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The Navier-Stokes transport coefficients of multicomponent granular suspensions at moderate densities are
obtained in the context of the (inelastic) Enskog kinetic theory. The suspension is modeled as an ensemble of
solid particles where the influence of the interstitial gas on grains is via a viscous drag force plus a stochastic
Langevin-like term defined in terms of a background temperature. In the absence of spatial gradients, it is shown
first that the system reaches a homogeneous steady state where the energy lost by inelastic collisions and viscous
friction is compensated for by the energy injected by the stochastic force. Once the homogeneous steady state
is characterized, a normal solution to the set of Enskog equations is obtained by means of the Chapman-
Enskog expansion around the local version of the homogeneous state. To first order in spatial gradients,
the Chapman-Enskog solution allows us to identify the Navier-Stokes transport coefficients associated with
the mass, momentum, and heat fluxes. In addition, the first-order contributions to the partial temperatures and the
cooling rate are also calculated. Explicit forms for the diffusion coefficients, the shear and bulk viscosities, and
the first-order contributions to the partial temperatures and the cooling rate are obtained in steady-state conditions
by retaining the leading terms in a Sonine polynomial expansion. The results show that the dependence of the
transport coefficients on inelasticity is clearly different from that found in its granular counterpart (no gas phase).
The present work extends previous theoretical results for dilute multicomponent granular suspensions [Khalil and
Garzó, Phys. Rev. E 88, 052201 (2013)] to higher densities.

DOI: 10.1103/PhysRevE.101.012904

I. INTRODUCTION

It is known that granular matter in nature is generally
immersed in a fluid, like air or water, and so a granular
flow is a multiphase process. However, there are situations
where the influence of the interstitial fluid on the granular
flow can be ignored. This happens, for instance, when the
stress due to the grains is greater than that exerted by the
fluid phase. Otherwise, there are many interesting phenomena
(such as species segregation in granular mixtures [1–6]) where
the effect of the fluid phase cannot be neglected, and hence,
in principle, one has to start from a theoretical description
that accounts for both phases (fluid and solid phases). In the
case of monodisperse gas-solid flows, one possibility would
be to describe the granular suspension in terms of a set of
two coupled kinetic equations for each one of the velocity
distributions of the different phases. However, the resulting
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theory would be very difficult to solve, since in particular the
different phases evolve over quite different spatial and tempo-
ral scales. The problem would be even more complex when
one considers multicomponent gas-solid flows. Thus, due to
the technical difficulties involved in the above approach, it
is more frequent in gas-solid flows to consider a suspension
model where the effect of the interstitial fluid on the solid
particles is via an effective external force [7].

The fluid-solid external force that models the effect of
the viscous gas on solid particles is usually constituted by
two different terms [8–11]. On the one hand, the first term
includes a dissipative force obeying Stokes’ law, namely, a
viscous drag force proportional to the instantaneous particle
velocity. On the other hand, the second term has a stochastic
component, modeled as a Gaussian white noise [12]. This
stochastic force provides kinetic energy to the solid particles
by randomly kicking them [13]. Hence, while the drag force
tries to model the friction of grains with the interstitial gas
phase, the stochastic Langevin-like term mimics the energy
transfer from the surrounding gas particles to the granular
particles. The above suspension model has been recently [14]
employed to get the Navier-Stokes transport coefficients of
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monocomponent granular suspensions by solving the Enskog
equation for inelastic hard spheres by means of the Chapman-
Enskog method [15] adapted to dissipative dynamics.

The determination of the Navier-Stokes transport coeffi-
cients of multicomponent granular suspensions is challenging.
This target is relevant not only from a fundamental point of
view but also from a more practical point of view since real
gas-solid flows are usually present in nature as an ensemble
of particles of different masses, sizes, and coefficients of
restitution. In such a case, given that the number of variables
and parameters involved in the analysis of multicomponent
systems is very large, it is usual to consider first more simple
systems, such as multicomponent granular suspensions at
low density. This was carried out previously in three papers
[10,16,17] where the complete set of Navier-Stokes transport
coefficients of a binary mixture were obtained from the Boltz-
mann kinetic equation.

The objective of this paper is to extend the analysis per-
formed for dilute bidisperse suspensions [10,16,17] to the
(inelastic) Enskog kinetic theory [18] for a description of
hydrodynamics and transport at higher densities. Since this
theory applies for moderate densities (let’s say, for instance,
solid volume fraction φ � 0.25 for hard spheres), a compar-
ison between kinetic theory and molecular dynamics (MD)
simulations becomes practical. This is perhaps one of the main
motivations of the present study.

As mentioned before, we want to derive here the Navier-
Stokes hydrodynamic equations of multicomponent granular
suspensions by solving the Enskog kinetic equation with the
Chapman-Enskog method. An important point in the applica-
tion of this method to the Enskog equation is the reference
state to be used in the perturbation scheme. As in the case
of dry (no gas phase) granular gases [18], the zeroth-order
velocity distribution f (0)

i of the component i cannot be chosen
a priori and must be consistently obtained as a solution of
the Enskog equation in the absence of spatial gradients. Since
we are interested here in computing the transport coefficients
under steady-state conditions, for simplicity one could take
a steady distribution f (0)

i at any point of the system [19,20].
However, this steady distribution is not the most general
election for f (0)

i since the presence of the interstitial fluid
introduces the possibility of a local energy unbalance, and,
hence, the zeroth-order distributions f (0)

i of each component
in the Chapman-Enskog solution are not in general stationary
distributions. This is because for arbitrary small deviations
from the homogeneous steady state the energy gained by
grains due to collisions with the background fluid cannot be
locally compensated with the other cooling terms arising from
the viscous friction and the collisional dissipation. Thus, in
order to get the transport coefficients, we have to achieve first
the unsteady set of integral equations verifying the first-order
distributions f (1)

i , and then we have to solve the above set
under steady-state conditions. As a consequence, the transport
coefficients depend not only on the steady temperature but
also on some quantities (derivatives of the temperature ratio)
which provide indirect information on the departure of the
time-dependent solution f (0)

i from its stationary form.
The mass, momentum, and heat fluxes are calculated here

up to first order in the spatial gradients of the hydrody-
namic fields. In addition, there are contributions to the partial

temperatures and the cooling rate proportional to the diver-
gence of the flow velocity field. These new contributions
have been recently [21] evaluated for dry granular mixtures.
As happens for binary systems [22–24], the determination
of the 12 relevant Navier-Stokes transport coefficients of a
binary mixture (10 transport coefficients and two first-order
contributions to the partial temperatures and the cooling rate)
requires one to solve 10 coupled integral equations. This is, of
course, a very long task. For this reason, in this work we will
address the determination of the four diffusion coefficients
associated with the mass flux, the shear and bulk viscosities
coefficients, and the first-order contributions to the partial
temperatures and the cooling rate.

The plan of the paper is as follows. The set of coupled
Enskog equations for multicomponent granular suspensions
and the corresponding balance equations for the densities of
mass, momentum, and energy are derived in Sec. II. Then
Sec. III analyzes the steady homogeneous state. As in pre-
vious works [10,25,26], scaling solutions are proposed whose
dependence on the temperature T occurs through the dimen-
sionless velocity c = v/v0 (v0 being a thermal speed) and
the reduced temperature θ = T/Tex (Tex being the background
temperature). Theoretical predictions for the temperature ratio
of both components T1/T2 are compared against MD simu-
lations. The comparison shows in general a good agreement
for conditions of practical interest. Section IV is focused on
the application of the Chapman-Enskog expansion around the
unsteady reference distributions f (0)

i (r, v, t ) up to first order in
the spatial gradients. The Navier-Stokes transport coefficients
are defined in Sec. V and given in terms of the solutions of a
set of linear coupled integral equations. The leading terms in
a Sonine polynomial expansion are considered in Sec. VI to
solve the integral equations defining the diffusion coefficients,
the shear viscosity, and the first-order contributions to the
partial temperatures and the cooling rate. All these coefficients
are explicitly determined as functions of both the granular and
background temperatures, the density, the concentration, and
the mechanical parameters of the mixture (masses, diameters,
and coefficients of restitution). The dependence of the trans-
port coefficients, the partial temperatures, and the cooling rate
on the parameter space is illustrated in Sec. VII for several
systems. It is shown that the impact of the gas phase on the
transport coefficients is in general quite significant since their
dependence on inelasticity is different from the one obtained
for dry granular mixtures [18,22–24]. The paper is concluded
in Sec. VIII with a brief discussion of the results obtained in
this work. Further details of the calculations carried out here
are given in three appendices.

