3

√
2πmkBT NR2V, (4)

for the specular and diffuse scatterings, respectively. Here,
being similar to Eq. (1), Eqs. (3) and (4) are obtained based
on the assumption of rigid-body collisions for the gas-particle
interaction. For the nanosized particles in real applications, it
is necessary to reconsider the drag in the case of Tp �= T by
considering the gas-particle nonrigid-body interactions. For
instance, the drag plays an important role for the estimation of
the optical power spectral density in the optical tweezer tech-
nology owing to the collisions between the trapped nanopar-
ticle and residual gas molecules [36–39]. This technology
can be used for the cooling of trapped small particles from
room temperature to quantum ground state (on the order of
mK) [36,37], and for nanosacle temperature measurement
by optical heating [38], wherein the gas-particle temperature
difference has to be taken into account in the drag calculation.

In the present paper, we investigate the drag force on
nanoparticles with Tp �= T in the free-molecule regime. The
rest of the paper is organized as follows. In Sec. II, we drive
the general expressions for the drag force on nanoparticles
with Tp �= T in the free-molecule regime. In the rigid-body
limit, the formulas are consistent with Eqs. (3) and (4). In
Sec. III, the drag force on nanoparticles is evaluated by the
Rudyak-Krasnolutski potential [40] as an example. The re-
sults for big particles are close to those for a rigid body, while
the nonrigid-body effect is significant for small nanoparticles.
The relative error owing to the assumption of Tp = T could
be larger than 50%, which necessitates an investigation on
the effect of the particle temperature on the particle transport
properties. Finally, we conclude the paper in Sec. IV.

II. DRAG FORCE ON NANOPARTICLES

In the present paper, nanoparticles are simplified as
spheres, which are suspended in a diluted gas. The character-
istic size of the particle Lc is equal to the radius of the sphere,
R. In the free-molecule regime, the mean free path of gas
molecules λ is much longer than R. Therefore, the influence

of the reflected gas molecules on the incoming molecules can
be ignored, and it is reasonable to assume that the incident
molecules strike the nanoparticle with a velocity distribution
in uniform states, i.e., the Maxwell distribution. Based on the
gas kinetic theory, the net force on the nanoparticle can be ob-
tained by evaluating the momentum transfer during numerous
collisions between the gas molecules and the particle.

The analytical model of the collision between a gas
molecule and a nanoparticle is established in Fig. 1. v and
v′ represent the peculiar velocity of the gas molecule before
and after collision. V is the instantaneous velocity of the
nanoparticle relative to the gas. For convenience, the coordi-
nate system {x, y, z} is established with its origin located at
the body center of the particle, and z is the direction parallel to
the direction of V, as shown in Fig. 1. i, j, and k represent the
unit vectors of the x, y, and z directions, respectively. In the {x,
y, z} system, the velocities of the incoming gas molecule and
reflected gas molecule are denoted by g and g′, respectively.
Then, based on the theoretical framework given in Ref. [30],
the drag force on a nanospherical particle in a diluted gas can
be calculated by

F = mr

∫
v

gg f Q(g)dv. (5)

Here, f is the velocity distribution of gas molecules
[13,14],

f = N

(2πkBT/mr )
3/2

exp

(
− v2

2kBT
/

mr

)
, (6)

and Q is the collision cross section upon the gas-particle
collisions, which depends on the scattering scenario. Specular
and diffuse scatterings are two limiting cases for the gas-
particle collisions.

A. Specular scattering

For specular scatterings, the gas-particle collision is elastic,
so the incident angle is equal to the scattering angle, and the
momentum magnitude of the incident gas molecule is equal
to that of the reflected gas molecule. The scattering angle is
given by

χ (g, b) = π − 2b
∫ ∞

rm

[
r2

√
1 − b2

r2
− �(r)

mrg2/2

]−1

dr, (7)

where r is the separation distance, rm is the closest distance
that the gas molecules and particle could approach, b denotes
the impact factor for the gas-particle collisions, and Ф(r)
denotes the interaction potential between the gas molecule and
the nanoparticle. The collision cross section for the specular
case reads

Qs(g) = 2π

∫ ∞

0
(1 − cos χ )bdb. (8)

By substituting Eqs. (6)–(8) into Eq. (5), the drag force
exerted on the nanoparticle can be obtained as

Fs = − 8

3π

√
2πmrkBT N�

(1,1)

s V. (9)
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FIG. 1. The collision model of a nanoparticle with a gas molecule. b is the impact factor. χ denotes the scattering angle.

