
PHYSICAL REVIEW E 101, 013102 (2020)

Input-output system identification of a thermoacoustic oscillator
near a Hopf bifurcation using only fixed-point data
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We present a framework for performing input-output system identification near a Hopf bifurcation using data
from only the fixed-point branch, prior to the Hopf point itself. The framework models the system with a van
der Pol–type equation perturbed by additive noise, and identifies the system parameters via the corresponding
Fokker-Planck equation. We demonstrate the framework on a prototypical thermoacoustic oscillator (a flame-
driven Rijke tube) undergoing a supercritical Hopf bifurcation. We find that the framework can accurately predict
the properties of the Hopf bifurcation and the limit cycle beyond it. This study constitutes an experimental
demonstration of system identification on a reacting flow using only prebifurcation data, opening up pathways
to the development of early warning indicators for nonlinear dynamical systems near a Hopf bifurcation.
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I. INTRODUCTION

Many natural and engineered systems are nonlinear and
can develop self-sustained oscillations [1]. Such oscillations
are desirable in some systems (e.g., musical instruments [2],
pendulum clocks [3], and pulsed combustors [4]) but they
are undesirable in other systems (e.g., bridge structures [5],
predator-prey systems [6], and gas turbines [7]). A canonical
way for self-sustained oscillations to arise is via a Hopf bifur-
cation [1], in which a fixed point loses stability and a complex
conjugate pair of eigenvalues crosses the imaginary axis in
response to changes in a control parameter [8]. The result
is a transition from a fixed point to a limit cycle [8]. If the
limit cycle arises only after the Hopf point and its amplitude
increases gradually with changes in the control parameter,
then the Hopf bifurcation is supercritical. If the limit cycle
arises in a hysteric bistable regime, between the Hopf and
saddle-node points, and its amplitude increases abruptly, then
the Hopf bifurcation is subcritical. Whether a Hopf bifurcation
is supercritical or subcritical depends on the specific form of
nonlinearity in the system [8]. In many practical systems, it
is advantageous to be able to predict the type and location of
the Hopf bifurcation, because this can enable users to avoid
destructive acoustic or structural resonances. Thus there is a
need for robust methods capable of identifying the nonlinear
properties of dynamical systems using only prebifurcation
data. In this paper, we demonstrate a framework for this that
uses the noise-perturbed data on the fixed-point branch, prior
to the Hopf point itself.

A. Thermoacoustic instability via a Hopf bifurcation

Despite significant research, thermoacoustic instability
continues to hamper the development of combustion devices
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such as gas turbines and rocket engines [9,10]. The underlying
cause of this instability is the positive feedback between the
heat-release-rate (HRR) oscillations of an unsteady flame and
the pressure oscillations of its surrounding combustor [11]. If
the HRR oscillations are sufficiently in phase with the pres-
sure oscillations, the former can transfer energy to the latter
via the Rayleigh mechanism [12], leading to self-sustained
flow oscillations at one or more of the natural acoustic modes
of the system [13,14]. If severe, such thermoacoustic os-
cillations can exacerbate vibration, mechanical fatigue, and
thermal loading, reducing the reliability of the overall system.
This problem is especially concerning in modern gas turbines
because the conditions under which such devices must operate
to achieve low pollutant emissions are also those that provoke
thermoacoustic instability [7].

Like other self-sustained oscillations, thermoacoustic os-
cillations often arise via a Hopf bifurcation, making them
amenable to a weakly nonlinear analysis near the Hopf point
[15]. Such an analysis can be performed with the normal-form
equation for a Hopf bifurcation, which, in fluid mechanics, is
known as the Stuart-Landau equation [16]:

da

dt
= k1a + k2a3 + · · · , (1)

where a is the complex mode amplitude, k1 is the linear
driving or damping coefficient, k2 is a nonlinear coefficient,
and t is time. A Hopf bifurcation occurs at k1 = 0. The
Stuart-Landau equation can capture the amplitude evolution
of a system near the Hopf point, where the growth rate, which
controls the amplitude evolution, is still much smaller than
the oscillation frequency. Weakly nonlinear analyses based on
the Stuart-Landau equation have been used before to study
hydrodynamic systems [17–21] and thermoacoustic systems
[22,23]. For example, Orchini et al. [24] recently carried
out a weakly nonlinear analysis of a Rijke tube and showed
that such an approach can reduce the computational cost of
investigating oscillatory phenomena near a Hopf bifurcation.
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B. Noise-induced dynamics of thermoacoustic systems