II. ENSKOG KINETIC EQUATION FOR POLYDISPERSE
GAS-SOLID FLOWS

A. Model for multicomponent granular suspensions

We consider a binary mixture composed of inelastic hard
disks (d = 2) or spheres (d = 3) of masses mi and diameters
σi (i = 1, 2). The solid particles are immersed in an ordinary
gas of viscosity ηg. Spheres are assumed to be completely
smooth so that inelasticity of collisions between particles
of the component i with particles of the component j is
characterized only by the constant (positive) coefficients of
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restitution αi j � 1. The mixture is also assumed to be in the
presence of the gravitational field, and, hence, each particle
feels the action of the force Fi = mig, where g is the gravity
acceleration. For moderate densities, the one-particle velocity
distribution function fi(r, v, t ) of the component i verifies the
set of nonlinear Enskog equations [18]

∂ fi

∂t
+ v · ∇ fi + g · ∂ fi

∂v
+ Fi fi =

2∑
j=1

Ji j[r, v| fi, f j], (1)

where the Enskog collision operator is

Ji j[r1, v1| fi, f j]

= σ d−1
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)

× [α−2
i j χi j (r1, r1 − σ i j ) fi(r1, v′′

1, t ) f j (r1 − σ i j, v′′
2, t )

−χi j (r1, r1 + σ i j ) fi(r1, v1, t ) f j (r1 + σ i j, v2, t )
]
. (2)

In Eq. (1) the operator Fi represents the fluid-solid interaction
force that models the effect of the viscous gas on the solid
particles of the component i. Its explicit form will be given
below. In addition, σ i j = σi j σ̂, σi j = (σi + σ j )/2, σ̂ is a unit
vector directed along the line of centers from the sphere of the
component i to that of the component j at contact, � is the
Heaviside step function, g12 = v1 − v2 is the relative velocity
of the colliding pair, and χi j (r1, r1 + σ i j ) is the equilibrium
pair correlation function of two hard spheres, one for the
component i and the other for the component j at contact
(namely, when the distance between their centers is σi j). The
precollisional velocities (v′′

1, v′′
2 ) are given by

v′′
1 = v1 − μ ji

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (3)

v′
2 = v2 + μi j

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (4)

where μi j = mi/(mi + mj ).
As in previous works on granular suspensions [9,11,14,27],

the influence of the surrounding gas on the dynamics of grains
is accounted for via an instantaneous fluid force. For low
Reynolds numbers, we assume that the external force is com-
posed of two independent terms. One term is a viscous drag
force (Fdrag

i ) proportional to the particle velocity v. This term
takes into account the friction of particles of the component
i with the viscous gas. A subtle point in the choice of the ex-
plicit form of the drag force Fdrag

i for multicomponent systems
is that it can be defined to be the same for both components,
or it can be chosen to be different for both components. Here,
for consistency with simulations of bidisperse gas-solid flows
[28–30], we will assume that

Fdrag
i = −miγi(v − Ug), (5)

where γi is the (positive) drift or friction coefficient associated
with the component i. In addition, since the model tries to
model gas-solid flows, the drag force (5) has been defined
in terms of the relative velocity v − Ug where Ug is the
mean fluid velocity of the gas phase. This latter quantity is
assumed to be a known quantity of the suspension model.
Thus, according to Eq. (5), in the Enskog equation (1) the drag
force is represented by the operator

Fdrag
i fi → −γi

∂

∂v
· (v − Ug) fi. (6)

The second term in the gas-to-solid force corresponds
to a stochastic Langevin force (Fst

i ) representing Gaussian
white noise [12]. This force attempts to simulate the kinetic
energy gain of grains due to eventual collisions with the more
energetic particles of the surrounding gas [13]. In the context
of the Enskog equation (1), the stochastic force is represented
by a Fokker-Planck collision operator of the form [31–34]

F st
i fi → −γiTex

mi

∂2 fi

∂v2
, (7)

where Tex can be interpreted as the temperature of the back-
ground (or bath) gas.

Although the drift coefficient γi is in general a tensor,
here for simplicity we assume that this coefficient is a scalar
proportional to the viscosity of the gas phase ηg [7]. In ad-
dition, according to the results obtained in lattice-Boltzmann
simulations of low-Reynolds-number fluid flow in bidisperse
suspensions [28–30], the friction coefficients γi must be func-
tions of the partial volume fractions φi and the total volume
fraction φ = φ1 + φ2 where

φi = πd/2

2d−1d�
(

d
2

)niσ
d
i . (8)

Here

ni =
∫

dv fi(v) (9)

is the local number density of the component i. The coeffi-
cients γi can be written as

γi = γ0Ri(φi, φ), (10)

where γ0 ∝ ηg ∝ √
Tex. Explicit forms of Ri(φi, φ) can

be found in the literature for polydisperse gas-solid
flows [28–30]. In particular, for hard spheres (d = 3),
low-Reynolds-number fluid and moderate densities, Yin
and Sundaresan [29] have proposed the expression γi =
(18ηg/ρσ 2

12)Ri where the dimensionless function Ri is

Ri(φi, φ) = ρσ 2
12

ρiσ
2
i

(1 − φ)φiσi

φ

2∑
j=1

φ j

σ j

[
10φ

(1 − φ)2

+ (1 − φ)2(1 + 1.5
√

φ)

]
. (11)

Hence, according to Eqs. (6) and (7), the operator Fi fi reads

Fi fi = Fdrag
i fi + F st

i fi

→ −γi�U · ∂ fi

∂v
− γi

∂

∂v
· V fi − γiTex

mi

∂2 fi

∂v2
,

(12)

and the Enskog equation for the component i becomes

∂ fi

∂t
+ v · ∇ fi + g · ∂ fi

∂v
− γi�U · ∂ fi

∂v
− γi

∂

∂v
· V fi

− γiTex

mi

∂2 fi

∂v2
=

2∑
j=1

Ji j[ fi, f j]. (13)
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In Eq. (12), �U = U − Ug, V = v − U is the peculiar veloc-
ity, and

U = ρ−1
2∑

i=1

∫
dv miv fi(v) (14)

is the local mean flow velocity of the mixture. Here ρ =∑i ρi

is the total mass density, and ρi = mini is the mass density of
the component i.

The suspension model (13) is similar to the one proposed in
Ref. [10] to obtain the Navier-Stokes transport coefficients of
multicomponent granular suspensions at low density. In this
latter model [10], the gas phase depends on two parameters:
the friction coefficient of the drag force (γb in the notation
of Ref. [10]) and the strength of the correlation (ξ 2

b in the
notation of Ref. [10]). However, in contrast with the suspen-
sion model proposed here, both parameters (γb and ξ 2

b ) were
assumed to be independent and the same for each one of the
components. Therefore, in the low-density limit, the results
derived here reduce to those obtained previously [10] when
one makes the changes γ1 = γ2 = γb [with Ri(φi, φ) = 1] and
ξ 2

b = 2γbTex. Here, in the notation of Ref. [10], the other
constants of the driven model are chosen to be β = 0 and
λ = 1; this is one of the possible elections consistent with the
fluctuation-dissipation theorem for elastic collisions [12].

B. Balance equations

Apart from the partial densities ni and the flow velocity
U, the other important hydrodynamic field is the granular
temperature T . It is defined as

T = 1

n

2∑
i=1

∫
dv

mi

d
V 2 fi(v), (15)

where n = n1 + n2 is the total number density. The granular
temperature T can also be defined in terms of the partial
kinetic temperatures T1 and T2 of the components 1 and 2,
respectively. The partial kinetic temperature Ti measures the
mean kinetic energy of the component i. They are defined as

Ti = mi

dni

∫
dv V 2 fi(v), i = 1, 2. (16)

In accordance with Eq. (15), the granular temperature T of the
mixture also can be written as

T =
2∑

i=1

xiTi, (17)

where xi = ni/n is the concentration or mole fraction of the
component i.

In order to obtain the balance equations for the hydrody-
namic fields, an important property of the integrals involv-
ing the (inelastic) Enskog collision operator Ji j[r, v| fi, f j] is
[18,35]

Iψ ≡
∫

dv1 ψ (v1)Ji j[r1, v1| fi, f j]

= σ d−1
i j

∫
dv1

∫
dv2

∫
d σ̂ �(̂σ · g12)(̂σ · g12)

×χi j (r1, r1 + σ i j ) fi(r1, v1, t ) f j (r1 + σ i j, v2, t )

× [ψ (v′
1) − ψ (v1)], (18)

where ψ (v) is an arbitrary function of v and

v′
1 = v1 − μ ji(1 + αi j )(σ̂ · g12 )̂σ. (19)

The balance equations for the densities of mass, momentum,
and energy can be derived by taking velocity moments in the
Enskog equation (13) and using the property (18). They read

Dt ni + ni∇ · U + ∇ · ji

mi
= 0, (20)

Dt U + ρ−1∇ · P = g − ρ−1�U
2∑

i=1

ρiγi − ρ−1(γ1 − γ2)j1,

(21)

Dt T − T

n

2∑
i=1

∇ · ji

mi
+ 2

dn
(∇ · q + P : ∇U)

= − 2

dn
�U ·

2∑
i=1

γi ji + 2
2∑

i=1

xiγi(Tex − Ti ) − ζT . (22)

In the above equations, Dt = ∂t + U · ∇ is the material deriva-
tive, and

ji = mi

∫
dv V fi(v) (23)

is the mass flux for the component i relative to the local flow
U. A consequence of the definition (23) of the fluxes ji is that
j1 = −j2. The pressure tensor P(r, t ) and the heat flux q(r, t )
have both kinetic and collisional transfer contributions:

P = Pk + Pc, q = qk + qc. (24)

The kinetic contributions Pk and qk are given by

Pk =
2∑

i=1

∫
dv miVV fi(v), (25)

qk =
2∑

i=1

∫
dv

mi

2
V 2V fi(v). (26)

The collisional transfer contributions are [22]

Pc =
2∑

i=1

2∑
j=1

σ d
i jmi j

1 + αi j

2

∫
dv1

∫
dv2

∫
d σ̂

×�(̂σ · g12)(̂σ · g12)2σ̂σ̂

∫ 1

0
dx

× f (2)
i j [r − xσ i j, r + (1 − x)σ i j, v1, v2, t], (27)

qc =
2∑

i=1

2∑
j=1

σ d
i jmi j

1 + αi j

8

∫
dv1

∫
dv2

∫
d σ̂

×�(̂σ · g12)(̂σ · g12)2σ̂[4(̂σ · Gi j )

+ (μ ji − μi j )(1 − αi j )(σ̂ · g12)]
∫ 1

0
dx

× f (2)
i j [r − xσ i j, r + (1 − x)σ i j, v1, v2; t]. (28)
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Here mi j = mimj/(mi + mj ) is the reduced mass, Gi j =
μi jV1 + μ jiV2 is the velocity of the center of mass, and

f (2)
i j (r1, r2, v1, v2, t ) ≡ χi j (r1, r2) fi(r1, v1, t ) f j (r2, v2, t ).