Here, the collision integral

�(1,1)
s =

∫ ∞

0
exp(−γ 2)γ 5Qs(g)dγ , (10)

with γ = g/
√

2kBT/mr. An reduced collision integral can be
introduced:

�(1,1)∗
s = �(1,1)

s

πR2
. (11)

Then,

Fs = − 8
3

√
2πmrkBT NR2�(1,1)∗

s V. (12)

For specular gas-particle scatterings, the gas molecule
is reflected with the same magnitude of momentum as the
incoming gas molecule. Therefore, there is no influence of
the particle temperature on the resulting drag force on the
nanoparticle in the case of the specular scattering limit.

B. Diffuse scattering

The diffuse scattering can be contributed to the gas
molecule adsorption on the particle surface [41]. The adsorbed
molecules walk randomly on the particle surface, and retain
no memory about its incident momentum. Then, they are
reflected from the particle surface in accordance with the
Maxwell distribution at the particle surface temperature Tp,

f ′ = cgf exp

(
− g′2

2kBTp
/

mr

)
, (13)

where c is a constant and gf denotes the incident mass
flux. According to the conservation of molecules mass,
c = (mr/kBTp)2/2π and gf = ∫

g′ g′ f ′dg′.
In the case of diffuse gas-particle scatterings, the drag force

on the nanoparticle is given by

Fd = mr

∫
v

gg f Qd(g)dv, (14)

where the diffuse scattering cross section

Qd(g) = 2π

[∫ b0

0

(
1 + 1

g

√
πkBTp

2mr
sin

χ

2

)
bdb

+
∫ ∞

b0

(1 − cos χ )bdb

]
. (15)

Here, the impact factor b0 refers to the orbiting scattering,
by which the scattering angle χ goes to −� [14]. For b < b0,
the gas molecules strike the nanoparticle in a diffuse manner,
while for b > b0, grazing collision takes place and the colli-
sion is specular. It should be noted that the diffuse scattering
cross section Qd(g) depends on the particle temperature. By
using γ = g/

√
2kBT/mr, Qd(g) can also be expressed as

Qd(γ ) = 2π

[∫ b0

0

(
1 +

√
π

2γ

√
α sin

χ

2

)
bdb

+
∫ ∞

b0

(1 − cos χ )bdb

]
, (16)

wherein α is a dimensionless temperature ratio, which is
defined as α = Tp/T . Putting Eq. (16) into Eq. (14) and
integrating over g, the drag force is then rewritten as

Fd = − 8

3π

√
2πmrkBT NV

∫ ∞

0
γ 5e−γ 2

Qd(g)dγ . (17)

Similar to Eq. (11), the reduced collision integral in the
diffuse scattering limit can be defined as

�
(1,1)∗
d,Tp

=
∫ ∞

0 γ 5e−γ 2
Qd(g)dγ

πR2
. (18)

Then, we have

Fd = − 8
3

√
2πmrkBT NR2�

(1,1)∗
d,Tp

V. (19)

C. Parametrization

The specular and diffuse scatterings are two limit cases
for the gas-particle collisions. A momentum accommodation
factor (MAF) ϕ can be introduced to describe the gas-particle
collision, which gives the percentage of gas molecules that are
reflected from the particle surface in a diffuse manner. Then,
a generalized expression for the drag force on a nanoparticle
is written as

FD = − 8
3

√
2πmrkBT NR2�(1,1)∗

avg V, (20)

where the average reduced collision integral is given by

�(1,1)∗
avg = ϕ�

(1,1)∗
d,Tp

+ (1 − ϕ)�(1,1)∗
s . (21)
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Here, ϕ = 0 and ϕ = 1 correspond to the specular and
diffuse scattering limits, respectively. It has been suggested
that ϕ ∼ 0.9 based on a lot of experimental data [42–44].
However, it is believed that the momentum accommodation
factor decreases from 0.9 to 0 as the particle size decreases to
a few nanometers. The transition depends on the temperature
and the gas-particle interaction potentials [41,45].