Thermoacoustic systems often exhibit combustion noise,
which can arise from direct sources, such as the HRR fluctu-
ations of an unsteady flame, and indirect sources, such as the
acceleration of entropy or vortical inhomogeneities through a
nozzle [25]. Previous studies on the noise-induced dynamics
of thermoacoustic systems have focused primarily on two
objectives: (i) to investigate the dynamical effect of noise,
such as how it shifts the stability boundaries [26,27] and
how it triggers limit-cycle oscillations in the bistable regime
[28,29], and (ii) to gather information about the system from
its noise-induced dynamics. Such information can then be
used to predict the onset of instability [30–36], to distinguish
between supercritical and subcritical bifurcations [37], and to
extract deterministic quantities [38–41].

The noise-induced dynamics of a system can be deter-
mined by measuring its response to extrinsic or intrinsic
perturbations [42]. In the early years of rocket development,
extrinsic perturbations in the form of bomb detonations were
used in combustors to determine their stochastic properties
and stability boundaries [43]. In recent years, such noise-
induced dynamics has been used to forecast the onset of
thermoacoustic instability. For example, Kabiraj et al. [30]
applied extrinsic perturbations to a thermoacoustic system and
found that its degree of coherence peaks at an intermediate
noise amplitude—a phenomenon called coherence resonance.
These researchers noted that such dynamics could be used
as a precursor to a Hopf bifurcation. Other metrics capable
of forecasting the onset of thermoacoustic instability include
the Hurst exponent [32], ordinal partition transition net-
works [33], the phase parameter [34], sequential horizontal-
visibility-graph motifs [35], and the autocorrelation function
and variance [36]. In the present study, we build on these
contributions by showing that it is possible to predict the
properties of a Hopf bifurcation and the resultant limit cycle,
using only prebifurcation data and without the need to set ad
hoc instability thresholds.

C. System identification

System identification (SI) refers to the use of statistical
methods to construct mathematical models of dynamical sys-
tems from input and/or output data. There are two main ways
in which SI can be performed: data-driven SI and model-based
SI. In data-driven SI, a priori knowledge of the system physics
is not required. Instead, a model of the system is found solely
from data using techniques such as symbolic regression [44]
and machine learning [45]. Data-driven SI is useful when
abundant data are available, either from experiments or simu-
lations. However, in practical systems, it is often difficult and
costly to acquire sufficient data. In such cases, it may be more
efficient to use model-based SI, in which a low-dimensional
model is assumed or developed for a system using information
about its physics, and then the coefficients of the model are
determined from data [46].

In thermoacoustics, most studies relying on the noise-
induced dynamics for SI have used a model-based approach
[9,47]. For example, Noiray’s group used a self-sustained
oscillator equation perturbed by additive noise to model the
dynamics of a gas-turbine combustor perturbed by its own

turbulence [38–41]. Specifically, Noiray and Schuermans [38]
used stochastic differential equations, based on the Fokker-
Planck formalism, to extract deterministic quantities from
noise-perturbed data. Recently, Boujo and Noiray [40] im-
proved the accuracy of this SI method by incorporating
adjoint-based optimization. In these studies [38–41], an intrin-
sic noise source, namely turbulence, was used to extract the
system coefficients. This output-only approach is convenient
in that neither an actuator model nor extrinsic forcing is
required. However, like most SI methods, it requires at least
some data from the limit-cycle branch. By contrast, Lee et al.
[48] recently proposed an input-output SI framework in which
extrinsic noise is fed into the system to enable prediction of its
bifurcation properties and limit-cycle amplitudes, using data
from only the fixed-point branch, before the Hopf point itself.
To date, however, the SI framework of Lee et al. [48] has
only been demonstrated on a simple hydrodynamic system,
a low-density jet, which has none of the complexities of a
thermoacoustic system such as nonlinear coupling between
HRR oscillations and sound waves.