(29)
Finally, the (total) cooling rate ζ is due to inelastic collisions
among all components. It is given by

ζ = 1

2dnT

2∑
i=1

2∑
j=1

σ d−1
i j mi j

(
1 − α2

i j

) ∫
dv1

∫
dv2

∫
d σ̂

×�(̂σ · g12)(̂σ · g12)3 f (2)
i j [r, r + σ i j, v1, v2; t]. (30)

As expected, the balance equations (20)–(22) are not a
closed set of equations for the fields n1, n2, U, and T . To
turn these equations into a set of closed equations, one has
to express the fluxes and the cooling rate in terms of the
hydrodynamic fields and their gradients. The corresponding
constitutive equations can be obtained by solving the Enskog
kinetic equation (13) from the Chapman-Enskog method [15]
adapted to dissipative dynamics. This will be worked out in
Sec. IV.

III. HOMOGENEOUS STEADY STATES

A. Time-dependent state

Before considering inhomogeneous states, we will study
first the homogeneous problem. This state has been widely
analyzed in Ref. [10] for a similar suspension model. In
the homogeneous state, the partial densities ni(r, t ) ≡ ni are
constant, the granular temperature T (r, t ) ≡ T (t ) is spatially
uniform, the gas velocity Ug is assumed to be uniform, and,
with an appropriate selection of the reference frame, both
mean flow velocities vanish (U = Ug = 0). Under these con-
ditions and in the absence of gravity (g = 0), Eq. (13) reads

∂t fi − γi
∂

∂v
· v fi − γiTex

mi

∂2 fi

∂v2
=

2∑
j=1

Ji j[ fi, f j], (31)

where

Ji j[ fi, f j] = χi jσ
d−1
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)

× [α−2
i j fi(v′′

1 ) f j (v′′
2 ) − fi(v1) f j (v2)

]
(32)

is the Boltzmann collision operator multiplied by the (con-
stant) pair correlation function χi j . For homogeneous states,
the fluxes vanish, and so the only nontrivial balance equation
is that of the temperature (22):

∂t T = 2
2∑

i=1

xiγi(Tex − Ti ) − ζT, (33)

where, according to Eq. (30), the expression of ζ for homoge-
neous states can be written as

ζ = π (d−1)/2

2d�
(

d+3
2

) 1

nT

2∑
i=1

2∑
j=1

σ d−1
i j mi jχi j

(
1 − α2

i j

)
×
∫

dv1

∫
dv2 g3

12 fi(v1) f j (v2). (34)

Analogously, the evolution equation for the partial temper-
atures Ti can be obtained from Eq. (31) as

∂t Ti = 2γi(Tex − Ti ) − ζiTi, (35)

where we have introduced the partial cooling rates ζi for the
partial temperatures Ti. They are defined as

ζi = − mi

dniTi

2∑
j=1

∫
dv V 2Ji j[ fi, f j]. (36)

The total cooling rate ζ can be rewritten in terms of the partial
cooling rates ζi when one takes into account the constraint
(17) and the evolution equations (33) and (35). The result is

ζ =
2∑

i=1

xiτiζi, (37)

where τi = Ti/T is the temperature ratio of the component i.
As usual, for times longer than the mean-free time, the

system is expected to reach a hydrodynamic regime where
the distributions fi depend on time through the only time-
dependent hydrodynamic field of the problem: the granular
temperature T [36]. In this regime,

∂t fi = ∂ fi

∂T
∂t T =

[
2

2∑
i=1

xiγi(θ
−1 − τi ) − ζ

]
T

∂ fi

∂T
, (38)

and the homogeneous Enskog equation (31) becomes[
2

2∑
i=1

xiγi(θ
−1 − τi ) − ζ

]
T

∂ fi

∂T
− γi

∂

∂v
· v fi

− γiTex

mi

∂2 fi

∂v2
=

2∑
j=1

Ji j[ fi, f j], (39)

where θ = T/Tex.

B. Steady state

In the steady state (∂t Ti = 0), Eq. (35) gives the following
set of coupled equations for the (asymptotic) partial tempera-
tures Ti,s:

2γi(Tex − Ti,s) − ζi,sTi,s = 0, (40)

where the subscript s means that all the quantities are evalu-
ated in the steady state. To determine these temperatures one
has to get the steady-state solution to Eq. (39). By using the
relation

2
2∑

i=1

xiγi(θ
−1 − τi ) − ζ = 0, (41)

Eq. (39) reads

−γi
∂

∂v
· v fi,s − γiTex

mi

∂2 fi,s

∂v2
=

2∑
j=1

Ji j[ fi,s, f j,s]. (42)

As shown for dilute driven multicomponent granular gases
[10], dimensionless analysis requires that fi,s has the scaled
form

fi,s(ni, v, γi, Tex) = niv
−d
0 ϕi,s(c, x1, γ

∗
i,s, θs), (43)
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where the unknown scaled function ϕi,s depends on the di-
mensionless parameters

c = v
v0s

, γ ∗
i,s = γi

nσ d−1
12 v0s

. (44)

Here v0s = √
2Ts/m is the thermal speed and m =∑i mi/2.

Note that the time-dependent velocity distribution function
fi(v, t ) also admits the scaling form (43).

The (reduced) drift parameters γ ∗
i,s can be easily expressed

in terms of the mole fraction, the volume fractions φi and φ,
and the (reduced) temperature θs as

γ ∗
i,s = λiθ

−1/2
s , λi =

√
2πd/2

2d d�
(

d
2

) Ri(φi, φ)√
T ∗

ex

∑
j (σ12/σ j )dφ j

,

(45)
T ∗

ex ≡ Tex/(mσ 2
12γ

2
0 ) being the (dimensionless) background

gas temperature. Note that λ1/R1 = λ2/R2. As expected from
previous works [10,14,37,38], the dependence of the scaled
distribution ϕi,s on the temperature is not only through the
dimensionless velocity c but also through the dimensionless
parameter θs. This scaling differs from the one assumed in free
cooling systems [31,39] where all the temperature dependence
of ϕi,s is encoded through c.

The scaling given by Eq. (43) is equivalent to the one
proposed in Ref. [10] when one makes the mapping ξ ∗

s →
2λθ

−3/2
s , where λ1 = λ2 = λ and R1 = R2 = 1. The dimen-

sionless parameter ξ ∗
s is defined by Eq. (34) of Ref. [10]. Thus,

in the particular case of λi = λ and Ri = 1, the results for
homogeneous states are consistent with those derived before
[10] in the dilute regime (φ → 0).

In reduced form, Eq. (42) can be rewritten as

−γ ∗
i,s

∂

∂c
· cϕi,s − γ ∗

i,s

2Miθs

∂2ϕi,s

∂c2
=

2∑
j=1

J∗
i j[ϕi,s, ϕ j,s], (46)

where Mi = mi/m and J∗
i j = �Ji j/niv

1−d
0s , � = 1/nσ d−1

12 be-
ing proportional to the mean-free path of hard spheres. The
knowledge of the distributions ϕi allows us to get the partial
temperatures and the partial cooling rates. In the case of
elastic collisions (αi j = 1), T1,s = T2,s = Ts = Tex and hence,
Eq. (46) admits the simple solution ϕi,s = π−d/2Md/2

i e−Mic2
.

However, the exact form of the above distributions is not
known for inelastic collisions, and, hence, one has to consider
approximate forms for ϕi,s. In particular, previous results
derived for driven granular mixtures [34,40,41] have shown
that the partial temperatures can be well estimated by using
Maxwellian distributions at different temperatures for the
scaled distributions ϕi,s(c):

ϕi,s(c) → ϕi,M(c) = π−d/2β
d/2
i e−βic2

, (47)

where βi = MiTs/Ti,s. The (reduced) cooling rate ζ ∗
i,s =

�ζi,s/v0s can be determined by taking the approximation (47)
in Eq. (36). The result is

ζ ∗
i,s = 4π (d−1)/2

d�
(

d
2

) 2∑
j=1

x jχi jμ ji

(
σi j

σ12

)d−1(
βi + β j

βiβ j

)1/2

× (1 + αi j )

[
1 − μ ji

2
(1 + αi j )

βi + β j

β j

]
. (48)

The (reduced) partial temperatures θi,s = Ti,s/Tex can be
obtained from the steady-state condition (40) for i = 1, 2.
In reduced form, the equation for θi,s can be written
as

2λiθ
−1/2
s (1 − θi,s) − ζ ∗

i,sθi,s = 0. (49)

Note that Eq. (17) imposes the constraint x1θ1,s + x2θ2,s = θs.
Substitution of Eq. (48) into the set of equations (49) allows
us to get the partial temperatures in terms of the concentration
x1, the solid volume fraction φ, the (reduced) background
temperature T ∗

ex, and the mechanical parameters of the mixture
(mass and diameter ratios and coefficients of restitution). In
the low-density limit, Eq. (49) is consistent with the one
obtained in Ref. [10] after making the change 2λiθ

−1/2
s = ξ ∗

s .
Figure 1 shows the dependence of the temperature ratio

T1,s/T2,s on the (common) coefficient of restitution α (α ≡
α11 = α22 = α12) for a binary granular suspension of hard
spheres (d = 3). The lines are the theoretical results derived
from the Enskog equation, and the symbols refer to the results
obtained via event-driven MD simulations [42,43]. We have
simulated a system constituted by a total number of N = 203

inelastic, smooth hard spheres. The system is inside a three-
dimensional box of size L with periodic boundary conditions.
In addition to the interparticle collisions, particles of each
component change their velocities due to the interactions
with the bath (with Ug = 0), as explained in Ref. [41]. Three
different values of the solid volume fractions φ have been
analyzed: φ = 0.00785, φ = 0.1, and φ = 0.2. The first sys-
tem corresponds to a very dilute granular suspension, while
the two latter can be considered as moderately dense granular
suspensions. Two different values of the common coefficient
of restitution have been chosen, α = 0.8 and α = 0.9. Both
values of α represent a moderate degree of inelasticity. The
symbols are the simulation data where the squares are for α =
0.8 and the triangles are for α = 0.9. The Enskog theoretical
predictions are given by the solid (α = 0.8) and dashed (α =
0.9) lines.

