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Periodic folding of a falling viscoelastic sheet
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A viscoelastic solid sheet fed from a certain height towards a rigid horizontal plane folds on itself provided
that there is no slip. This phenomenon commonly occurs in the manufacturing process of textile and paper
products. In this paper we apply a particle dynamics model to investigate this phenomenon. At a low feeding
velocity and low viscosity, the inertial effect and the viscous dissipation within the sheet are negligible, and
our model successfully reproduces the existing quasistatic results in the gravitational regime. As the feeding
velocity and the viscosity of the sheet increase, the folding process changes significantly. The length of the folds
decrease and the “rolling back” motion of the sheet vanishes. In the inertial regime, a scaling law between the
fold length and the feeding velocity is derived by balancing the kinetic energy and the elastic bending energy
involved in folding, which is verified by the simulation. It is found that above a critical feeding velocity, the
folding morphology transforms from line contact into point contact with the sheet exhibiting a lemniscate-like
pattern. Finally, a phase diagram for the folding morphology is constructed. The results presented in this work
may offer some insights into the high-speed manufacturing of paper and fabric sheets.
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I. INTRODUCTION

When slender objects such as ropes, filaments, and sheets
are fed from a sufficient height towards a horizontal plane,
instability usually occurs, which gives rise to a series of
intriguing phenomena including periodic folding and coiling
[1–15]. Periodic folding is typically associated with sheet-
type objects [1–9] and the deformation is two-dimensional,
while coiling happens with ropes and filaments [10–15] where
deformation is three-dimensional and twisting is essential.
Both folding and coiling occur in a variety of materials whose
rheology ranges from purely elastic to purely viscous. For
viscous coiling, four distinct regimes (viscous, gravitational,
inertio-gravitational, and inertial) have been identified as the
normalized falling height increases [12]. For elastic coiling,
three basic regimes (elastic, gravitational, and inertial) exist
depending on the relative magnitude of various energies,
and in the inertial regime there are two distinct modes:
“whirling string” and “whirling shaft” [15]. More complex
coiling patterns have been revealed when the rope falls on
a horizontal moving belt, which is known as a “sewing
machine” [16–22]. Similar to coiling, periodic folding is
also governed by the interplay between various energies. For
example, for viscous sheets under the assumption that the fluid
inertia is negligible, the viscous force can be balanced by
the gravity, which leads to a viscogravitational folding length
as lvg

f ∼ (μIV0/ρhwg)1/4, where μ, I , V0, ρ, h, w, and g
represent the dynamic viscosity, second moment of area of
the sheet cross section, feeding velocity, density, thickness,
width, and gravity, respectively [1]. It is worth mentioning
that a leading-order logarithmic term can be present in the
expression for the aforementioned viscogravitational folding
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length in the gravitational regime, when the upper part of the
sheet behaves like a hanging catenary [21,22]. However, for
the folding of a viscoelastic paper sheet that we are going
to investigate in this paper, the logarithmic term varies very
little and thus can be neglected. For elastic sheets, when the
feeding velocity of the material is low (quasistatic case), only
the gravitational energy and the elastic bending energy of the
sheet are important [4]. Balancing these two energies leads to
a gravito-bending folding length as lgb

f ∼ (EI/ρhwg)1/3 with
E being the Young’s modulus [4,6]. However, as the feeding
velocity increases, the kinetic energy of the sheet becomes
comparable with the gravitational energy, and thus the inertia
cannot be neglected. Although the coiling phenomenon of
ropes (filaments) in the inertial regime has been well explored
[10–22], the inertial effect on the folding of thin sheets
remains unclear. Furthermore, only purely elastic or purely
viscous materials have been considered to our knowledge. For
viscoelastic sheets, elasticity and viscosity can simultaneously
affect the folding process. Motivated by this, in this paper we
study the periodic folding of a falling viscoelastic sheet with
a special interest in the inertial regime. In order to consider
the in-plane viscous dissipation, the extensibility of the sheet
is also accounted for.