D. Contributions of the present study

In this study, we apply the SI framework of Lee et al.
[48] to a prototypical thermoacoustic system, a flame-driven
Rijke tube, undergoing a supercritical Hopf bifurcation. We
show that this framework can enable accurate prediction of the
properties of the Hopf bifurcation and the limit cycle beyond
it, using nothing more than the noise-perturbed data on the
fixed-point branch, prior to the Hopf point itself. Crucially, we
show that, unlike most other forecasting methods, ours does
not require empirical instability thresholds to be set ad hoc,
implying that our method can give objective predictions for
a variety of nonlinear dynamical systems. Below we present
the experimental setup (Sec. II), review the SI framework
of Lee et al. [48] (Sec. III), and apply that framework to a
thermoacoustic system (Sec. IV), before concluding with the
key implications and limitations of this study (Sec. V).

II. EXPERIMENTAL SETUP

The thermoacoustic system under study consists of a ver-
tical tube combustor containing a laminar conical premixed
flame. This system, which is also known as a flame-driven
Rijke tube, can exhibit a variety of nonlinear states and
bifurcations, making it an ideal platform for studying ther-
moacoustic phenomena [49–52]. Shown in Fig. 1, the system
features a stainless-steel tube burner [inner diameter (ID) =
16.8 mm; length = 800 mm], a double-open-ended quartz
tube combustor (ID = 44 mm; length L = 860 mm), and an
acoustic decoupler (ID = 180 mm; length = 200 mm). The
flame is stabilized on a copper extension tip (ID: D = 12 mm;
length = 30 mm) mounted at the burner outlet. Extrinsic
perturbations are applied to the system via a loudspeaker
(FaitalPRO 6FE100) mounted in the acoustic decoupler. The
loudspeaker is driven by a white Gaussian noise signal from a
function generator (Keysight 33512B) via a power amplifier
(Alesis RA150). The fuel used for the flame is liquefied
petroleum gas (70% butane, 30% propane). The fuel flow
rate is controlled with a rotameter (±2.5%) and the air flow
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FIG. 1. Schematic of the experimental setup consisting of a
prototypical thermoacoustic system (a flame-driven Rijke tube) per-
turbed by extrinsic noise from a loudspeaker. DAQ: data acquisition
system.

rate is controlled with a mass flow controller (Alicat MCR:
±0.2%). In this study, the system is operated at an equivalence
ratio of 0.62 (±3.2%), a bulk reactant velocity of ū = 1.6 m/s
(±0.2%), and a Reynolds number of Re = 1300 (±1.7%)
based on ū and D.

To induce a Hopf bifurcation, we traverse the combustor
upward relative to the stationary burner. The nondimensional
flame position (z/L) is defined as the distance from the top
of the combustor to the burner extension tip (z) normalized
by the combustor length (L). To determine the state of the
system, we use the acoustic pressure fluctuation (p′), which
is measured with a probe microphone (GRAS 40SA, ±2.5 ×
10−5 Pa sensitivity) mounted 387 mm from the bottom of the
combustor. For each test run, we collect 8 s long time traces of
p′ at a sampling frequency of 32768 Hz, which is more than
150 times the frequency of the incipient limit cycle.

III. SYSTEM-IDENTIFICATION FRAMEWORK

As mentioned in Sec. I, we use the input-output SI frame-
work developed in our previous study [48]. A detailed descrip-
tion of this framework can be found in that study [48], so only
a brief overview is given below.

A. System model

To model the thermoacoustic system, we use a high-order
Duffing–van der Pol (DVDP) oscillator perturbed by additive
white Gaussian noise [48]:

ẍ−(ε+α1x2+α2x4 + α3x6 + · · · )ẋ + x + βx3 =
√

2dη(t ),
(2)

where x represents the pressure fluctuation in the combustor
(p′ in units of Pa), η(t ) is a unit noise term, d is the noise
amplitude, ε is the linear growth (positive) or damping (nega-
tive) term, α1, α2, α3, . . . are the nonlinear terms, and β is the
anisochronicity factor, which determines the frequency shift
as a function of amplitude. The point at which ε crosses zero
is the Hopf point, with the sign of α1 determining whether
the Hopf bifurcation is supercritical (negative) or subcritical
(positive).