Figure 1 highlights the excellent agreement found between
the Enskog theory and simulations in both the low-density
limit (φ = 0.00785) and moderate density (φ = 0.1). This
agreement is kept for both values of inelasticity and over
the whole range of mass ratios studied. The agreement is
also excellent for φ = 0.2 and α = 0.9; more quantitative
discrepancies appear for α = 0.8, especially for large values
of the mass ratio. These differences between the Enskog
theory and MD simulations for moderate densities and strong
inelasticity could be due to the fact that the impact of the
cumulants (which have been neglected in our solution) on
the temperature ratio could be non-negligible in this region of
the parameter space or due to a failure of the Enskog theory
(namely, molecular chaos hypothesis fails at high densities
and strong inelasticity). In any case, the good performance
of the Enskog results found here for the temperature ratio
contrasts with the results obtained in freely cooling granular
mixtures [33] where significant differences between theory
and simulations were found at φ = 0.2 (see, for instance,
Fig. 2 of Ref. [33]).

In summary, the comparison performed here for the tem-
perature ratio in homogeneous steady states for granular sus-
pensions shows again that the range of densities for which
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FIG. 1. Plot of the temperature ratio T1,s/T2,s versus the mass
ratio m1/m2 for a binary mixture of hard spheres (d = 3) with x1 =
1
2 , σ1/σ2 = 1 and two different values of the (common) coefficient of
restitution α: α = 0.8 (solid lines and squares) and α = 0.9 (dashed
lines and triangles). The lines are the theoretical Enskog results,
and the symbols refer to the MD simulation results. From top to
bottom, panel (a) corresponds to φ = 0.00785, panel (b) to φ = 0.1,
and panel (c) to φ = 0.2. The value of the (reduced) background
temperature is T ∗

ex = 1.

the Enskog kinetic equation becomes reliable likely decreases
with increasing inelasticity. This finding has been already
achieved in some previous works [41,44–48]. However, de-
spite this limitation, the Enskog theory can be still considered
as a remarkable theory for describing transport properties for
fluids with elastic and inelastic collisions.

IV. CHAPMAN-ENSKOG SOLUTION OF THE
ENSKOG EQUATION

We assume now that the homogeneous steady state is
slightly perturbed by the presence of spatial gradients. These
gradients induce fluxes of mass, momentum, and energy. The
knowledge of these fluxes allows us to identify the relevant
transport coefficients of the bidisperse granular suspension.
As in previous works on granular mixtures [10,22,23,49], we
consider states that deviate from the reference state (homo-
geneous time-dependent state) by small spatial gradients. In
this situation, the set of Enskog equations (13) can be solved
by means of the Chapman-Enskog method [15] conveniently
adapted to take into account the inelasticity in collisions.

As usual, for times longer than the grain-grain mean-free
time and distances larger than the grain-grain mean-free path,
we assume that the granular suspension has reached the so-
called hydrodynamic regime [15,50]. In this regime, (1) the
system has completely “forgotten” the details of the initial
conditions and in addition (2) the hydrodynamic description
is limited to the bulk domain of the system (namely, a region
far away from the boundaries). Under these conditions, the
Chapman-Enskog method seeks a special solution to the En-
skog kinetic equation: the so-called normal or hydrodynamic
solution. This type of solution is characterized by the fact that
all space and time dependence of the distributions fi(r, v, t )
occurs only via a functional dependence on the hydrodynamic
fields.

On the other hand, as noted in previous papers of granular
mixtures [22,49,51], there is more flexibility in the choice of
the hydrodynamic fields for the mass and heat fluxes of multi-
component granular fluids. Here, to compare with the results
previously derived for undriven dense granular mixtures [22],
we take the partial densities n1 and n2, the temperature T , and
the d components of the local flow velocity U as the d + 3
independent fields of the binary mixture. Therefore, in the
hydrodynamic regime, the distributions fi(r, v, t ) adopt the
normal form

fi(r, v, t ) = fi[v|n1(t ), n2(t ), T (t ), U(t )]. (50)

The notation on the right-hand side of Eq. (50) indicates a
functional dependence on the partial densities, temperature,
and flow velocity. Note that the functional dependence means
that in order to determine fi at the point r we need to know
the fields not only at r but also at the remaining points of the
system. This is formally equivalent to knowing n1, n2, T , and
U and their spatial derivatives at r.

Since we are perturbing the reference state with small
spatial gradients, we can simplify the functional dependence
(50) by expanding the distributions fi in powers of the spatial
gradients. In practice, in order to generate this expansion, fi

is expressed as a series expansion in a formal or bookkeeping
parameter ε:

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (51)

where each factor ε means an implicit spatial gradient. More-
over, in ordering the different level of approximations in the
Enskog kinetic equation, one has to characterize the magni-
tude of the friction coefficients γi, the gravity field g, and
the term �U relative to the spatial gradients. As in the case
of elastic collisions [15], since the gravity field induces a
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pressure gradient ∇p (the so-called barometric formula), it is
assumed first that the magnitude of g is at least of first order in
the perturbation expansion. In addition, since γi does not give
rise to any flux in the mixture, it is considered to be to zeroth
order in gradients. Finally, with respect to the term �U, it is
expected that this term is at least to first order in gradients
because U relaxes to Ug in the absence of gradients.

As in the conventional Chapman-Enskog method [15], the
time derivative ∂t is also expanded as

∂t = ∂
(0)
t + ε∂

(1)
t + · · · . (52)

These expansions lead to similar expansions for the Enskog
operators Ji j :

Ji j = J (0)
i j + εJ (1)

i j + · · · , (53)

and the fluxes and the cooling rate when substituted into
Eqs. (23)–(30):

ji = j(0)
i + εj(1)

i + · · · , P = P(0) + εP(1) + · · · , (54)

q = q(0) + εq(1) + · · · , ζ = ζ (0) + εζ (1) + · · · . (55)

In addition, although the partial temperatures Ti are not hydro-
dynamic quantities, they must be also expanded in powers of
the gradients as [17,21]

Ti = T (0)
i + εT (1)

i + · · · . (56)

As usual, the hydrodynamic fields ni, U, and T are defined
in terms of the zeroth-order approximation:∫

dv
(

fi − f (0)
i

) = 0, (57)

2∑
i=1

∫
dv
{

miv,
mi

2
V 2
}(

fi − f (0)
i

) = {0, 0}. (58)

Since the constraints (57) and (58) must hold at any order in
ε, one has ∫

dv f (�)
i = 0 (59)

and
2∑

i=1

∫
dv
{

miv,
mi

2
V 2
}

f (�)
i = {0, 0} (60)

for � � 1. A consequence of Eq. (60) is that j(�)
1 = −j(�)

2 and
n1T (�)

1 = −n2T (�)
2 for � � 1. This is the usual application of

the Chapman-Enskog method to solve kinetic equations. Here
we will restrict our calculations to first order in ε, the so-called
Navier-Stokes hydrodynamic order.

A. Zeroth-order approximation

To zeroth order in ε, the Enskog kinetic equation (13) for
f (0)
i reads

∂
(0)
t f (0)

i − γi
∂

∂v
· V f (0)

i − γi
Tex

mi

∂2 f (0)
i

∂v2
=

2∑
j=1

J (0)
i j

[
f (0)
i , f (0)

j

]
,

(61)

where the collision operator J (0)
i j [ f (0)

i , f (0)
j ] is given by

Eq. (32) with the replacement fi → f (0)
i (r, v, t ). The balance

equations at this order give

∂
(0)
t ni = 0, ∂

(0)
t U = 0 (62)

and

∂
(0)
t T = 2

2∑
i=1

xiγi
(
Tex − T (0)

i

)− ζ (0)T, (63)

where ζ (0) is determined by Eq. (34) to zeroth order. In terms
of ζ

(0)
i , ζ (0) is given by Eq. (37). An accurate estimate of

ζ
(0)
i is obtained by considering the Maxwellian approximation

(47) to ϕi. In this case, ζ (0)
i = v0ζ

∗
i,0/� where v0(T ) = √

2T/m
and ζ ∗

i,0 is given by Eq. (48) with the replacements xi →
xi(r, t ), χi j → χ

(0)
i j (r, t ), Ti,s → T (0)

i (r, t ), and Ts → T (r, t ).

Here χ
(0)
i j is obtained from the functional χi j (r, r ± σ i j |{n�})

by evaluating all the densities n� at the point of interest
r. Furthermore, in Eqs. (62) and (63), use has been made
of the isotropy in velocity of the zeroth-order distributions
f (0)
i which lead to j(0)

i = q(0) = 0 and Pλβ = pδλβ , where the
hydrostatic pressure p is [22]

p = nT + πd/2

d�
(

d
2

) 2∑
i=1

2∑
j=1

μ jinin jσ
d
i jχ

(0)
i j T (0)

i (1 + αi j ). (64)

Since f (0)
i is a normal solution and the zeroth-order time

derivatives of ni and U are zero, then ∂
(0)
t f (0)

i = (∂T f (0)
i )∂ (0)

t T
where ∂

(0)
t T is given by Eq. (63). With this result, Eq. (61) can

be rewritten as

�(0)T
∂ f (0)

i

∂T
− γi

∂

∂v
· V f (0)

i − γiTex

mi

∂2 f (0)
i

∂v2

=
2∑

j=1

J (0)
i j

[
f (0)
i , f (0)

j

]
, (65)

where

�(0) ≡ 2
2∑

i=1

xiγi(θ
−1 − τi ) − ζ (0). (66)

Although Eq. (65) has the same form as the one corresponding
Enskog equation (39) for a strictly homogeneous state, the
zeroth-order solution f (0)

i (r, v, t ) is a local distribution func-
tion. In fact, the stationary solution to Eq. (65) corresponds to
�(0) = 0 and has been previously studied in Sec. III. However,
as noted in previous works [10,14,37,52], since the densities
ni(r, t ) and the granular temperature T (r, t ) are defined sep-
arately in the local reference state f (0)

i , then the temperature
is in general a time-dependent function (∂ (0)

t T �= 0). Thus, the
distribution f (0)

i depends on time through its dependence on
the temperature.