An example of the periodic folding of a viscoelastic sheet
can occur in the manufacturing process of paper products,
during which a paper sheet is fed from a spool towards a
horizontal solid plane below it, forming a series of folds. In
a typical paper machine, the feeding speed can reach around
30 m/s and paper is essentially a viscoelastic material [23].
Due to the nonlinearity of the governing equations and the
complex boundary condition, the analytical solution of this
problem is impossible. Here we propose to use a particle
dynamics model to simulate the folding process and com-
bine the simulation with an approximate energy analysis.
Particle-based methods have been widely used in applied
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FIG. 1. (a) Edge-on view of a buckled thin viscoelastic sheet
when it touches ground. V0 and H represent the feeding veloc-
ity and feeding height, respectively. (b) Schematic of the particle
system:ka represents the axial stiffness; kb represents the stiffness of
the rotational spring; ca represents the axial damping coefficient; cb

represents the rotational damping coefficient. (c) Schematic of elastic
bending forces in the local bending system formed by particles
(i − 1) − (i) − (i + 1). (d) Schematic of viscous bending forces:
f v1,i is due to the angular velocity ω1,i, f v2,i is due to the angular
velocity ω2,i, and f v,i is the negative sum of f v1,i and f v2,i.

mechanics over the past few decades. In particle-based mod-
els, the material is treated as a series of discrete particles
(masses) and the connections between neighboring particles
are determined by constitutive equations [24–28]. Significant
developments of the particle-based approach have been made,
such as the meshfree Galerkin methods, the smoothed par-
ticle hydrodynamics, and the popular molecular dynamics,
reviewed in detail in Ref. [29]. Recently a particle dynamics
model has been applied to simulate the dynamics of the paper
web running in the open-draw section [30] and the periodic
buckle-delamination in the “creping” process of tissue making
[31,32]. The sheet is treated as a series of discrete masses
connected by viscoelastic (Kelvin-Voigt) elements which can
capture the large deformation and the viscoelasticity. In this
paper we use this particle approach to investigate the periodic
folding of a viscoelastic sheet.

The remainder of this paper is organized as follows. In
Sec. II the discrete particle model is presented. In Sec. III
the model is applied to simulate the folding process of a
viscoelastic sheet. First, the quasistatic results are reproduced.
Then the effects of inertia and viscosity are discussed in the
dynamic case. Section IV summarizes the main conclusions
drawn from this study.

II. THEORETICAL MODEL

Figure 1(a) shows a falling viscoelastic solid sheet as it
starts to buckle following contact with a steady horizontal
plane due to the compression. Note the choice of the Kelvin-
Voigt model given our interest in textile and paper-folding
processes. V0 and H represent the vertical feeding velocity and
feeding height. To simulate the folding process, the model
needs to capture the large buckling deformation and the
contact between the sheet and the ground.

A. Particle approach

We assume that deformation along the width direction is
uniform during folding of the sheet, thus twisting can be
neglected. The sheet can be modeled as a series of discrete
particles connected by axial and rotational viscoelastic ele-
ments, shown as Fig. 1(b). The axial spring-damper element
known as the Kelvin-Voigt model has been shown to be
suitable to model the viscoelasticity of paper products [33].
a0 = L0/(N − 1) and m = ρha0w are the spacing and mass
of the particles, respectively, where L0, w, ρ, and h represent
the initial length, width, density, and thickness of the web,
respectively, and N denotes the total number of particles. The
axial stiffness is given by ka = Ewh/a0 where E is Young’s
modulus. After deformation the axial elastic force acting on
particle i in vector form is

f a,i = ka(|ri−1 − ri| − a0)ei,i−1 + ka(|ri+1 − ri| − a0)ei,i+1,

(1)

where ei,i+1 denotes a unit vector pointing from particle i to
particle i + 1 and ri is the position vector of particle i. The
notation |r| is used to represent the magnitude of the vector
r. Since the extensibility of the sheet is considered in this
paper, the in-plane viscous dissipation needs to be considered.
The in-plane viscous force is related to the axial velocity
difference between two adjacent particles:

f d,i = −ca[(ṙi − ṙi−1) · ei,i−1]ei,i−1−ca[(ṙi−ṙi+1) · ei,i+1]ei,i+1,

(2)

where ṙi represents the velocity of particle i and ca denotes
the phenomenological viscous damping coefficient with ca =
μwh/a0. Here μ is the dynamic viscosity of the sheet.

Since the particles are not endowed with a rotational degree
of freedom, we cannot directly apply the bending moment. In-
stead, we introduce bending forces to the particles to achieve
the same bending effect. We consider a local bending system
formed by three consecutive particles (i − 1), (i), and (i + 1),
as shown in Fig. 1(c). Due to the bending effects, the system
tends to recover to the initial flat state. Thus, we can imagine
there are two restoring forces f b1,i and f b2,i acting on the
left particle (i − 1) and the right particle (i + 1) to achieve
that effect. The restoring forces are perpendicular to the axial
direction and related to the local bending angle γi, given
by [30]

| f b1,i| = | f b2,i| = kb(γ0 − γi )

a2
0(1 + εi )2 , (3)