D. Rigid-body collision limit

As the particle size increases, the gas-particle intermolec-
ular interaction becomes less important and turns into a rigid-
body collision. For a rigid sphere model, �(1,1)∗

s = 1 and
�

(1,1)∗
d,Tp

= [8 + π (Tp/T )1/2]/8, respectively. Then,

Fs,rigid = − 8
3

√
2πmrkBT NR2V, (22)

and

Fd,rigid = −
8 + π

√
Tp

/
T

3

√
2πmrkBT NR2V, (23)

which are consistent with Eqs. (3) and (4) [35]. Then, the
parametrized expression can be given by

FD,rigid = −
8 + ϕπ

√
Tp

/
T

3

√
2πmrkBT NR2V. (24)

III. DRAG FORCE WITH RUDYAK-KRASNOLUTSKI
POTENTIAL

As an example, the Rudyak-Krasnolutski (RK) potential
can be employed to describe the interaction of a gas molecule
with a particle, although it has limitations [46,47]. This poten-
tial model is constructed by the summation of the Lennard-
Jones (LJ) interactions between the gas molecule and each
constituent atom of the particle. The LJ potential is given
by [48]

�LJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (25)

where ε is the potential well depth, and σ is the collision
diameter. The RK potential consists of a repulsive potential
term �9(r) and an attractive potential term �3(r),

�RK(r) = �9(r) − �3(r). (26)

Here,

�i(r) = Ci{[(r − R)−i − (r + R)−i]

− ai[(r − R)−i+1 − (r + R)−i+1]}, i = 3 or 9,

(27)

where, a3 = 3r/2, a9 = 9r/8, C3 = 2πεσ 6/(3V ), and C9 =
4πεσ 12/(45V ). The potential parameters for the interaction
between the gas molecule and the constituent atom of the
particle are given by the mixing rules, σ = (σg+σp)/2 and
ε = √

εgεp. Here the subscripts “g” and “p” denote the gas
molecule and particle atom, respectively.

FIG. 2. �
(1,1)∗
d,Tp

versus T ∗ for the RK potential function with (a)
σ ′ = 0.01 and (b) σ ′ = 0.2, respectively. The dotted lines denote the
constant value of (1 + α1/2π/8).

A. Drag force with constant MAF

Figure 2 presents the reduced collision integral �
(1,1)∗
d,Tp

as a
function of the reduced temperature T ∗ for the RK potential.
Here, T ∗ = kBT/ε, α = Tp

∗/T ∗, and σ ′ = σ/R. It can be seen
that �

(1,1)∗
d,Tp

gradually decreases with increasing T ∗. At high
T ∗, the gas molecules with large incoming momentum can
easily overcome the potential barrier around the nanoparticle
or be reflected from the particle in a short time, which results
in a small collision section and a small collision integral
as well. For a particle with very large radius (σ ′→0), the
collision between the gas molecule and nanoparticle tends to
be rigid at high T ∗. Therefore, the reduced collision integral
in the case of σ ′ = 0.01 approaches the value for a rigid-
body collision (1 + α1/2π/8) at high T ∗. With increasing σ ′,
the particle size decreases, and the effect of the gas-particle
nonrigid-body collision is enhanced. Therefore, the reduced
collision integral for high σ ′ is larger than that for low σ ′. For
diffuse scatterings, the incident molecules are reflected in a
diffuse manner and therefore leave the surface in equilibrium
with the particle at temperature Tp. If Tp > T , then the incident
gas molecules are reflected with higher momentum, which
in turn leads to an enhanced momentum transfer. If Tp < T ,
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FIG. 3. R versus T ∗ for the RK potential function with σ ′ = 0.01 and σ ′ = 0.2. (a) ϕ = 0, (b) ϕ = 0.5, (c) ϕ = 0.9, and (d) ϕ = 1.
Squares for α = 0.1, circles for α = 1.0, and triangles for α = 10.0.

