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Mapping diffusivity of narrow channels into one dimension
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The diffusion of particles trapped in long narrow channels occurs predominantly in one dimension. Here, a
molecular-dynamics simulation is used to study the inertial dynamics of two-dimensional hard disks confined
to long, narrow, structureless channels with hard walls in the no-passing regime. We show that the diffusion
coefficient obtained from the mean-squared displacement can be mapped onto the exact results for the diffusion
of the strictly-one-dimensional hard rod system through an effective occupied volume fraction obtained from
either the equation of state or a geometric projection of the particle interaction diameters.
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I. INTRODUCTION

With recent advances in nanotechnology and our ability to
produce nanostructured materials, there is now considerable
interest in understanding the transport of fluids inside them
[1–3]. Fluids in highly confined systems such as carbon
nanotubes [4], zeolites [5–7], metal-organic frameworks [8],
and ion channels in biological membranes [9,10] exhibit
single-file diffusion (SFD) in which particles cannot pass
each other and the diffusion is constrained in one dimension.
This geometric restriction, combined with the nature of the
fundamental particles dynamics, can have a significant effect
on the way the particles move. For example, the transport co-
efficient of a fluid along an arbitrary axis Dx can generally be
calculated from the long-time behavior of the mean-squared
displacement (MSD), which is given by the Einstein relation:

〈(x(t ) − x(0))2〉 = 〈�x2(t )〉 ∝ αl (Dxt )γ , (1)

where α depends on the distribution of jumps in the basic
motion, l is the “free volume” along the x axis per particle,
and γ is a variable [11]. In a fluid performing deterministic
dynamics, the particles exhibit ballistic motion at short times,
where γ = 2, before caging and cage hopping leads to a
crossover to diffusive motion at long times where γ = 1, and
Eq. (1) becomes

〈�x2(t )〉 = 2Dxt . (2)

Equation (2) is valid in the bulk at long times, independent
of the nature of the particle dynamics, and remains true in
single file systems when the dynamics is deterministic [12].
However, if the single file particles are subject to a Brownian
background [11], or independent stochastic forces [13], then
the MSD of a tagged particle is described by an Einstein-like
relation,

〈�x2(t )〉 = 2Fxt1/2, (3)
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where γ = 1/2, indicating the system exhibits anomalous
subdiffusion, and the diffusion coefficient has been replaced
by the mobility factor Fx [14,15].

One of the most challenging tasks in the field of con-
densed matter is to find a relationship between the trans-
port coefficients of a fluid and its equilibrium thermodynam-
ics properties. Rosenfeld [16] originally proposed a scaling
relation, DR ≈ 0.58 exp(Asex) between a reduced transport
coefficient, DR = DT −1/2ρ1/3 (ρ is number density), and
the excess entropy per particle, sex, where A is a material-
dependent constant. This was later expanded to consider
dilute fluids [17]. Dzugutov [18] developed a similar scaling
relation, DD ≈ 0.078 exp(sex), linking the excess entropy to
a diffusion coefficient, DD = Dρ2/3�−1

E , which is reduced in
terms of an effective Enskog interparticle collision frequency
�E , which includes contributions obtained from microscopic
structural quantities such as the radial distribution function.
These studies have subsequently formed the basis for scaling-
type approaches focused on connecting the excess entropy
to dynamics in a variety of systems [19–32]. Furthermore, it
is important to note that entropic scaling laws, such as the
Adam-Gibbs relation [33], have also successfully described
diffusion and structural relaxation in terms of the configu-
rational entropy in supercooled liquids [34,35], at least at
temperatures above the observed breakdown in the Stokes-
Einstein relation [36].

In the context of confined fluids, Mittal et al. [37] showed
that the scaling relationships between the self-diffusivity,
excess entropy, and density remain valid for both quasi-two-
dimensional (particles confined between plates) and quasi-
one-dimensional fluids. The same authors also found that
self diffusivity of the confined systems could essentially be
mapped onto the behavior of bulk fluids through either an
effective packing fraction or the excess entropy [38]. Simi-
larly, it has been shown that a slightly modified version of
the Dzugutov scaling could account for the diffusivity in
water and water-methane mixtures both in the bulk and when
confined to carbon nanotubes of different diameters [39]. This
suggests that the properties of bulk materials could be used to
predict the dynamics of highly confined fluids.
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However, rather than use the bulk as a reference, Percus
and coworkers [40–42] explored the possibility of mapping
the dynamic properties of quasi-one-dimensional fluids to
those of a truly one-dimensional (1d) system where it is often
possible to obtain exact results, or is relatively easy to perform
highly accurate numerical simulations. In particular, Percus
[41] developed a heuristic approach that suggests