The probabilistic solution to Eq. (2) can be found via
the method of variation of parameters [53]. On substitu-
tion of x and ẋ as x(t ) = a(t ) cos [t + φ(t )] and ẋ(t ) =
−a(t ) sin [t + φ(t )], we obtain two first-order equations for
the amplitude (a) and the phase (φ):

ȧ =
(

ε

2
a + α1

8
a3 + α2

16
a5 + 5α3

128
a7 + · · ·

)
+ Q1(a,�) − (

√
2d sin �)η, (3a)

φ̇ = 3β

8
a2 + Q2(a,�) −

(√
2d

a
cos �

)
η, (3b)

where η is a unit white Gaussian noise term, �(t ) = t + φ(t ),
and Q1(a,�) and Q2(a,�) are the sum of all the terms with
first-order sine and cosine terms. Assuming that a and φ vary
much more slowly than x itself, we can justifiably neglect
Q1(a,�) and Q2(a,�) via time averaging [53]. Thus, for zero
noise (d = 0), Eq. (3a) can be rewritten as

da

dt
= ε

2
a + α1

8
a3 + α2

16
a5 + 5α3

128
a7 + · · · . (4)

Equation (4) takes the form of a Stuart-Landau equation,
which is often used to model fluid-mechanical systems near
a Hopf bifurcation [17,20,21,38,40,48,54,55]. This equation
will later be used to calculate the noise-free bifurcation di-
agram. However, if the noise amplitude is finite (d > 0),
stochastic averaging can be applied to Eq. (3), yielding the
following stochastic differential equation, expressed here in
Itô sense [42,56]:

da =
(

d

2a
+ ε

2
a + α1

8
a3 + α2

16
a5 + 5α3

128
a7 + · · ·

)
︸ ︷︷ ︸

m(a,t )

dt

+ (
√

d )︸ ︷︷ ︸
σ (a,t )

dW, (5)

where dW is a unit Wiener process and m(a, t ) and σ (a, t )
appear in the drift and diffusion terms of a, respectively. These
two terms can be used to derive the classic Fokker-Planck
equation:

∂

∂t
P(a, t ) = − ∂

∂a
[m(a, t )P(a, t )] + ∂[

∂2
]a

[
σ2(a, t )

2
P(a, t )

]
,

(6)

where P(a, t ) is the probability density function at time t .
The stationary probability density function, P(a), is found by
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FIG. 2. Probability density function of the pressure fluctuation
amplitude on the fixed-point branch (z/L = 0.256) for three different
noise amplitudes (d).

integrating Eq. (6):

P(a) = Ca exp

[
a2

d

(
ε

2
+ α1

16
a2 + α2

48
a4 + 5α3

512
a6 + · · ·

)]
,

(7)

where C is a normalization constant and P(a) is independent
of the anisochronicity factor β [57].

B. System identification

We perform SI using probability density functions of the
pressure fluctuation amplitude on the fixed-point branch, a
subset of which is shown in Fig. 2. By taking the logarithm
of Eq. (7), we obtain

ln P(a) − ln a = ln C + ε

2d
a2 + α1

16d
a4 + α2

48d
a6 + · · · .

(8)
The left-hand side of Eq. (8) is measured experimentally
for a given value of a. Thus the ratio of d to the unknown
coefficients on the right-hand side (ε/2d , α1/16d , . . .) can be
extracted via polynomial regression. The number of terms on
the right-hand side, which defines the order of nonlinearity, is
determined by incrementally adding higher-order terms until
the rank of the polynomial regression becomes deficient.

At each flame position (z/L), 16 different noise amplitudes
(d) are applied, with three replications performed at each
d . The system coefficients at each z/L are then found by
averaging the results across all values of d .