The solution to Eq. (65) can be expressed in the form
(43) (with the replacements γ ∗

i,s → γ ∗
i and θs → θ ) where the

scaled distribution ϕi verifies the unsteady equation[
2

2∑
i=1

xiγ
∗
i (θ−1 − τi ) − ζ ∗

0

]
θ
∂ϕi

∂θ
+
[
ζ ∗

0

2
−

2∑
i=1

xiγ
∗
i

× (θ−1 − τi ) − γ ∗
i

]
∂

∂c
· cϕi − γ ∗

i

2Miθ

∂2ϕi

∂c2

=
2∑

j=1

J∗
i j[ϕi, ϕ j]. (67)
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Here the derivative ∂ϕi/∂θ is taken at constant c, ζ ∗
0 =

�ζ (0)/v0, γ ∗
i = λiθ

−1/2, and upon deriving Eq. (67) use has
been made of the property

T
∂ f (0)

i

∂T
= −1

2

∂

∂V
· V f (0)

i + niv
−d
0 θ

∂ϕi

∂θ
. (68)

The evolution of the temperature ratios τi may be easily
obtained by multiplying Eq. (67) by c2 and integrating over
c. In compact form, the result can be written as

�∗θ
∂τi

∂θ
= −τi�

∗ + �∗
i , (69)

where τi = T (0)
i /T ,

�∗ = ��(0)

v0
= x1�

∗
1 + x2�

∗
2, (70)

and

�∗
i = 2γ ∗

i (θ−1 − τi ) − τiζ
∗
i,0. (71)

In the steady state (�∗ = �∗
i = 0), Eqs. (69) are consistent

with Eqs. (49) for i = 1, 2. Beyond the steady state, Eq. (69)
must be numerically solved to obtain the dependence of τ1

and τ2 on θ . In addition, as will be shown in Sec. V, to de-
termine the diffusion transport coefficients in the steady state
one needs to know the derivatives �θ,1 ≡ (∂τ1/∂θ )s, �λ1,1 ≡
(∂τ1/∂λ1)s, �x1,1 ≡ (∂τ1/∂x1)s, and �φ,1 ≡ (∂τ1/∂φ)s. Here,
as before, the subscript s means that all the derivatives are
evaluated at the steady state. Since λ2 = (R2/R1)λ1, then
(∂τ1/∂λ2)s = (R1/R2)(∂τ1/∂λ1)s. Analytical expressions of
these derivatives are provided in Appendix A.

The dependence of the derivatives �θ,1, �λ1,1, �x1,1, and
�φ,1 on the common coefficient of restitution αi j ≡ α is plot-
ted in Fig. 2. We have considered a three-dimensional system
(d = 3) with x1 = 1

2 , m1/m2 = 10, σ1/σ2 = 1, φ = 0.2, and
T ∗

ex = 0.1. We observe that in general the magnitude of the
derivatives is not negligible, especially the derivatives �θ,1

and �φ,1 at strong inelasticity.

B. First-order approximation

The analysis to first order in spatial gradients is more
complex than that of the zeroth order. It follows similar steps
as those worked out for undriven dense granular mixtures
[22,23] and driven dilute granular mixtures [10]. Some
technical details are displayed in Appendix B for the sake of
completeness. The first-order velocity distribution functions

FIG. 2. Plot of the derivatives �θ,1 (a), �λ1,1 (b), �x1,1 (c), and
�φ,1 (d) for d = 3, x1 = 1

2 , m1/m2 = 10, σ1/σ2 = 1, φ = 0.2, and
T ∗

ex = 0.1.

f (1)
i are given by

f (1)
i = Ai · ∇ ln T +

2∑
j=1

Bi j · ∇ ln n j + Ci,λβ

1

2

(
∂λUβ

+ ∂βUλ − 2

d
δλβ∇ · U

)
+ Di∇ · U + E i · �U, (72)

where ∂β ≡ ∂/∂rβ . The unknowns Ai(V), Bi j (V), Ci,λβ (V),
Di(V), and E i(V) are functions of the peculiar velocity,
and they are the solutions of the linear integral equations
(B19)–(B23).

On the other hand, as already pointed out in previous
works [10,14,37], the evaluation of the transport coefficients
under unsteady conditions requires one to know the complete
time dependence of the first-order corrections to the mass,
momentum, and heat fluxes. This is quite an intricate problem.
A more tractable situation occurs when one is interested in
evaluating the transport coefficients in steady-state conditions.
In this case, since the fluxes j(1)

1 , P(1)
λβ , and q(1) are of first

order in gradients, then the transport coefficients must be
determined to zeroth order in the deviations from the steady
state (namely, when the condition �(0) = 0 applies). In this
situation, the set of coupled linear integral equations (B19)–
(B23) becomes, respectively,

−
⎡⎣2

2∑
j=1

γ jx j

(
θ−1 + θ

∂τ j

∂θ

)
+ 1

2
ζ (0) + ζ (0)θ

∂ ln ζ ∗
0

∂θ

⎤⎦Ai − γi
∂

∂v
· VAi − γiTex

mi

∂2

∂v2
Ai

+ (γ2 − γ1)DT
1

∂ f (0)
i

∂V
−

2∑
j=1

(
J (0)

i j

[
Ai, f (0)

j

]+ J (0)
i j

[
f (0)
i ,A j

]) = Ai, (73)

− γi
∂

∂v
· VBi j − γiTex

mi

∂2

∂v2
Bi j + (γ2 − γ1)

m1ρ j

ρ2
D1 j

∂ f (0)
i

∂V
−

2∑
�=1

(
J (0)

i�

[
Bi j, f (0)

�

]+ J (0)
i�

[
f (0)
i ,B� j

]) = Bi j

+
(

n j
∂ζ (0)

∂n j
− 2n j

2∑
�=1

{
γ�x�

[
(θ−1 − τ�)

(
∂ ln γ�

∂n j
+ ∂ ln x�

∂n j

)
−
(

∂τ�

∂x1

∂x1

∂n j
+ ∂τ�

∂λ1

∂λ1

∂n j
+ ∂τ�

∂φ

∂φ

∂n j

)]})
Ai, (74)
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− γi
∂

∂v
· VCi,λβ − γiTex

mi

∂2

∂v2
Ci,λβ −

2∑
j=1

(
J (0)

i j

[
Ci,λβ, f (0)

j

]+ J (0)
i j

[
f (0)
i , C j,λβ

]) = Ci,λβ, (75)

− γi
∂

∂v
· VDi − γiTex

mi

∂2

∂v2
Di −

⎛⎝ζ (1,1)T + 2
2∑

j=1

γ jx j� j

⎞⎠∂ f (0)
i

∂T
−

2∑
j=1

(
J (0)

i j

[
Di, f (0)

j

]+ J (0)
i j

[
f (0)
i ,D j

]) = Di, (76)

− γi
∂

∂v
· VE i − γiTex

mi

∂2

∂v2
E i + ρ−1(γ2 − γ1)DU

1
∂ f (0)

i

∂V
−

2∑
j=1

(
J (0)

i j

[
E i, f (0)

j

]+ J (0)
i j

[
f (0)
i ,E j

]) = Ei. (77)

The explicit forms of the coefficients Ai, Bi j , Ci,λβ , Di, and
Ei are given by Eqs. (B11)–(B15), respectively. These coeffi-
cients are functions of V and the hydrodynamic fields.

When writing Eqs. (73), (74), and (77), use has been made
of the constitutive equation of the mass flux j(1)

1 to first order
in spatial gradients:

j(1)
i = −

2∑
j=1

miρ j

ρ
Di j∇ ln n j − ρDT

i ∇ ln T − DU
i �U. (78)

In Eq. (78), Di j are the mutual diffusion coefficients, DT
i

are the thermal diffusion coefficients, and DU
i are the ve-

locity diffusion coefficients. Since j(1)
1 = −j(1)

2 , then D21 =
−(m1/m2)D11, D22 = −(m1/m2)D12, DT

2 = −DT
1 , and DU

2 =
−DU

1 . In addition, the form of the first-order contribution ζ (1)

to the cooling rate has been also employed to obtain Eq. (76).
This coefficient can be written as

ζ (1) = ζU ∇ · U, (79)

where

ζU = ζ (1,0) + ζ (1,1). (80)

The coefficient ζ (1,0) is defined by Eq. (B8), while ζ (1,1) is a
functional of the unknowns Di. Its form is given by Eq. (B25).
Also, in Eq. (76), use has been made of the first-order contri-
bution to the partial temperatures T (1)

1 = −n2T (1)
2 /n1. Since

T (1)
i is a scalar, it is coupled to ∇ · U and has the form [17,21]

T (1)
i = �i∇ · U, (81)

where

�i = mi

dni

∫
dv V 2Di(V). (82)

The direct integration of Eqs. (B11)–(B15) for the functions
Ai, Bi j , Ci,λβ , Di, and Ei yields the following conditions:∫

dv(Ai, Bi j,Ci,λβ, Di, Ei ) = (0, 0, 0, 0, 0), (83)

2∑
i=1

∫
dvmiVμ

⎛⎜⎜⎜⎝
Ai,λ

Bi,λ

Ci,λβ

Di

Ei,λ

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
0
0
0

⎞⎟⎟⎟⎠, (84)

2∑
i=1

∫
dv

1

2
miV

2

⎛⎜⎝Ai

Bi

Di

Ei

⎞⎟⎠ =

⎛⎜⎝0
0
0
0

⎞⎟⎠, (85)

and

2∑
i=1

∫
dv

1

2
miV

2Ci,λβ

(
∂λUβ + ∂βUλ − 2

d
δλβ∇ · U

)
= 0.

(86)
Since Ai ∝ Ai, Bi j ∝ Bi j , Ci,λβ ∝ Ci,λβ , Di ∝ Di, and E i ∝
Ei, then the solubility conditions (59) and (60) are fulfilled,
and, so, there exist solutions to the integral equations (73)–
(76); this is the so-called Fredholm alternative [53].