〈�x2(t )〉 = K〈|�x(t )|〉0, (4)

where 〈|�x(t )|〉0 contains the details of the particle motion
in the strictly-one-dimensional system, so is proportional to
t for inertial dynamics and proportional to t1/2 in the case of
anomalous subdiffusion. For a one-dimensional system of N
hard rods with diameter σ on a line of length L, K = (L/N −
σ ), but more generally K could be approximated by kT/P,
or (−kT ∂L/∂NP)1/2, where P is the pressure in the quasi-1d
system, T is the temperature, and k is the Boltzmann constant.
The proposed strategy is then to identify characteristics of the
distribution of next-nearest-neighbor separations, to which P
is connected, that can be used to map the dynamics between
the system of interest and the 1d reference system.

The goal of the current paper is to simply demonstrate that
an effective density and effective particle diameter, obtained
either from the equation of state or a direct geometric measure,
is able to provide such a map between the long-time dynamics
of a strictly 1d hard rod system and the dynamics of a quasi-
1d system. Here, we will focus on the study of two dimen-
sional hard disks confined to a structureless channel exhibiting
deterministic dynamics as an example. The remainder of the
paper is organized as follows: Section II describes the details
of the model and the simulation method used to examine the
dynamics. Section III outlines the calculation of the effective
density and particle size, and the mapping of the dynamics of
the 1d hard rod system. We also show that the same scaling
appears through the use of the excess entropy. Our conclusions
are summarized in Sec. IV.

II. MODEL AND METHODS

We consider a system of two-dimensional hard disks of
diameter σ confined between parallel hard lines separated by
a distance Hd . The channel length in the longitudinal direction
is L and the two ends obey periodic boundary conditions. The
occupied volume fraction for the system is then given by

φ = Nπσ 2

4Hd L
, (5)

where N is the number of particles. The particle-particle and
particle-wall interaction potentials are given by

V (ri j ) =
{

0 ri j � σ

∞ ri j < σ,
(6)

Vw(ri ) =
{

0 |ry| � h0/2
∞ otherwise, (7)

respectively, where ri j = |rj − ri| is the distance between
particles, ry is the component of the position vector for a
particle perpendicular to the wall, and h0 = (Hd − σ ) is the
reduced channel diameter.

In the current work, we restrict our analysis to systems
performing inertial dynamics, so in the long-time limit the
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FIG. 1. The MSD along the direction of the pore axis as a
function of t for Hd = 1.1 at different φ. The short line segments
have slopes as indicated and are included as a guide to the eye.

diffusion coefficient is given by Eq. (2). The MSD is obtained
from event-driven molecular dynamics (EDMD) simulations
[43] in the canonical (N,V, T ) ensemble where N = 30 000
particles, V = h0L is the total available volume of system ac-
cessible to the center of the particles, and T is the temperature.
The units of time in the simulation are σ

√
m/kT , where m

is the mass of the particles, which is set equal to unity, and
all lengths are in units of σ . We study channels with widths
Hd = 1.1 up to (1 + √

3/4) which ensures that only nearest
neighbors can interact and prevents the particles from passing
each other.

At the start of each run, the particles are placed on a
lattice at packing fraction φ = 0.1 and are assigned a random
distribution of velocities scaled to give kT = 1. At each φ

studied, 200N collisions are used to reach equilibrium and
the MSD in the longitudinal direction of the channel (x
axis) was measured over the next 400N collisions in which
particle coordinates were saved 80 times, separated by 5N
collisions. After collecting data at a given φ the system is
compressed to a higher occupied volume fraction using a
modified version of the Lubachevsky and Stillinger [44] (LS)
algorithm that ensures that Hd/σ remains constant as the
diameter of the disks is changed (L fixed), with a compression
rate ds = dσ/dt = 0.001. The mean-squared displacements
are reported as averages over 20 independent runs performed
for each channel diameter.