then the momentum transfer is suppressed. Therefore, �
(1,1)∗
d,Tp

increases with increasing α.
Figure 3 plots R = (FD/FD,rigid ) − 1 as a function of the

reduced temperature T ∗ by using the RK potential with σ ′ =
0.01 and σ ′ = 0.2. Here, the momentum accommodation
factor is assumed to be a constant for simplicity. In the case
of σ ′ = 0.01, it is found that R is small in the whole temper-
ature range and vanishes with increasing T ∗. This is because
the gas-particle interaction tends to be rigid for large particles,
especially at high gas temperatures. Therefore, it is reasonable
to neglect the gas-particle nonrigid-body interactions for large
particles. As the particle radius decreases to a few nanometers,
the particle size is comparable to the scale of the gas-particle
intermolecular interactions. Then, the gas-particle nonrigid-
body interactions cannot be ignored. In the case of σ ′ = 0.2,
R could be much larger than 1, depending on the temperature
and momentum accommodation factor. With increasing T ∗,
the effect of nonrigid-body collisions is suppressed, so R

decreases. The value of R for high ϕ is larger than that for
low ϕ because the effect of nonrigid-body interaction is very
significant for diffuse scatterings.

The influence of the particle temperature on the momen-
tum transfer between the particle and gas can be significant
according to Figs. 2 and 3. Let T = (FD/FD,Tp=T ) − 1 be
the relative error owing to the assumption of Tp = T . Here,
FD,Tp=T denotes the drag force under the assumption of Tp =
T , wherein the gas-particle nonrigid-body interactions are
taken into account. Figure 4 presents T as a function of
T ∗ for the RK potential with σ ′ = 0.01 and σ ′ = 0.2. For
ϕ = 0, the relative error T = 0 (FD = FD,Tp=T ) because the
influence of the particle temperature cannot take effect in the
limiting case of specular scattering, as shown in Fig. 4(a).

With increasing ϕ, the specular scattering turns into the dif-
fuse scattering; then T becomes increasingly apparent. At
low T ∗, the influence of the temperature difference between
the gas and particle is enhanced with increasing T ∗ for a
given α, and T can be enlarged. As mentioned above, the
gas-particle interaction tends to be rigid at high temperature in
the case of σ ′ = 0.01. Therefore, T goes to the value for the
limit of rigid-body collisions with varying T ∗ for σ ′ = 0.01;
i.e., T = [πϕ(α0.5−1)/(8 + πϕ)]. However, in the case of
σ ′ = 0.2 (small nanoparticles), the effect of the nonrigid body
cannot be ignored. For very high T ∗, T is almost a constant
because the �

(1,1)∗
d,Tp

tends to be a constant.

B. Effect of the transition from specular to diffuse scattering

In Sec. III A, the momentum accommodation factor ϕ is
assumed to be a constant for simplicity. However, based on
the experimental and theoretical evidence, there is a transition
from specular to diffuse scattering with increasing particle
size [16,30,41,45,49]. For very small nanoparticles (with R <

1 nm), the gas-particle collision is dominated by the specular
scattering [12,30]. For large particles with high Knudsen
number, Millikan’s experiments on oil drops suggest ϕ ≈ 0.9
[42,43]. The transition is expected to occur at a particle radius
of 2–3 nm [41,45]. In the present paper, the size dependence
of the momentum accommodation factor is taken into ac-
count by introducing an empirical size-dependent momentum-
accommodation function proposed in Ref. [16],

ϕ = 1 + 0.9Kn{1 − 1/[1 + (R/2.5)15]}
1 + Kn

, (28)

where R is in nanometers.
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FIG. 4. T versus T ∗ for the RK potential function with σ ′ = 0.01 and σ ′ = 0.2. (a) ϕ = 0, (b) ϕ = 0.5, (c) ϕ = 0.9, and (d) ϕ = 1.
Squares for α = 0.1, circles for α = 1.0, and triangles for α = 10.0.