V. NAVIER-STOKES TRANSPORT COEFFICIENTS

The forms of the constitutive equations for the irreversible
fluxes to first order in spatial gradients can be written using
simple symmetry arguments [18]. While the mass flux j(1)

i of
the component i is given by Eq. (78), the pressure tensor P(1)

λβ

has the form

P(1)
λβ = −η

(
∂λUβ + ∂βUλ − 2

d
δλβ∇ · U

)
− δλβηb∇ · U,

(87)
while the heat flux q(1) can be written as

q(1) = −
2∑

i=1

2∑
j=1

T 2Dq,i j∇ ln n j − T κ∇ ln T + κU �U.

(88)
In Eqs. (87)–(88), η is the shear viscosity coefficient, ηb is
the bulk viscosity coefficient, κ is the thermal conductivity
coefficient, κU is the velocity conductivity, and Dq,i j are the
partial contributions to the Dufour coefficients Dq,i defined
as [18]

Dq,i =
2∑

�=1

Dq,�i. (89)

The transport coefficients associated with the mass flux are
defined as

DT
i = − mi

dρ

∫
dv V · Ai(V), (90)

Di j = − ρ

dρ j

∫
dv V · Bi j (V), (91)

DU
i = −mi

d

∫
dv V · E i(V). (92)
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As said in Sec. II, in contrast to the mass flux, the pressure
tensor and heat flux have kinetic and collisional contributions.
To first order, their kinetic contributions are

Pk(1)
λβ =

2∑
i=1

∫
dv miVλVβ fi(V), (93)

qk(1) =
2∑

i=1

∫
dv

mi

2
V 2V fi(V). (94)

According to Eqs. (87) and (93), the kinetic contribution ηk

to the shear viscosity can be written as ηk =∑2
i=1 ηk

i , where
[18]

ηk
i = − 1

(d − 1)(d + 2)

∫
dv miVλVβCi,λβ (V). (95)

In the case of the heat flux, according to Eqs. (88) and (94),
the kinetic contribution Dk

q,i j to the Dufour coefficient is

Dk
q,i j = − 1

dT 2

∫
dv

1

2
miV

2V · Bi j (V), (96)

while the kinetic contributions κk and κk
U to the thermal and

velocity conductivity coefficients, respectively, can be written
as κk =∑2

i=1 κk
i and κk

U =∑2
i=1 κUk

i , where

κk
i = − 1

dT

∫
dv

1

2
miV

2V · Ai(V). (97)

κUk
i = − 1

d

∫
dv

1

2
miV

2V · E i(V). (98)

Collisional contributions to the pressure tensor and heat
flux can be obtained by expanding Eqs. (27) and (28) to
first order in spatial gradients. A careful analysis shows that
those collisional contributions are formally the same as those
obtained in the dry granular case [18,21–23]. In particular, the
bulk viscosity (which has only collisional contributions) can
be written as

ηb = η′
b + η′′

b, (99)

where

η′
b = π (d−1)/2

�
(

d+3
2

) d + 1

2d2

2∑
i=1

2∑
j=1

mi j (1 + αi j )χ
(0)
i j σ d+1

i j

×
∫

dv1

∫
dv2 f (0)

i (V1) f (0)
j (V2)g12 (100)

and

η′′
b = − πd/2

d�
(

d
2

) 2∑
i=1

2∑
j=1

μ ji(1 + αi j )χ
(0)
i j nin jσ

d
i j�i. (101)

The second contribution η′′
b to ηb was neglected in the pre-

vious works on granular mixtures [18,22,23] because it was
implicitly assumed that its contribution to the bulk viscos-
ity was quite small. On the other hand, this influence was
already accounted for in the pioneering studies on ordinary
(elastic collisions) hard-sphere mixtures [54–56] and has been
recently calculated [21] in the case of (dry) polydisperse dense
granular mixtures.

The collisional contribution ηc to the shear viscosity is

ηc = 2πd/2

d (d + 2)�
(

d
2

) 2∑
i=1

2∑
j=1

μi j (1 + αi j )χ
(0)
i j niσ

d
i jη

k
j

+ d

d + 2
η′

b. (102)

The expressions of the collisional contributions to the heat
flux transport coefficients are more intricate than that of ηb

and ηc. Their explicit forms can be found in Ref. [18].

VI. APPROXIMATE RESULTS: LEADING SONINE
APPROXIMATIONS

The evaluation of the complete set of transport coefficients
of the binary granular suspension is a quite long task. In this
paper, we will focus on our attention in obtaining the transport
coefficients associated with the mass flux (Di j , DT

i , and DU
i ),

the shear viscosity coefficient η, and the partial temperatures
T (1)

i . To determine them, one has to solve the set of coupled
linear integral equations (73)–(77) as well as to know the
forms of the zeroth-order distributions f (0)

i . With respect to
the latter, as noted in Sec. III, f (0)

i is well represented by the
Maxwellian velocity distribution function

f (0)
i (V) → fi,M(V) = ni

(
mi

2πT (0)
i

)d/2

exp

(
−miV 2

2T (0)
i

)
.

(103)
This means that we neglect here non-Gaussian corrections to
the distributions f (0)

i , and, hence, one expects to get simple
but accurate expressions for the transport coefficients. By
using the Maxwellian approximation (103), the collisional
contribution η′

b is

η′
b = π (d−1)/2

d2�
(

d
2

) v0

2∑
i=1

2∑
j=1

mi j (1 + αi j )χ
(0)
i j nin jσ

d+1
i j

×
(

βi + β j

βiβ j

)1/2

. (104)

Regarding the unknowns (Ai,Bi j, Ci,λβ,Di,E i ), as usual
we will expand them in a series expansion of orthogonal
polynomials (Sonine polynomials) [35], and we will truncate
this expansion by considering only the leading term (lowest
degree polynomial). In particular, the collisional contribution
η′′

b will be estimated later when we determine �i in the first
Sonine approximation.

A. Diffusion transport coefficients

In the case of the transport coefficients Di j , DT
i , and DU

i ,
the leading Sonine approximations to Ai, Bi j , and E i are,
respectively,

Ai(V) → − ρ

niTi
DT

i fi,M(V)V, (105)

Bi j (V) → − miρ j

ρniTi
Di j fi,M(V)V, (106)

E i(V) → − DU
i

niTi
fi,M(V)V. (107)
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In order to determine the above diffusion coefficients, we
substitute first Ai, Bi j , and E i by their leading Sonine approx-
imations (105)–(107) in Eqs. (73), (74), and (77), respectively.
Then we multiply these equations by miV and integrate over
velocity. The final forms of the set of algebraic equations
defining the transport coefficients DT

i , Di j , and DU
i are given

by Eqs. (C1)–(C3) in Appendix C.
The solution to the set of Eqs. (C1)–(C3) provides the de-

pendence of the (relevant) diffusion coefficients D11, D12, DT
1 ,

and DU
1 on the coefficients of restitution αi j , the concentration

x1, the solid volume fraction φ, the masses and diameters of
the constituents of the mixture, and the (reduced) background
temperature T ∗

ex. In particular, the expression of DU
1 is

DU
1 = ρ1ρ2

γ1 − γ2

ρνD + ρ1γ2 + ρ2γ1
, (108)

where νD is defined by Eq. (C11). The explicit form of the
thermal diffusion coefficient DT

1 is given by Eq. (C10). The
expressions of D11 and D12 can be obtained by solving the set
of Eqs. (C2). Their forms are very large and will be omitted
here for the sake of simplicity.

Equations (108) and (C10) show that DU
1 and DT

1 are
antisymmetric with respect to the change 1 ↔ 2 as expected.
This can be easily verified since x1τ1 + x2τ2 = 1, �θ,1 =
−(x2/x1)�θ,2 and

∂ p∗

∂θ
= πd/2

d�
(

d
2

) 2∑
i=1

2∑
j=1

μ jixin jσ
d
i jχ

(0)
i j �θ,i(1 + αi j ), (109)

where p∗ ≡ p/(nT ) is the reduced hydrostatic pressure. Fur-
thermore, in the case of mechanically equivalent particles
(m1 = m2, σ1 = σ2, χ

(0)
i j = χ (0), and αi j = α), Eqs. (C2)

and (C10) yield x1D∗
11 + x2D∗

12 = 0 and DT ∗
1 = 0, as ex-

pected. Here we have introduced the scaled coefficients D∗
i j ≡

Di j (α)/Di j (1) and DT ∗
1 ≡ DT

1 (α)/DT
1 (1) where Di j (1) and

DT
1 (1) refer to the values of Di j and DT

1 , respectively, for elas-
tic collisions. The above relations confirm the self-consistency
of the expressions for the diffusion coefficients reported in this
paper.

B. Shear viscosity coefficient

The kinetic contribution to the shear viscosity ηk = ηk
1 +

ηk
2, where the partial contributions ηk

i are defined by Eq. (95).
To determine the kinetic coefficients ηk

i , the function Ci,λβ (V)
is estimated by its leading Sonine approximation

Ci,λβ (V) → − fi,M(V)Ri,λβ (V)
ηk

i

niT
(0)

i
2 , (110)

where

Ri,λβ (V) = mi

(
VλVβ − 1

d
δλβV 2

)
. (111)

As in the case of the diffusion coefficients, the partial
contributions ηk

i are obtained by substituting Eq. (110) into the
integral equation (75), multiplying it by Ri,λβ , and integrating
over the velocity. After some algebra, one achieves the set
of algebraic equations (C12). The solution to the set (C12)
provides the partial contributions ηk

i . Their sum then gives the
kinetic coefficient ηk. Finally, by adding this to the collisional
contribution (102) we have the total shear viscosity.