C. Actuator model

A key component of input-output SI is the actuator model,
which here is a function that transforms the loudspeaker
voltage (V ) into input noise (d). We use a power-law re-
lationship for the actuator model, d = b + kV n, where b is
the background noise amplitude and k and n are constants.
Assuming b � d , we take the logarithm of this power-law
equation, yielding

ln

(
d

c

)
≈ n ln V + ln

(
k

c

)
, (9)

where c is an arbitrary constant. From Sec. III B, a ratio
between d and one of the system parameters (ε, α1, α2, . . .)
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-4

-3

-2

-1

0

0 1 2 3 4 5 6 7

10-2

0

0.5

1

1.5

2
10-3

FIG. 3. Identification of the actuator model coefficients, where
n is the gradient of subfigure (a) and k is the gradient of subfigure
(b). The vertical intercept of subfigure (b) is the background noise
amplitude (b), which is negligible and thus consistent with our
modeling assumptions.

can be found before applying the actuator model. Thus, by
replacing c with one of those parameters, n can be found
from linear regression [Fig. 3(a)]. In this study, |ε| on the
fixed-point branch is chosen because its values, sampled over
multiple experimental runs, are the most consistent among all
the DVDP coefficients. To find the remaining constants (k and
b), we use information in the spectral domain, as per Ushakov
et al. [58]:

d = b + kV n = 
ω

2

∫ ∞

−∞
Su(ω)dω, (10)

where Su is the spectrum and 
ω is the half width at half
maximum of a Lorentzian fit to the noise-induced peak in the
power spectral density (PSD), as shown in Fig. 4. Finally, k

0.98 0.99 1 1.01 1.02
0

0.05

0.1

0.15

0.2

0.25
Experimental
Lorentzian fit

FIG. 4. Power spectral density showing a noise-induced peak
and its Lorentzian fit on the fixed-point branch (z/L = 0.267) for
d = 4.0 × 10−4. The horizontal axis is the normalized frequency (ω̂),
with 2
ω denoting the width at half maximum of the Lorentzian fit.
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FIG. 5. (a) Experimental bifurcation diagram of the system,
where the horizontal axis is the normalized flame position (z/L)
measured from the top of the combustor. Also shown is (b) the PSD
of the pressure fluctuations as a function of z/L.

and b are determined by linear regression, as per Fig. 3(b).
In this way, we determine the relationship between d and
V to be d = (2.345 × 10−2)V 1.919. In our experiments, the
background noise amplitude (b) is negligible, as evidenced by
the zero vertical intercept of the data shown in Fig. 3(b).

IV. RESULTS AND DISCUSSION

Figure 5(a) shows a bifurcation diagram of the system.
When the flame reaches a position of 0.267 < z/L < 0.273,
the system transitions from a fixed point to a limit cycle via
a supercritical Hopf bifurcation. The supercritical nature of
this bifurcation can be confirmed by examining the probability
density function P(a). If P(a) shows two local maxima with
respect to a at intermediate noise amplitudes d (a feature
called bimodality [57]), then the system is undergoing a
subcritical Hopf bifurcation. However, if P(a) is unimodal,
exhibiting only one peak at every value of d , then the system
is undergoing a supercritical Hopf bifurcation. Figure 6 shows
P(a) and its surface interpolation on the fixed-point branch
(z/L = 0.267), just before the Hopf point. There is only one
peak for every value of d , confirming that the Hopf bifurcation
is indeed supercritical.

Figure 5(b) shows the PSD as a function of the flame
position (z/L). Before the Hopf point (z/L < 0.267), the PSD
contains mostly broadband noise, with slight increases around

0

1

2

0 0

3

4

0.51
10-312

1.53

0.51
112

FIG. 6. Experimental probability density function (black dots)
and its surface interpolation on the fixed-point branch (z/L = 0.267),
just before the Hopf point. For all the noise amplitudes tested,
P(a) is unimodal, confirming the supercritical nature of the Hopf
bifurcation.

200–250 Hz due to incipient modes. Just after the Hopf point
(0.273 < z/L < 0.285), the PSD is dominated by sharp peaks
at f1 = 208 Hz and its higher harmonics, indicating a limit cy-
cle. Accompanying this primary mode is a weaker secondary
mode at f2 = 243 Hz. This secondary mode, however, is more
than 100 times weaker than the primary mode, so the system
dynamics is still dominated by the limit cycle at f1. Further
from the Hopf point (z/L > 0.285), the secondary mode ( f2)
remains relatively unchanged, but the primary mode ( f1) and
its higher harmonics (2 f1 and 3 f1) continue to grow. This is
particularly true for the third harmonic (3 f1), which grows to
nearly the same amplitude as the fundamental itself ( f1). As
we will see later, the growth of these higher harmonics has a
significant influence on the limit-cycle amplitude.