We monitor the self-diffusivity of the fluid by fitting the
long-time behavior of the MSD in the longitudinal direction of
the channel (x axis) for the particles to the Einstein equation
[Eq. (1)]. Figure 1 shows the MSD as a function of time for
the case with Hd = 1.1 at different densities (starting from
φ = 0.1 up to φ = 0.5 with steps of 0.02). We then obtain
γ by taking the numerical derivative of the data presented
in Fig. 1 to determine where we should evaluate the slope
to obtain the diffusion coefficient. Figure 2 shows that γ

evolves over time. At low densities, γ decreases slowly from
its ballistic value because the particles are well separated. At
higher densities, the expected diffusive behavior is obtained
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FIG. 2. Exponent γ as a function of ln t for Hd = 1.1 at
different φ.

quickly but, at longer times, correlations build up as a result
of finite-size effects [12] and a nonmonotonic behavior is ob-
served. Figure 3 shows the value of Dx obtained by measuring
the slope of the MSD over the time period where γ ≈ 1, as
a function of occupied volume fraction for different channel
diameters.

The equation of state for this quasi-1d system is obtained
following the transfer-matrix analysis developed by Kofke and
Post [45] and is shown in Fig. 4.

III. SCALING DYNAMICS WITH A ONE-DIMENSIONAL
EFFECTIVE DENSITY AND PARTICLE SIZE

The exact equation for diffusion of hard rods in a strictly-
one-dimensional (1d) system was solved by Jepsen [46] and
is given by

Dx

σ
= (1 − φ)

φ(2πβm)1/2 , (8)
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FIG. 3. Diffusivity Dx as a function of occupied volume fraction
φ for various channel widths.
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FIG. 4. PV/NkT vs φ for different channel Hd , obtained using
the transfer-matrix method described in Ref. [45]. Inset shows the
equilibrium fraction of defects, θ∗, in the jammed states associated
with the inherent structure basins sampled by the equilibrium fluid as
a function φ for channel widths Hd = 1.1 (solid line) and Hd = 1.86
(dashed line).

where β = (kT )−1, m is the mass of a particle, and the
occupied volume fraction becomes φ = Nσ/L in 1d . Figure 3
compares Dx for the quasi-1d systems with the strictly 1d
system as a function of occupied volume fraction for differ-
ent channel diameters. At low densities, Dx for the quasi-
one-dimensional channels generally follows the trend of the
strictly 1d system but decreases with increasing Hd at fixed φ.
At higher densities, the diffusion coefficients begin to exhibit
behavior that reflects the differences between the two. For
the narrower quasi-1d channels, Dx decreases more rapidly
than the strictly 1d system because Dx necessary goes to
zero as φ approaches φJmax < 1, the most dense packing for
the system. For the wider channels, Dx exhibits a plateau at
intermediate densities that coincides with the plateau observed
in the equation of state (see Fig. 4). While the short-ranged
hard disk interaction and quasi-one-dimensional nature of the
system rule out the possibility that the system has a phase
transition, the fluid undergoes a significant, but continuous,
structural rearrangement at intermediate densities [45,47].
The low-density fluid is characterized by linear arrangements
of the disks where the collisions between disks occur pre-
dominantly in the longitudinal direction, and the high-density
fluid is dominated by zigzag arrangements of the disks, with
disk interactions occurring across the channel. In the transition
region, the effects of increasing φ are somewhat offset by
these structural rearrangements so the amount of space the
disks have to move in the longitudinal direction changes
slowly, giving rise to the plateaus in the diffusion coefficient
and the longitudinal pressure. The diffusion coefficient would
be expected to decrease again at higher densities where the
pressure begins to increase again, but our simulations become
trapped in a glassy state where it is not possible to measure
the equilibrium properties of the fluid.