C. First-order contributions to the partial temperatures

Finally, we consider the first-order contribution T (1)
i to the

partial temperature Ti. This coefficient is defined by Eqs. (81)
and (82). As said before, the coefficients T (1)

i (i = 1, 2) have
been recently determined for dry granular mixtures [21]. To
determine �i, we consider the leading Sonine approximation
to Di(V) given by

Di(V) → fiM(V)Wi(V)
�i

T (0)
i

, Wi(V) = miV 2

2T (0)
i

− d

2
. (112)

The coefficients �i are coupled with the coefficients ζ (1,1)

through Eq. (B25). The explicit relation between ζ (1,1) and
�i can be easily obtained by substitution of Eq. (112) into
Eq. (B25), with the result

ζ (1,1) =
2∑

i=1

ξi�i, (113)

where

ξi = 3π (d−1)/2

2d�
(

d
2

) v3
0

nT T (0)
i

2∑
j=1

nin jσ
d−1
i j χ

(0)
i j mi j

(
1 − α2

i j

)
× (βi + β j )

1/2β
−3/2
i β

−1/2
j . (114)

As usual, in order to obtain the coefficients �i, one
substitutes first Eq. (112) into Eq. (76) and then multiplies
it with miV 2 and integrates over the velocity. After some
algebra, one gets the set of coupled equations (C18). A
careful inspection to the set of Eqs. (C18) shows that �1 =
−(x2/x1)�2 as the solubility condition (60) requires. This
is because x1τ1 + x2τ2 = 1, �θ,2 = −(x2/x1)�θ,1, and ω11 −
(x1/x2)ω12 + T ξ1/x1 = ω22−(x2/x1)ω21 + T ξ2/x2. The con-
dition x1�1 + x2�2 = 0 guarantees that the temperature T is
not affected by the spatial gradients.

The solution to Eq. (C18) gives �1 in terms of the param-
eters of the mixture. On the other hand, its explicit form is
relatively long and is omitted here for the sake of brevity. A
simple but interesting case corresponds to elastic collisions
(molecular or ordinary suspensions) where ξi = 0, τi = 1,
β1 = 2μ12, β2 = 2μ21, �θ,i = �x1,i = �λ1,i = �φ,i = 0, and
so �1 is simply given by

�1 = 4πd/2

d2�
(

d
2

)T
n2σ

d
12χ

(0)
12 (x2μ21 − x1μ12) + 1

2 x2
(
n1σ

d
1 χ

(0)
11 − n2σ

d
2 χ

(0)
22

)
ω11 − x1

x2
ω12 − 2(x2γ1 + x1γ2)

. (115)

Equation (115) is consistent with the one derived many years ago by Karkheck and Stell [55] for ordinary hard-sphere mixtures
(γ1 = γ2 = 0).
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Once the first-order contributions to the partial tempera-
tures are known, the first-order contribution ζU to the cooling
rate can be explicitly obtained from Eqs. (80), (B8), and (113).
In addition, the contribution η′′

b to the bulk viscosity ηb can
be obtained from Eq. (101), and, hence, the bulk viscosity is
completely determined by Eqs. (101) and (104).

VII. SOME ILLUSTRATIVE SYSTEMS

The results derived in Sec. VI for the diffusion transport
coefficients, the shear and bulk viscosities, and the first-order
contributions to the partial temperatures and the cooling rate
depend on the background temperature Tex, the concentration
x1, the density or volume fraction φ, and the mechanical pa-
rameters of the binary mixture (masses, diameters, and coef-
ficients of restitution). As in our previous paper [10] on dilute
granular suspensions, given that the new relevant feature is
the dependence of the transport coefficients on inelasticity, we
scale these coefficients with respect to their values for elastic
collisions. Thus, the scaled transport coefficients depend on
the parameter space: {T ∗

ex, x1, m1/m2, σ1/σ2, φ, α11, α22, α12}.
Moreover, for the sake of simplicity, the case of a com-
mon coefficient of restitution (α11 = α22 = α12 ≡ α) of an
equimolar hard-sphere mixture (x1 = 1

2 and d = 3) with a
background temperature T ∗

ex = 0.1 is considered. This reduces
the parameter space to four quantities: {m1/m2, σ1/σ2, φ, α}.

To display the dependence of the transport coefficients on
the coefficient of restitution, we have to provide the form for
the pair distribution function χ

(0)
i j . In the case of spheres (d =

3), a good approximation of χ
(0)
i j is [57–59]

χ
(0)
i j = 1

1 − φ
+ 3

2

φ

(1 − φ)2

σiσ jM2

σi jM3

+ 1

2

φ2

(1 − φ)3

(
σiσ jM2

σi jM3

)2

, (116)

where M� =∑i xiσ
�
i . In addition, the functions Ri are defined

by Eq. (11).
Figure 3 shows the α dependence of the reduced diffusion

coefficients D∗
i j , DT ∗

1 , and DU∗
1 for m1/m2 = 4, σ1/σ2 = 1,

and φ = 0.1. We recall that D∗
i j ≡ Di j (α)/Di j (1), DT ∗

1 ≡
DT

1 (α)/DT
1 (1), and DU∗

1 ≡ DU
1 (α)/DU

1 (1), where Di j (1),
DU

1 (1), and DT
1 (1) are the values of the diffusion transport

coefficients for elastic collisions. It is quite apparent first
that the effect of inelasticity on diffusion coefficients is in
general significant since the forms of the scaled coefficients
D∗

i j , DU∗
1 , and DT ∗

1 differ clearly from their elastic counter-
parts. This is especially relevant in the case of the thermal
diffusion coefficient DT ∗

1 . In addition, a comparison with the
results obtained for dry granular mixtures (see, for instance,
Figs. 5.5, 5.6, and 5.7 of Ref. [18] for the same mixture
parameters) reveals significant differences between dry (no
gas phase) and gas-solid flows when grains are mechanically
different. Thus, while D∗

11 and D∗
12 increase with inelasticity

for dry granular mixtures, the opposite happens for granular
suspensions since they decrease as increasing inelasticity. The
qualitative α dependence of DT ∗

1 is similar in both dry and
gas-solid flows, although the influence of inelasticity on DT ∗

1
is much more important in the latter case.

FIG. 3. Plot of the (reduced) diffusion coefficients DT ∗
1 (a), DU∗

1

(b), D∗
11 (c), and D∗

12 (d) as a function of the common coefficient
of restitution α for an equimolar mixture (x1 = 1

2 ) of hard spheres
(d = 3) with σ1/σ2 = 1, m1/m2 = 4, φ = 0.2, and T ∗

ex = 0.1.

We consider now the (reduced) shear viscosity η∗ ≡
η(α)/η(1). Figure 4 shows η∗ versus α for σ1/σ2 = 1, φ =
0.2 and two different values of the mass ratio. As with the
diffusion coefficients, the effect of inelasticity on the shear
viscosity is again significant since the inelasticity hinders the
transport of momentum. Regarding the comparison with dry
granular mixtures, we find qualitative differences since both
theory [24,39,60,61] and simulations [18,62] have shown that
while for relatively dilute dry granular gases η∗ increases with
inelasticity, the opposite occurs for sufficiently dense granular
mixtures. This nonmonotonic behavior with density contrasts
with the results obtained here for multicomponent granular

FIG. 4. Plot of the (reduced) shear viscosity coefficient
η(α)/η(1) as a function of the common coefficient of restitution
α for an equimolar mixture (x1 = 1

2 ) of hard spheres (d = 3) with
σ1/σ2 = 1, φ = 0.2, and T ∗

ex = 0.1. Two different values of the mass
ratio are considered: m1/m2 = 0.5 (a) and m1/m2 = 4 (b).
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FIG. 5. Plot of the (reduced) coefficient � ∗
1 as a function of the

common coefficient of restitution α for an equimolar mixture (x1 =
1
2 ) of hard spheres (d = 3) with σ1/σ2 = 1, φ = 0.2, and T ∗

ex = 0.1.
Three different values of the mass ratio are considered: m1/m2 = 0.5
(a), m1/m2 = 4 (b), and m1/m2 = 10 (c).

suspensions since the scaled coefficient η∗ always decreases
with increasing inelasticity regardless of the value of the solid
volume fraction φ. With respect to the influence of the mass
ratio on the shear viscosity, we see that its impact on η∗
is relatively small. In particular, at a given value of α, η∗
decreases with decreasing the mass ratio m1/m2.

An interesting quantity is the first-order contribution �1

to the partial temperature T1. The reduced coefficient � ∗
1 ≡

(nσ 2
12v0/T )�1 is plotted in Fig. 5 as a function of α for

σ1/σ2 = 1, φ = 0.2, and three different values of the mass
ratio. We observe that the influence of inelasticity on � ∗

1 is
important, especially for high mass ratios. However, Fig. 5
highlights that the magnitude of � ∗

1 is much smaller than
the other transport coefficients, and, hence, the impact of
the first-order contribution T (1)

1 on both the bulk viscosity ηb

(through the coefficient η′′
b) and the first-order contribution ζU

(through the coefficient ζ (1,1)) to the cooling rate is expected
to be small. This is confirmed by Figs. 6 and 7 for the
reduced coefficients ηb(α)/ηb(1) and ζU , respectively. It is
quite apparent that the theoretical predictions for the above
coefficients with and without the contribution of � ∗

1 are prac-
tically identical, especially in the case of the bulk viscosity. As
with the shear viscosity coefficient, we also see that the bulk
viscosity decreases with increasing inelasticity (independent
of the mass ratio considered). Moreover, as for dry granular
mixtures [21], the coefficient ζU is always negative, and its
magnitude increases with inelasticity.

In summary, the mass and momentum transport coeffi-
cients for a multicomponent granular suspension differ signif-
icantly from those for dry granular mixtures. In most of cases,
the differences become greater with increasing inelasticity,
and depending on the cases, there is a relevant influence of
the mass ratio.