where kb = Ewh3/12 is the bending stiffness, γ0 = π is the
initial bending angle, and εi = (|ri+1 − ri| − a0)/a0 is the ax-
ial strain. Equation (3) can also be derived by taking the
gradients of the system’s total bending energy [7]. Since
the restoring forces are internal forces, in order to main-
tain the overall bending force equilibrium, a force is applied
on the central particle i, given by f b0,i = − f b1,i − f b2,i. Note
that f b0,i applied on particle i is only corresponding to the
bending system (i − 1) − (i) − (i + 1). Particle i is also sub-
ject to the restoring force f b2,i−1 due to the bending system
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(i − 2) − (i − 1) − (i), and f b1,i+1 due to the bending system
(i) − (i + 1) − (i + 2). Thus, the total elastic bending force
acting on particle i is

f b,i = f b0,i + f b2,i−1 + f b1,i+1. (4)

During buckling, as the local bending angle γi changes, the
sheet is also subject to viscous dissipation that slows down
this process. The viscous bending moment is proportional to
γ̇i and can be derived as μγ̇iwh3/12a0. The detailed derivation
can be found in Appendix A. We implement the viscous
bending moment in a similar fashion as the elastic bending
moment, by introducing the corresponding viscous forces as
shown in Fig. 1(d). The magnitude of the viscous bending
force can be written as

| f v1,i| = | f v2,i| = caγ̇ih2

12a0
, (5)

where ca = μwh/a0 is the phenomenological damping co-
efficient. f v1,i and f v2,i are perpendicular to the segments
(i − 1) − (i) and (i) − (i + 1) respectively, and the exact di-
rections depend on whether the local bending angle γi is
increasing or decreasing. For example, in Fig. 1(d) γi is in-
creasing, so f v1,i and f v2,i both point “inward” and slow down
the increase of γi. In a discrete particle system, γ̇ i is related
to the angular velocities ω1,i and ω2,i as γ̇ i = ω1,i − ω2,i.
Here ω1,i can be calculated based on the velocity difference
between the particle i − 1 and the particle i and on the length
of the segment (i − 1) − (i). ω2,i can be derived following
the same rule. When ω1,i is equal to ω2,i, γ̇ i becomes zero
and the sheet undergoes rigid rotation. As before, to maintain
the overall force balance, we apply a viscous bending force
applied on particle i, given by f v,i = − f v1,i − f v2,i.

B. Contact model

We model the contact between the sheet and the horizontal
plane based on a penalty method. The contact force applied
on the particle i is given by

| f c,i| =
{

kc|yi|, yi < 0

0, yi � 0
, (6)

where kc is the contact stiffness. To prevent any significant
penetration of the sheet into the ground, kc is chosen three
orders larger than the axial stiffness of the sheet. Based on
the Coulomb friction law the friction force applied on the
particle i is given by | f f ,i| � μ f | f c,i|, where μ f is the friction
coefficient. Although it is reported that slipping between the
sheet and the horizontal plane can result in different folding
morphologies [7], in this paper we focus on the effects of
inertia and viscosity. Throughout the paper, μ f is fixed as 1
to prevent slipping of the sheet.

C. Numerical implementation

We start our simulation when the sheet first touches the
rigid horizontal plane at time t = 0. Initially the total length
of the sheet equals the feeding height H , and the sheet is
discretized into N particles with a0 = H/(N − 1). The initial
speed for all particles equals the feeding speed. We always fix
the velocity of the last particle in the system as the feeding

velocity V0, and when its distance from the feeding point
reaches a0 we feed a new particle into the system. Then this
new particle becomes the last particle in the system. This
will ensure the boundary condition at the feeding point is
consistent throughout the simulation. Once the particles hit
the ground, we did not remove them from the system. Instead,
we let them relax on their own to reach the equilibrium. Since
we are not considering the self-contact between the folds, the
presence of the fold does not affect the development of the
subsequent folds.

The total force applied on the particle i includes the axial
elastic force f a,i, the axial viscous damping force f d,i, the
elastic bending force f b,i, the viscous bending force f v,i, the
contact force by the ground f c,i, the friction force f f ,i, and
the gravity mg. We evolve the particle system according to
Newton’s equation of motion:

f tot,i = f a,i + f d,i + f b,i + f v,i + f c,i + f f ,i + mg = mr̈i.