The DVDP coefficients found via SI are shown in Fig. 7.
The highest nonlinear term of Eq. (2) is (α3x6)ẋ, and the signs
of the nonlinear coefficients (α1, α2, α3) remain unchanged
across the entire range of z/L.

To predict the Hopf point and the resultant limit cycle using
data from only the fixed-point branch, we build a mathemati-
cal relationship between z/L and the system coefficients. In
a Hopf bifurcation, the linear coefficient ε is known to be
linearly proportional to the control parameter [59]. We there-
fore linearly extrapolate ε from within the fixed-point branch
(i.e., from the smallest z/L to the largest z/L with negative ε)
to the limit-cycle branch. For the nonlinear coefficients (α1,
α2, α3), we repeat this process but with a power law, αn =
(z/L − m1)m2 , as per our previous study [48]. Figure 7 shows
that the absolute values of the nonlinear coefficients (|α1|,
|α2|, |α3|) decrease with increasing z/L. In particular, the
higher the order of the nonlinear coefficients, the faster they
decay, confirming that the system is indeed weakly nonlinear
near the Hopf point.
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FIG. 7. Determining the DVDP coefficients via SI. Extrapolation
is performed using data from only the fixed-point branch (black
diamonds), after the removal of outliers (gray diamonds), which are
defined here as being outside three standard deviations. The extrap-
olation is performed with a linear model for the linear coefficient (ε)
and with a power-law model for the nonlinear coefficients (α1, α2,
α3). The predicted data (red circles) are on the limit-cycle branch,
whose features are examined in Fig. 10.

Next we reconstruct the bifurcation diagram by solving
the Stuart-Landau equation [Eq. (4)] with the extrapolated
coefficients, as shown in Fig. 8. The numerical model found
via SI predicts that a supercritical Hopf bifurcation occurs
at z/L = 0.269, which agrees well with the experimentally
observed Hopf point at 0.267 < z/L < 0.273. After the Hopf
point, however, the numerical predictions agree less well with
the experimental data. As alluded to earlier, we speculate that
this is due to the growth of the higher harmonics (2 f1 and 3 f1)
with increasing z/L. To test this, we bandpass filter the exper-
imental limit-cycle data using different filter widths. We find
improved agreement only when the higher harmonics (2 f1 and
3 f1) are removed (Fig. 8); no significant difference is found
when only the secondary mode ( f2) is removed (not shown
here for brevity). The improved agreement occurs far from
the Hopf point (z/L > 0.285), which is consistent with where
the harmonics are strongest. The agreement close to the Hopf
point (z/L < 0.285), however, remains relatively unaffected

0.24 0.26 0.28 0.30
0

0.3

0.6

0.9

1.2 Experimental (unfiltered)
Experimental (filtered)
Numerical

FIG. 8. Comparison of bifurcation diagrams between the exper-
imental system and the numerical model found via SI. The Hopf
point predicted by the model is at z/L = 0.269, which is within
the experimentally observed range: 0.267 < z/L < 0.273. The blue
line represents the experimental data bandpass filtered around the
limit-cycle frequency ( f1 ± 10 Hz).

by the filtering, with the numerical model overpredicting
the experimental data (both unfiltered and filtered; Fig. 8).
This overprediction could be due to nonlinear interactions
between the harmonics, which the Stuart-Landau equation
[Eq. (4)] cannot capture because it was derived on the basis
of weak nonlinearity (Sec. III A). In the experiments, there is
substantial energy transfer from the fundamental mode ( f1)

0 0.5 1 1.5

10-3

202

204
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190 195 200 205 210 215

-50

-40

-30

-20

-10

0 d=1.2×10−3

d=1.5×10−4

d=8.0×10−6

FIG. 9. Anisochronicity of the experimental system: (a) peak
frequency fpk as a function of the noise amplitude d and (b) power
spectral density at different values of d on the fixed-point branch
(z/L = 0.267), just before the Hopf point. The frequency shift is
observed to be less than 0.3%.
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FIG. 10. Comparison of phase portraits between the experimen-
tal system and the numerical model found via SI at four different
positions on the limit-cycle branch: z/L = 0.273 (a), 0.285 (b), 0.297
(c), and 0.308 (d). The experimental data are shown both in unfiltered
form (gray) and in bandpass-filtered form (blue: f1 ± 10 Hz), while
the numerical data are shown in unfiltered form only (red).

to its higher harmonics (2 f1 and 3 f1). The absence of such
energy transfer in the model may explain why it overpredicts
the experimental data in this regime (0.273 < z/L < 0.285).
Overall these findings show that, although the presence of
strong harmonics affects the limit-cycle predictions, it does
not affect the Hopf-point predictions.