The drag force exerted on a silver nanoparticle suspended
in He gas is calculated as an example. The LJ potential
parameters are given as εAg = 3995.4 K, σAg = 2.574 Å, and
εHe = 10 K, σHe = 2.55 Å. The parameters for the interaction
potential between the gas molecule and the particle atom are
given by the mixing rules given above. By using Eq. (28),
Figure 5 plots the size dependence of R with T ∗ = 1.
Therein, the Knudsen number is set as Kn = 20. As shown
in Fig. 5, the relative error R goes down with increasing
particle radius R. For very small R (R < 2 nm), it is found
that the results for α = 0.1, α = 1.0, and α = 10.0 are con-

FIG. 5. R versus the particle radius R.

sistent with each other. This is because the specular scattering
dominates the gas-particle interactions for nanoparticles with
radius R < 2 nm, and thus the influence of the particle
temperature cannot take effect. The wavelike decrease of R

in Fig. 5 is probably caused by the transition from specular to
diffuse scattering. For R > 10 nm, R is less than 10%. With
increasing particle size, the gas-particle nonrigid-body inter-
actions become insignificant (R goes to 0) and the rigid-body
collision assumption is applicable for R > 30 nm. Figure 6
presents T as a function of R. In the case of α = 1 (Tp = T ),

FIG. 6. T as a function of the particle radius R with different
temperature ratio α.
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FIG. 7. T versus the temperature ratio α.

T = 0 as it should. For a nanoparticle with R < 2 nm, as
mentioned above, the dominant scattering mechanism is the
specular reflecting, so T ≈ 0 and the influence of the particle
temperature can be neglected in this case. The increase of the
absolute value of T is quite abrupt in the range of R = 2−3
nm, where the transition from specular to diffuse scattering
occurs. For larger particle size, the gas-particle collision is
dominated by diffuse scatterings and the results are close to
those in Fig. 4(c), where ϕ = 0.9.

According to Figs. 5 and 6, the error caused by the tem-
perature difference between the gas and particle becomes
significant when the temperature ratio α becomes large.
Figure 7 plots T versus the temperature ratio α with T ∗ = 1.
It is found that T vanishes for small particles (σ ′ = 0.2,
R = 1.281 nm), as mentioned above. For the cases of σ ′ = 0.1
(R = 2.562 nm) and σ ′ = 0.01 (R = 25.62 nm), the relative

error owing to the gas-particle temperature difference, T

increases significantly with the temperature ratio α. For σ ′ =
0.1, the absolute value of T is larger than 10% if α < 0.15
or α > 2.5, which can be considered as a significant error
compared with the classical assumption of equilibrium gas-
particle temperature. For σ ′ = 0.01, T > 10% if α < 0.35
or α > 1.9.

IV. CONCLUSION

Based on the kinetic theory, the drag on nanoparticles is
investigated in the free-molecule regime, wherein the gas-
particle nonrigid-body interactions are taken into account. A
general case is considered, by which the particle temperature
Tp could be different from the gas media temperature T. The
expressions for the drag force on nanoparticles are derived
for both specular and diffuse scatterings, which are consistent
with the expressions for the drag in the rigid-body limit.
As an example, the Rudyak-Krasnolutski potential model of
gas-particle interaction is employed to calculate the drag on
nanoparticles. It is found that the relative error owing to
the assumption of rigid-body collisions becomes insignificant
with increasing particle size. The relative error owing to the
assumption of Tp = T could be larger than 50%, depending
on the particle size and the temperature ratio Tp/T . For
small nanoparticles with radius R < 2 nm, the error can
be neglected because the specular scattering dominates the
gas-particle interactions. After an abrupt increase of the error
in the range of 2–3 nm, the effect of the particle temper-
ature can be significant, especially for very large or small
temperature ratios.
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