(7)

The “semi-implicit” Euler method is adopted for the advance-
ment in time [34]. Given the particle’s position vector rt

i and
velocity ṙt

i at time t , the total force f t
tot,i applied on the particle

i can be calculated, which gives the acceleration r̈t
i = f t

tot,i/m.
Then the particle’s velocity and position at time t + �t can be
updated:

ṙt+�t
i = ṙt

i (1 − λ) + r̈t
i�t, (8)

rt+�t
i = rt

i + ṙt+�t
i �t, (9)

where �t is the time step and λ is a numerical damping
coefficient that can be applied to improve numerical stability,
if we are only interested in the final equilibrium state of the
system. The elastic bending model and the viscous damping
model are both validated in Appendix B and Appendix C,
respectively.

III. RESULTS AND DISCUSSION

A. Energy analysis

Considering a fold with an arc length l f formed as the
falling viscoelastic sheet hits the ground, before folding the
initial kinetic energy scales as ρhwl f V 2

0 and the gravitational
potential energy scales as ρghwl2

f . Due to the viscous ef-
fect and extensibility of the sheet, the folding process is
associated with both bending and in-plane stretching dissi-
pations, represented by the axial and rotational dampers in
Fig. 1(b). The axial stress caused by the bending dissipation
is proportional to the strain rate, given by σ ∼ μ(zφs)t ∼
μzφst . Here z represents the distance to the midplane in the
cross-direction and φs represents the curvature. Integrating
σ zdA over the cross section and using the approximation
φst ∼ V0/l2

f , the viscous bending moment can be derived

as Mμ ∼ ∫h/2
−h/2 σ zw dz ∼ ∫h/2

−h/2 μz2wV0/l2
f dz ∼ μIV0/l2

f . Fi-
nally integrating Mμφs along the length of the sheet, the total

energy dissipated by viscous bending scales as ∫l f

0 Mμφsds ∼
∫l f

0 Mμ/l f ds ∼ μIV0/l2
f . Similarly, we can find the in-plane

stretching dissipation scales as μhw
√

gl f . After the folding is
completed, the bending energy stored in the sheet scales as
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TABLE I. Physical properties of paper sheet [30,32].

Parameter Value range

E (MPa) 100–600
h (μm) 50–150
ρ (kg/m3) 250–500
μ (kg/ms) 500–2000
V0 (m/s) 5–25

∫l f

0 EIφ2
s ds ∼ EI/l f . The ratio of the viscous bending energy

and the elastic bending energy (μV0/El f ) can be interpreted
as a ratio of the viscoelastic relaxation time (μ/E ) and the
time required for a single fold to form (l f /V0). This ratio
remains small for the folding of a viscoelastic solid for the
range of parameters in Table I (relevant for a viscoelastic
solid). Arguably, the same ratio can be interpreted as a Debo-
rah number for a viscoelastic fluid folding problem. However,
the choice of Kelvin-Voigt viscoelastic solid (see Fig. 1)
does not apply to a Maxwell fluid, because under a constant
applied stress (creep test), a Kelvin-Voigt viscoelastic solid
does not exhibit an unbounded strain (characteristic of a fluid),
whereas a Maxwell (dashpot and spring in series) viscoelastic
fluid does exhibit fluid-like response after the initial elastic
response. This distinction between a viscoelastic solid and
viscoelastic fluid is worth noting. Due to the energy balance,
the sum of the initial gravitational energy and the kinetic
energy should be equal to the sum of the dissipated energies
and the bending energy of the fold:

c1ρghwl2
f + c2ρhwl f V

2
0 = c3

EI

l f
+ c4

μIV0

l2
f

+ c5μhw
√

gl f ,

(10)
where c1 − c5 are the coefficients for each term. Normalizing
the above equation by the gravitational potential energy leads
to

1 + α
V 2

0

gl f
= β

EI

ρghwl3
f

+ η
μIV0

ρghwl4
f

+ χ
μ

ρ
√

gl3
f

, (11)

where α, β, η, and χ are the corresponding coefficients of

four dimensionless groups. V 2
0

gl f
is the square of the Froude

number that represents the inertia to gravity ratio. EI
ρghwl3

f

is the elastic bending to gravity ratio, which implies the
gravito-bending length is lgb

f ∼ (EI/ρghw)1/3, corresponding
to the fold length of an elastic sheet under a quasistatic
condition [4,6]. μIV0

ρghwl4
f

represents the ratio between viscous

bending and gravity, leading to the viscogravitational length
as lvg

f ∼ (μIV0/ρhwg)1/4, which prescribes the fold length of
a falling viscous fluid in the gravitational regime [1]. Finally,

μ

ρ
√

gl3
f

represents the ratio between in-plane viscous dissipa-

tion and gravity. In the following sections, we first validate
the proposed discrete model by comparison with the existing
quasistatic results and then increase the feeding velocity to
study the dynamic folding of a viscoelastic sheet.