To determine β in Eq. (2), we analyze the anisochronicity
of the experimental system in the frequency domain. Figure 9
shows that the dominant frequency ( fpk) shifts by less than
0.3% as d increases, supporting our original assumption of a
negligible frequency shift.

Finally, we examine the limit-cycle features of the nu-
merical model using the time-delay embedding technique of
Takens [60]. This technique, which has seen widespread use
in thermoacoustics [61–64], enables an attractor to be recon-
structed in phase space using just a single scalar time series
shifted by an appropriate time delay (τ ). A typical choice
of τ is the first minimum of the average mutual information
function [65]. Figure 10 compares the phase portraits of the
experimental system (both unfiltered and bandpass-filtered
signals) with those of the numerical model found via SI.
Owing to the presence of higher harmonics (2 f1 and 3 f1),
the unfiltered experimental data are seen to develop “circular
swelling” as z/L increases (Fig. 10). Our SI framework,
however, cannot predict this feature because it assumes weak
nonlinearity and hence weak harmonics. Nevertheless, if the
primary mode is isolated via bandpass filtering around its fun-
damental frequency ( f1 ± 10 Hz), the agreement between the
experimental and numerical data improves far from the Hopf
point [Figs. 10(b)–10(d): z/L � 0.285], although it remains
relatively unchanged close to the Hopf point [Fig. 10(a):
z/L = 0.273]. These trends are consistent with our discussion
of Fig. 8.

V. CONCLUSIONS

We have presented a framework for performing input-
output SI near a Hopf bifurcation using data from only
the fixed-point branch, prior to the Hopf point itself. The
framework models the system with a DVDP-type equation
perturbed by additive noise and identifies the system param-
eters via the corresponding Fokker-Planck equation. We have
demonstrated the framework on a prototypical thermoacoustic
oscillator (a flame-driven Rijke tube) undergoing a supercrit-
ical Hopf bifurcation. We find that the properties of the Hopf
bifurcation—such as its location and its super- or subcritical
nature—can be accurately predicted even before the onset
of limit-cycle oscillations. We believe that input-output SI
has been successfully performed on a reacting flow using
only prebifurcation data, paving the way for the development
of early warning indicators of thermoacoustic instability in
combustion devices.

Compared with existing early warning indicators used in
thermoacoustics, the SI framework presented here has two
advantages: (i) it can predict the properties of a Hopf bifurca-
tion without the need to set ad hoc instability thresholds and
(ii) it can predict postbifurcation behavior such as limit-cycle
amplitudes. Although demonstrated here on a thermoacoustic
system, this SI framework should be applicable to other non-
linear dynamical systems as well, provided that they obey the
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normal-form equation for a Hopf bifurcation (i.e., the Stuart-
Landau equation). Examples of such systems include open
shear flows [59], chemical reactions [66], and optical lasers
[67]—among many other systems in nature and engineering.

This SI framework has two notable limitations. First, it
assumes that the background noise amplitude is low. This
assumption, however, may not be valid in turbulent systems,
which could complicate the development of an accurate ac-
tuator model. Output-only SI methods can offer a way out of
this, but they typically require large data sets, which could
be difficult to acquire in practical systems [68]. Nevertheless,
this problem can be circumvented with the use of adjoint
equations, as Boujo and Noiray [40] have shown. Second,
our SI framework makes use of time-series data collected
at a single location. This works well for the thermoacous-
tic system studied here because its temporal dynamics is
globally synchronized at every location in the flow domain.

Such localized sampling keeps the matrix sizes manageable
without compromising the accuracy of the numerical predic-
tions. Other systems, however, may show elaborate spatial
variations in their dynamics, requiring data to be sampled at
multiple locations. In such a scenario, it may be necessary
to use sparsity-promoting techniques and machine learning to
process the larger data matrices [45].
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