The goal of this work is to identify a scaling that ac-
counts for these differences and collapses Dx for the quasi-1d
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FIG. 5. A configuration of hard disks in a jammed packing
containing disks in the most dense (red) and defect (green) local
structures.

systems onto Eq. (8). As the diameter of channel changes,
the kinetic term in Eq. (8), (2πβm)−1/2 remains unchanged,
so the focus of our task is to provide a map between the
quasi-1d and strictly 1d systems for the density-dependent
term, (1 − φ)/φ, which can be thought of as the mean clear-
ance between neighboring particles [12]. One possibility is
to explore this term in the context of the inherent structure
paradigm [48,49], where configurations that map to the same
mechanically stable jammed structure, or inherent structure
are grouped together into local basins of attraction so that
the thermodynamics and dynamics of the fluid can be de-
scribed in terms of the basins sampled at equilibrium. The
amount of vibrational space the particles have when sampling
a given basin then goes as (φJ − φ). The strictly 1d hard rod
system has an extremely simple inherent structure landscape
consisting of a single basin that jams in a state with all the
rods in contact end to end and φJ = 1. The inherent structure
landscape is more complicated in higher dimensions. In two
dimensions, a disk is locally locally jammed if it has at
least three rigid contacts, not all in the same hemisphere.
However, a configuration made up of locally jammed disks
is not necessarily a mechanically stable inherent structure, or
a collectively jammed state, because a collective motion of the
particles can lead to unjamming [50], highlighting the global
nature of jamming phenomena.

Confining the particles within narrow quasi-1d channels
reduces the number of possible disk-disk contacts and pre-
vents collective rearrangements of the particles. As a re-
sult, the complete inherent structure landscape of the current
model, and how it is sampled as function of φ, can be con-
structed by considering local packing arrangements [51–53].
The most dense structure consists of a zigzag packing of disks
contacting their two neighbors across the channel as well as
the wall and the lower-density jammed states are formed by
introducing defects where disks form a contact with another
disk along the channel (see Fig. 5). The jamming density of a
packing is then given by [47]

φJ = π

4Hd [θ + (1 − θ )
√

Hd (2σ − Hd )]
, (9)

where θ is the fraction of defects so that φJ → φJmax as θ → 0.
Noting that two defects cannot appear next to each other in a
jammed configuration because the particles would not satisfy
the local jamming condition, it has also been shown that the
lowest-density jammed structure consists of alternating dense
and defect states, with θ = 0.5. The number of inherent struc-
ture basins is also a function of θ , with the maximum number
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FIG. 6. Test of Eq. (10) plotting (Dx/σN )(2πβm)1/2 as a function
of (φJ − φ)/φ.

of jammed structures occurring when θ = 1/2 − √
5/10 and

decreasing to unity as θ approaches its upper and lower limits.
At equilibrium, the fluid samples the set of basins on the

inherent structure landscape that maximizes the total entropy
so that, at a given φ, the system samples basins with the
equilibrium fraction of defects θ = θ∗. The inset to Fig. 4
shows θ∗ as function of φ, obtained by maximizing the total
entropy of the fluid [52,53]. At low φ, the system samples
the region of the inherent structure landscape where there is
a large number of basins with a high defect fraction and low
φJ . With increasing φ, the system samples a smaller number
of basins, and smaller defect fraction, that have a greater
vibrational entropy due to their larger φJ , effectively trading a
reduction of configurational entropy for increased vibrational
entropy.

In the context of the current problem, this means that φJ

is a function of density, which in turn influences the amount
of space the particles have moved. Equation (8) can then be
rewritten to account for density-dependent jamming density
as

Dx

σ
= (φJ − φ)

φ(2πβm)1/2
, (10)

where (φJ − φ)/φ is the effective mean clearance between
adjacent particles, and φJ at each density is given by Eq. (9)
using θ∗. Figure 6 shows the predictions of Eq. (10) for differ-
ent channel widths, where we have used the equilibrium value
of θ to obtain φJ . While the data are somewhat linearized, the
slopes of the lines decrease with increasing Hd , which may
result from the increased motion of the particles perpendicular
to the longitudinal axis of the channel that is not accounted for
in our measurements of the MSD.

The exact EOS for quasi-1d systems was solved by Kofke
and Post [45] by using a transition matrix approach. Their ap-
proach uses the idea that, when the y positions of the particles
are fixed, the system can be characterized as a 1d mixture of
hard rods on a line with different contact lengths. This allows
the integration over x to be performed independently of the y
integration when solving the partition function. The results of
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FIG. 7. Effective diameter; (a) purely 1d system σ = σN ,
(b) Hd = 1.8 at low density, and (c) Hd = 1.8 at high density.

the integrals can be solved as an eigenvalue problem where
the largest eigenvalue is used, which essentially identifies an
average effective diameter of the projected hard rods.