FIG. 2. The equilibrium configurations of the sheet at different
stages during the formation of one fold. The falling height is H = 9lc

and feeding velocity is V0 = 0.01
√

gH . w f and hf are defined as the
width and the height of the final fold, respectively, corresponding to
line 6.

B. Quasistatic case

When the feeding velocity of the sheet is small (i.e., the
Froude number is small), the inertial effects can be ignored
and the folding process can be analyzed in a quasistatic
manner. Under this assumption and based on the inextensible
elastica model, Mahadevan and Keller [4] have found that
the width and the height of the completely formed fold are
w f = 3.2324lc and h f = 0.9066lc, where lc = (EI/ρhwg)1/3

is the characteristic length (gravito-bending length). w f and
h f are illustrated in Fig. 2. In our discrete model, the feeding
velocity V0 is set to a small value (0.01

√
gH ) to satisfy the

quasistatic condition. Since the falling height does not affect
the folding process provided that it is much larger than lc [6],
in this paper we fix it as H = 9lc. The numerical damping
is chosen as λ = 0.001, which helps the system to converge
to the equilibrium state. Figure 2 shows the evolution of the
sheet pattern during the formation of the first fold. When
the sheet first touches the horizontal plane it starts buckling,
shown as curve 1 in Fig. 2. As the feeding continues, the
sheet becomes tangent to the horizontal plane (curve 2) and
spreads horizontally to the extreme location, shown as curve
3. After that the sheet starts rolling back towards the feeding
plane due to the self-weight of the fold, shown as curve 4.
Eventually the sheet touches itself, shown as curve 5. After
that, further feeding causes the self-contact line to move back
to the feeding plane, and thus one fold is completed, shown
as curve 6. Our simulation results (Fig. 2) agree well with the
previous studies [4,6]. Based on curve 6 we can measure the
fold width and fold height.

Figure 3 shows the width and height of the fold under
different values of characteristic length lc. We can see the
relation is linear, and the scaling laws are found as w f =
3.35lc and h f = 0.904lc. The difference between our results
and the scaling law given by the inextensible elastica model
[4] (w f = 3.2324lc, h f = 0.9066lc) is due to the fact that
our model accounts for the extensibility of the sheet. Though
this difference is not significant, we will show later that
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FIG. 3. Simulation results of the fold width w f (solid line) and
fold height hf (dashed line) as a function of the characteristic
length lc.

in the dynamic folding of a viscoelastic sheet, considering
extensibility is important as it allows us to account for the
in-plane viscous dissipation, which can significantly affect the
folding process.

C. Dynamic case

For dynamic folding simulations, the numerical damping
coefficient λ is set to 0 to prevent any artificial dynamic
effects. Figure 4 shows the evolution of the sheet morphology
during the formation of the first fold. The parameters are
chosen as H = 9lc, V0/

√
gH = 0.5, and μ/μ∗ = 2. μ∗ is

defined as μ∗ = ρ
√

gH3 to normalize the dynamic viscosity
such that μ/μ∗ represents the ratio between in-plane viscous
dissipation (∼μhw

√
g/H ) and gravity (∼ρghwH). Initially

the buckling deformation is localized near the horizontal
plane, shown as curve 1 and curve 2. As the feeding continues,
the sheet starts spreading away from the feeding plane and at

FIG. 4. The evolution of the sheet configuration during the for-
mation of the first fold under dynamic case. The parameters are
chosen as H = 9lc, V0/

√
gH = 0.5 and μ/μ∗ = 2, where μ∗ is

defined as μ∗ = ρ
√

gH 3.

FIG. 5. The configuration of the sheet at steady state after a
sufficiently long simulation under the dynamic case. The parameters
are the same as in Fig. 4, and the self-contact of the sheet is neglected
here.

the same time keeps falling down quickly owing to inertia, as
shown in curves 3 to 5. When the buckled sheet contacts the
horizontal plane, it stops moving outward due to the friction
and a closed fold is formed, shown as curve 6. Unlike the
quasistatic case, the sheet does not roll back and the fold width
keeps increasing during the folding process. Keep feeding the
sheet after the first fold is formed, the subsequent folding
process eventually reaches a steady state, and the shape of the
fold formed in the steady state remains the same, as shown
in Fig. 5. In our simulations the self-contact of the sheet
is neglected so the steady-state fold is not affected by the
existing folds and depends only on the material properties and
dynamics. This approximation is relevant because in practice
the existing folded sheet is constantly removed. If desired,
self-contact can be embedded into the current discrete model
by applying a penalty method [31,32]. Next, we study the
effects of the velocity and the viscosity on the size of the
steady-state fold.

D. Effects of feeding velocity and viscosity

Table I lists the typical physical properties of paper sheets
considered in this study [30,31,33]. Within the given param-
eter ranges, the viscous bending dissipation is much smaller
compared to the elastic bending energy, and the in-plane vis-
cous stretching dissipation on the right-hand of Eq. (11), thus
can be neglected. As the feeding velocity increases, the system
goes through three different regimes: gravitational, inertio-

gravitational, and inertial regimes. In the inertial regime, V 2
0

gl f

becomes much larger than 1. With relatively low viscosity,
the in-plane stretching dissipation can also be neglected.

Balancing V 2
0

gl f
with EI

ρghwl3
f

finally leads to the fold length as

l f ∼
√

EI

ρhw

1

V0
, (12)
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FIG. 6. Normalized fold length l f /lc vs normalized velocity
V0/

√
gH under different viscosity. The solid lines with symbols

represent the simulation results, and the dashed lines represent the
fitted scaling law.

which suggests that l f is inversely proportional to V0 for a
given sheet. Noticing that the bending wave speed for a sheet
of length l f equals

√
EI/ρhw/l f , this relation also suggests

the bending wave effect becomes important in the inertial
regime. Figure 6 shows l f versus V0 for different viscosities.
The solid lines with symbols represent the simulation results,
and the other lines represent the scaling law. As V0 increases
the kinetic energy becomes more dominant and the simulation
matches very well the scaling law l f ∼ 1/V0 at the high-speed
regime. Overall, the folding length decreases as velocity and
viscosity increase. The effects of feeding velocity and viscos-
ity can be understood as a competition between the vertical
feeding and the horizontal spreading of the sheet during the
folding process. Increasing the feeding velocity decreases the
time required to form one fold, so the fold has a shorter time
to expand horizontally, which eventually results in a smaller
fold. On the other hand, increasing the viscosity slows down
the deformation process. Within the same amount of time the
horizontal distance that the fold can expand becomes shorter,
which also results in a smaller fold. Based on the numerical

results of fold length, for each viscosity we can identify a
nondimensional coefficient ϕ(μ) in the inertial regime which
satisfies

l f

lc
= ϕ(μ)

V0/
√

gH
. (13)

E. Fold geometry

From a geometric point of view, the height h f and the
width w f of the steady-state fold directly depend on the total
fold length l f . Figure 7(a) plots h f versus l f , normalized by
lc = (EI/ρhwg)1/3, which is a constant for a given sheet. The
discrete symbols representing the simulation results under
various velocities and viscosities fall onto one master curve.
When l f is sufficiently large, h f remains the same value as
the quasistatic fold height (∼0.9lc). In this region, we can see
from the inserted figure that the fold pattern is similar to the
quasistatic fold pattern (shown as Fig. 2, curve 6), and only the
width of the fold is decreasing as l f decreases. However, when
l f is below a critical value l f _c = 4.65lc, h f starts decreasing
and the fold morphology changes from “line contact” to “point
contact.” This transition occurs because the system tries to
evolve the configuration to minimize the bending energy of
the sheet, for a shorter l f . The inserted figure shows that the
fold transforms into a lemniscate-like pattern and remains
geometrically self-similar as l f keeps decreasing. Away from
the transition the curve follows a linear function, defined as

h f

lc
= m

l f

lc
+ n, (14)

where m = 0.23 and n = 0.05. Similarly, Fig. 7(b) plots w f

versus l f . The simulation results also fall into one master
curve, which can be described as

w f

lc
= p

l f

lc
+ q, (15)

where p = 0.46 and q = −0.15. Figures 7(a) and 7(b) to-
gether give the full geometric relations between h f , w f , and
l f for the steady-state fold formed in the dynamic process.

FIG. 7. (a) Normalized fold height hf /lc vs. normalized fold length l f /lc. l f _c is the critical folding length below which the folding pattern
becomes point contact. (b) Normalized fold width w f /lc vs normalized fold length l f /lc. In both figures the discrete symbols represent the
simulation results under various viscosity and velocity. The solid lines are the linear fitting according to Eqs. (13) and (14). The inserted figures
in (a) show the steady-state fold patterns at different values of l f /lc.
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FIG. 8. Phase diagram of the folding morphology. The solid line
with symbol represents the exact simulation results of Vc, and the
dashed line represents the solution according to Eq. (16).