Motivated by this, we define an effective one-dimensional
interaction diameter, σi, between two neighboring particles
that simply depends on their relative separation in the y
direction, �y = |yi+1 − yi|,

σi =
√

σ 2 − �y2, (11)

and reduces to σ when �y = |yi+1 − yi| = 0 (see Fig. 7).
The average effective 1d interaction diameter is then given

by

σN = 1

N

∑
i

σi, (12)

and we can define an effective occupied volume fraction,

φeff = NσN

L
, (13)

that can be extracted from the equation of state of the quasi-
one dimensional system and used to obtain the diffusion
coefficient from Eq. (8). To achieve this, we assume the exact
1d equation of state holds for φeff :

Z = 1

1 − φeff
, (14)

where Z = PV/NkT is the compressibility factor for the
quasi-one-dimensional system. Rearranging, we obtain φeff as

φeff = Z − 1

Z
. (15)

Substituting Eq. (13) into Eq. (8) gives the diffusion coeffi-
cient in terms of the effective volume fraction,

Dx

σN
= (1 − φeff )

φeff(2πβm)1/2
. (16)

Figure 8 shows Eq. (16) using the simulated data for the
diffusion coefficient at different channel widths compared
with exact analytical results for the 1d system. The plot shows
the collapse of the data is good, which suggests φeff provides a
good thermodynamic connection through the equation of state
to 1d diffusion, as suggested by Percus [41]. The deviation
at low densities may be related to a broad distribution of
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FIG. 8. Scaled self-diffusion coefficient data represented by us-
ing Eq. (16) by using effective volume fraction for various channel
width.

effective diameters at low densities, where the particles move
freely in the transverse direction and can adopt many differ-
ent effective diameters. At high densities, the distribution of
effective diameters is restricted more closely to the average,
except in the cases where the particles appear in defect states
and σi ≈ σ . In addition, the measurements of Dx at the very
lowest densities can be difficult because of the low frequency
of particle-particle collisions and the slow convergence of
γ → 1.

While φeff is obtained from the equation of state, it can
be measured geometrically. Figure 9 compares the values of
σN obtained using Eq. (14) with the average values of the
effective diameter measured during our MD simulations at
different channel widths. This shows the usefulness of this
quantity, especially in the cases that the exact EOS is not
available.
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FIG. 9. Effective diameter calculated from Eqs. (13) and (14)
vs those calculated from MD simulations using Eq. (11) for
different Hd .
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FIG. 10. Scaled self-diffusion coefficient data versus negative
excess entropy calculated using Eq. (17) for different Hd .

Finally, we simply demonstrate that φeff also provides an
appropriate link between the excess entropy and diffusion in
these confined fluid systems. Here, the excess entropy of a
strictly-one-dimensional hard rod system, relative to ideal gas,
can be obtained:

sex/Nk = −
∫ φ

0

Z − 1

φ′ dφ′, (17)

which yields

sex/Nk = ln(1 − φ). (18)

Again, replacing φ with φeff in Eq. (18) and using Eq. (16)
yields

Dx = (σN/φeff )(2πβm)−1/2exp(sex), (19)

which connects the excess entropy to a reduced diffusion
coefficient, Dxφeff/σN , in a form similar to that obtained
by Rosenfeld [16] and Dzugutov [18]. Figure 10 shows the
relationship between the diffusion coefficient and excess en-
tropy in the quasi-one-dimensional system before rescaling.
Then the use of φeff necessarily reproduces the same collapse
observed in Fig. 8.

IV. CONCLUSION

Simulation studies of both bulk and confined fluids have
shown the effectiveness of scaling relationships that map the
transport properties of the system to a reference state through
a thermodynamic property such as the excess entropy. In
the case of highly confined, quasi-one-dimensional fluids,
the strictly-one-dimensional fluid is an ideal reference state
because results are often known exactly. This work shows that
the proposed scaling can be achieved for a system of quasi-
one-dimensional hard disks through an effective occupied
volume fraction that is obtained directly from the equation of
state or can be measured geometrically. However, the channel
widths considered here are still narrow and it is likely the
scaling will begin to breakdown for wider channel. It also
remains to be seen how well the scaling works for longer-
range interactions.
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