F. Phase diagram

Since the critical fold length below which the fold pattern
changes from line contact to point contact equals l f _c =
4.65lc, the corresponding critical velocity Vc can be identified
based on the simulation results of l f versus V0 in Fig. 6.
Figure 8 shows the phase diagram of the fold pattern. The
solid line represents the exact simulation results of Vc, which
separates the two different phases of folding morphology. We
can also predict Vc by using the scaling law l f ∼ 1/V0 [shown
as Eq. (13)] and obtain

Vc√
gH

= ϕ(μ)

4.65
. (16)

The dashed line shown in Fig. 8 represents the prediction by
the above equation. For low viscosity the prediction matches
well the simulation, but it starts to deviate as viscosity in-
creases, because as μ increases the viscous dissipation be-
comes significant, and the scaling law l f ∼ 1/V0 ceases to
be valid, which results in the deviation. Overall, the folding
morphology transforms from line contact to point contact as
the feeding velocity and viscosity increase.

The foregoing conclusions apply to falling sheets with
properties similar to paper. The conclusions are not likely
to apply for sheets where the viscous bending dissipation is
comparable to the elastic bending energy.

IV. CONCLUSION

In this paper a one-dimensional particle dynamics model
has been applied to investigate the periodic folding of a
viscoelastic solid sheet fed from a specified height towards
a rigid horizontal plane. The sheet is modeled as a series of
discrete particles connected by Kelvin-Voigt-type viscoelastic
solid elements, which can account for the large buckling de-
formation and the viscous dissipation. The folding process is
associated with both bending and in-plane stretching viscous
dissipations, since the extensibility of the sheet is considered
in the current model. At a relatively low feeding velocity and
low viscosity, the inertial effect and the viscous dissipations
are negligible, and our model successfully reproduces the
existing quasistatic results in this gravitational regime. As

the feeding velocity and the viscosity increase, the folding
process changes significantly, and the “rolling back” motion
of the sheet observed in the quasistatic case vanishes. Since
the fold is closed faster with higher vertical feeding speed
and the sheet expands slower horizontally at a higher viscos-
ity, the fold length l f is decreased. Upon further increasing V0

the system enters into the inertial regime, where the kinetic
energy becomes much higher than the gravitational potential.
By balancing the kinetic energy and the elastic bending energy
while neglecting the viscous dissipation, the fold length is
found to be inversely proportional to the feeding velocity, i.e.,
l f ∼ 1/V0, which matches very well the simulation results in
the inertial regime. Furthermore, when V0 exceeds a critical
value Vc, the normalized fold height h f /lc starts decreasing,
and the fold morphology transforms from line contact into
point contact. Finally, a phase diagram for the fold morphol-
ogy is constructed. The results presented in this work may
provide some insights into the manufacturing process of paper
and fabric sheets.
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APPENDIX A: DERIVATION OF VISCOUS
BENDING FORCE

Figure 9 shows a beam segment undergoing bending defor-
mation by an angle of θ . During bending, viscous stresses are
developed at the section in order to slow down the deformation
process. For any point on the beam’s section, viscous stress
can be written in terms of dynamic viscosity (μ) and strain
rate (ε̇) at that point of the section as

σv = με̇ (A1)

FIG. 9. Schematic of a beam segment of length a0, width w, and
thickness h undergoing bending deformation by an angle θ such that
the section A deforms to A′, the radius of curvature after deformation
is R.
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FIG. 10. Schematic of an elastica under axial load with clamping
boundary condition before buckling (dashed line) and after buckling
(solid line). O and Q are the endpoints, L0 is the original length, and
�L is the displacement of end point Q after deformation.

For a point on the section at a distance y from the neutral axis
(positive direction of y is shown in Fig. 9), the axial strain can
be written as

ε = y

R
. (A2)

Hence the strain rate will be

ε̇ = −yṘ

R2
. (A3)

Using inextensibility of the neutral axis, it can be shown that

σv = μ
yθ̇

a0
, (A4)

where θ̇ is the rate of bending deformation of the segment.
The viscous bending moment can be written as

Mv =
∫ h/2

−h/2
σvyw dy = μ

θ̇w

a0

h3

12
. (A5)

Finally the viscous bending force can be calculated:

fv = Mv

a0
= caθ̇h2

12a0
, (A6)

FIG. 11. Normalized deflection ζ/h vs normalized end displace-
ment �L/L0. The solid line represents the solution of extensible
elastica model obtained by shooting method, and the dashed line with
open symbols represents the simulation results.

FIG. 12. Time response of the deflection of the mid-point of an
excited simply supported beam.

where ca = μwh/a0 is the phenomenological damping coef-
ficient.

APPENDIX B: ELASTIC MODEL VALIDATION

Consider a thin film under uniaxial load without substrate.
It will buckle once the compressive strain exceeds the Euler
strain. As the strain further increases, the self-contact of the
film eventually occurs. The large buckling deformation of the
film can be described by the extensible elastica model with
the following governing equations [35,36]:

∂x

∂s
= (1 + ε)cosθ, (B1)

∂y

∂s
= (1 + ε)sinθ, (B2)

∂M

∂s
= (1 + ε)(Fxsinθ − Fycosθ ), (B3)

∂θ

∂s
= M

EI
, (B4)

ε = 1

EA
(Fxcosθ + Fysinθ ), (B5)

where x and y are the coordinates, s is the length of the
undeformed film measured from the endpoint O, shown in
Fig. 10, θ is the rotation angle of the cross section, M is
the bending moment, Fx and Fy are the internal forces, ε is
the in-plane strain, A = wh is the cross-sectional area, and
EI = Ewh3/12 is the bending stiffness. Here we consider a

TABLE II. Damped response comparison.

Theory Simulation

ν (m2/s) fd1 (Hz) ζ1 fd1(sim) (Hz) ζ1

0 128.3 0 128.2 0
10 128.2 0.0005 128.2 0.0005
2000 127.6 0.1007 127.6 0.1007
4000 125.6 0.2015 125.6 0.2014
8000 117.4 0.4029 117.6 0.4025
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TABLE III. Beam properties.

Parameter Value

Elastic modulus (E) 4 GPa
Density (ρ) 500 kg/m3

Length (L) 1 m
Width (w) 0.1 m
Height (h) 0.1 m

fixed-fixed boundary condition, which gives

x = 0, y = 0, θ = 0 at s = 0 (endpoint O), (B6)

x = L0 − �L, y = 0, θ = 0 at s = L0 (endpoint Q),

(B7)

where L0 is the undeformed length of the film and �L is the
displacement of the endpoint Q. Equations (B1)–(B7) form
a boundary value problem, which we can solve by shooting
method. Next we compare our simulation results with the
solutions given by the extensible elastica model.

In our simulation, the load is applied by controlling the dis-
placement of the endpoint Q. The numerical damping coeffi-
cient is chosen as λ = 0.001 to help the system converge faster
to the final equilibrium state for each given load. The length of
the film is chosen as L0 = 40h, and the film is discretized into
201 particles. Enough number of particles should be chosen
so that the local bending satisfies (γ0 − γi ) < 30◦. Under this
condition the relative numerical error is less than 1% [30].
The fixed boundary condition is satisfied by imposing the y
coordinates of the first two particles at each end of the film
as zero. Figure 11 plots the maximum deflection of the film
at equilibrium state under different load before self-contact
occurs. Our numerical simulation results match very well the
solutions given by the extensible elastica model.

APPENDIX C: VISCOUS MODEL VALIDATION

In this section, we validate the damping model adopted in
this paper. A simply-supported beam has been excited in its

TABLE IV. Convergence test (ν = 2000 m2/s).

No. of particles (N) ζ1(simulation) ζ1 (theory)

21 0.1005
51 0.1007 0.1007
71 0.1007

first mode, and the time response at the midpoint of the beam
is being monitored, which has been shown in Fig. 12. The
first mode has been excited by giving an initial displacement
of a half sinusoidal displacement profile to the beam. Using
Ai and Ai+1 to represent the peak values of the ith and i + 1-th
peaks, the ith damping ratio can be calculated by the following
equation:

ζi =
ln Ai

Ai+1√
4π2 + (

ln Ai
Ai+1

)2
. (C1)

Since the horizontal separation between those peaks repre-
sents the time period Ti, 1/Ti represents the damped frequency
in Hz. Finally, the damping ratio and the frequency for differ-
ent peaks are averaged to find a single value for the entire time
response.

Table II shows the comparison of first mode damped
frequencies ( fd1) and damping ratios (ζ1) obtained by sim-
ulation with those from theory. In the simulations, the beam
is discretized in 51 particles, and the kinematic viscosity is
varied from 10 to 8000 m2/s. The first row (ν = 0) represents
the undamped vibration frequency response. Beam properties
used have been listed in Table III. The theoretical first mode
damping ratio is calculated using ζ1 = (π2ν/2L2)

√
ρEI/wh

[37], where symbols’ definitions are consistent with those in
Table III.

Table II indicates an almost exact match between the theory
and the simulation, and the difference in some cases suggests
the need for a finer discretization. Table IV shows the conver-
gence test of our model. It suggests that our simulation results
gradually converge to the theoretical value as the number of
particles increases.
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