VIII. DISCUSSION

This paper has been focused on the determination of
the Navier-Stokes transport coefficients of a binary granular

FIG. 6. Plot of the (reduced) bulk viscosity coefficient
ηb(α)/ηb(1) as a function of the common coefficient of restitution
α for an equimolar mixture (x1 = 1

2 ) of hard spheres (d = 3) with
σ1/σ2 = 1, φ = 0.2, and T ∗

ex = 0.1. Two different values of the mass
ratio are considered: m1/m2 = 0.5 (a) and m1/m2 = 10 (b). The
dashed lines are the results for the (reduced) bulk viscosity when the
contribution η′′

b to ηb is neglected.

suspension at moderate densities. The starting point of our
study has been the set of Enskog kinetic equations for the
velocity distribution functions fi(r, v, t ) of the solid parti-
cles. The effect of the gas phase on the solid particles has
been accounted for by an effective force constituted by two
terms: a viscous drag force proportional to the velocity of the
particles and a stochastic Langevin-like term. Therefore, we
have considered a simplified model where the effect of the
interstitial gas on grains is explicitly accounted for but the

FIG. 7. Plot of the magnitude of the (reduced) coefficient ζU as a
function of the common coefficient of restitution α for an equimolar
mixture (x1 = 1

2 ) of hard spheres (d = 3) with σ1/σ2 = 1, φ = 0.2,
and T ∗

ex = 0.1. Two different values of the mass ratio are considered:
m1/m2 = 0.5 (a) and m1/m2 = 10 (b). The dashed lines are the
results for the coefficient ζU when the contribution ζ (1,1) to ζU is
neglected.
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state of the surrounding gas is assumed to be independent of
the solid particles. On the other hand, this model is inspired
in numerical and experimental results that can be found in the
granular literature [29]. This fact is reflected in the functional
dependence of the friction coefficients γi on both the partial φi

and global φ = φ1 + φ2 volume fractions and the mechanical
properties of grains (masses mi and diameters σi).

We have derived the Navier-Stokes hydrodynamic equa-
tions in two steps. First, the macroscopic balance equations
(20)–(22) have been obtained from the Enskog equation (1).
Particularly, these equations include terms that account for the
impact of the gas phase on grains, and the kinetic and colli-
sional contributions to the fluxes are expressed as functionals
of the velocity distribution functions fi. Second, the mass,
momentum, and heat fluxes, together with the cooling rate ap-
pearing in the hydrodynamic equations, have been evaluated
by solving the Enskog equation by means of the Chapman-
Enskog method up to first order in the spatial gradients. The
constitutive equation for the mass flux is given by Eq. (78)
where the diffusion coefficients DT

i , Di j , and DU
i are defined

by Eqs. (90)–(92), respectively. The pressure tensor is given
by Eq. (87), where the bulk viscosity ηb is defined by Eq. (99)
and the shear viscosity η is defined by Eqs. (95) (kinetic
contribution) and (102) (collisional contribution). Finally, the
constitutive equation for the heat flux is given by Eq. (88)
where the kinetic contributions to the Dufour coefficients
Dq,i j , the thermal conductivity κ , and the velocity conductivity
κU are given by Eqs. (96), (97), and (98), respectively. Within
the context of small gradients, all the above results apply in
principle to an arbitrary degree of inelasticity and are not
restricted to specific values of the parameters of the mixture.
The present work extends to moderate densities a previous
analysis carried out for dilute bidisperse granular suspensions
[10,17].

Before considering inhomogeneous situations, the homo-
geneous steady state has been studied. In this state, the distri-
butions fi,s adopt the form (43) where the scaled distributions
ϕi,s depend on the steady temperature Ts through the dimen-
sionless velocity c = v/v0(Ts) and the (scaled) temperature
θ = Ts/Tex. This scaling differs from the one assumed for
dry granular mixtures [36] where the temperature dependence
of ϕi is encoded only through the dimensionless velocity c.
Although the exact form of the distributions ϕi,s is not known,
in order to estimate the partial temperatures Ti,s/Tex, the
distributions ϕi,s have been approximated by the Maxwellian
distributions (47). This has allowed us to explicitly get the
partial temperatures in terms of the parameters of the mixture.
In spite of the crudeness of the above approximation, the
theoretical predictions for T1,s/T2,s agree well with MD sim-
ulations, especially for moderately dense systems. The good-
ness of the comparison supports the use of the Maxwellian
approximation (47) in the evaluation of the transport coeffi-
cients. However, we find some discrepancies between theory
and simulations that could be mitigated if one would consider
the influence of the fourth cumulants on the distributions
ϕi,s. We plan to calculate these cumulants in the near future
and perform more simulations to assess the reliability of the
Enskog theoretical predictions for homogeneous steady states.

Once the steady reference state is well characterized, the
diffusion coefficients, the bulk and shear viscosities, and

the first-order contributions to the partial temperatures and
the cooling rate have been determined. As usual, in order to
achieve explicit expressions for the above transport coeffi-
cients, the leading terms in a Sonine polynomial expansion
have been considered. The explicit forms of the transport
coefficients have been displayed in Sec. VI and Appendix C:
the coefficients D11 and D12 are the solutions of the algebraic
equations (C2), the coefficients DU

1 and DT
1 are given by

Eqs. (108) and (C10), respectively, the shear viscosity η and
the first-order coefficients �i are the solutions of Eqs. (C12)
and (C18), respectively, and the first-order contribution ζU =
ζ (1,0) + ζ (1,1) to the cooling rate is given by Eqs. (B8), (113),
and (114). An interesting point is that not only are these
coefficients defined in terms of the hydrodynamic fields in
the steady state, but, in addition, there are contributions to
the transport coefficients coming from the derivatives of the
temperature ratio in the vicinity of the steady state. These con-
tributions can be seen as a measure of the departure of the per-
turbed state from the steady reference state. The inclusion of
the above derivatives introduces conceptual and practical diffi-
culties not present in the case of dry granular mixtures [22,23].

In reduced forms, the diffusion transport coefficients and
the shear viscosity coefficient of the granular suspension
exhibit a complex dependence on the parameter space of
the problem. In particular, Fig. 3 highlights the significant
impact of the gas phase on the mass transport since the α

dependence of the Navier-Stokes transport coefficients DT
1 ,

DU
1 , and Di j is in general different from the one found in

the case of dry granular mixtures [18]. Regarding the shear
viscosity coefficient η, a comparison with the dry granular
results [18] shows a qualitative agreement between dry and
granular suspensions for not quite high densities, although
important quantitative differences are found. Apart from these
coefficients, the first-order contributions �i to the partial
temperatures Ti have been also computed. The evaluation of
these coefficients is interesting by itself and also because they
are involved in the calculation of both the bulk viscosity ηb

and the first-order contribution ζU to the cooling rate. The
results obtained here show that the magnitude of �1 is in
general very small (in fact, much smaller than the one recently
found [21] in the absence of gas phase), and hence, its impact
on ηb and ζU is very tiny (see Figs. 6 and 7). This conclusion
contrasts with recent findings for dry granular mixtures [21]
where the influence of �1 on both the bulk viscosity and the
cooling rate must be taken into account for strong inelasticities
and disparate masses.

In a subsequent paper, we plan to determine the heat flux
transport coefficients and to perform a linear stability analysis
of the homogeneous steady state as a possible application. In
particular, given that the homogeneous steady state is stable
in the dilute limit, we want to see if the density corrections to
the transport coefficients can modify the stability of the above
homogeneous state. In addition, it is also quite apparent that
the reliability of the theoretical results derived here (which
have been obtained under certain approximations) should be
assessed against computer simulations. As happens for dry
granular mixtures [40,48,63–68], we expect that the present
results stimulate the performance of appropriate simulations
for bidisperse granular suspensions. In particular, we plan to
undertake simulations to obtain the tracer diffusion coefficient
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(namely, a binary mixture where the concentration of one
of the components is negligible) in a similar way as in the
case of granular mixtures [40,63,67]. Moreover, we also plan
to carry out simulations to measure the Navier-Stokes shear
viscosity η by studying the decay of a small perturbation to
the transversal component of the velocity field [69]. Another
possible project for the next future is to consider inelastic
rough hard spheres in order to assess the impact of friction
on the transport properties of the granular suspension. Studies
along these lines will be worked out in the near future.
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APPENDIX A: DERIVATIVES OF THE TEMPERATURE
RATIO IN THE VICINITY OF THE STEADY STATE

In this Appendix, the derivatives of the temperature ratio
τ1 = T (0)

1 /T with respect to θ , λ1, x1, and φ in the vicinity of
the steady state are evaluated.

Let us consider first the derivative (∂τ1/∂θ )x1,λ1,φ . To get
it, we consider Eq. (69) for i = 1:

�∗θ
∂τ1

∂θ
= −τ1�

∗ + �∗
1, (A1)

where �∗ and �∗
1 are defined by Eqs. (70) and (71), respec-

tively. According to Eq. (48), the (reduced) partial cooling rate
ζ ∗

1,0 can be written as

ζ ∗
1,0 = τ

1/2
1 M−1/2

1 ζ ′
1(x1, β ), (A2)

where β = β1/β2 = m1τ2/(m2τ1), τ2 = (1 − x1τ1)/x2, and

ζ ′
1(x1, β ) =

√
2π (d−1)/2

d�
(

d
2

) x1χ
(0)
11

(
σ1

σ12

)d−1(
1 − α2

11

)
+ 4π (d−1)/2

d�
(

d
2

) x2χ
(0)
12 μ21(1 + β )1/2(1 + α12)

×
[

1 − μ21

2
(1 + α12)(1 + β )

]
. (A3)

At the steady state, �∗ = �∗
1 = �∗

2 = 0, and hence, according
to Eq. (A1), the derivative ∂τ1/∂θ becomes indeterminate.
On the other hand, as for dilute multicomponent granular
suspensions [10], the above problem can be fixed by applying
l’Hôpital’s rule. In this case, we take first the derivative with
respect to θ in both sides of Eq. (A1) and then take the
steady-state limit. After some algebra, one easily achieves
the following quadratic equation for the derivative �θ,1 =
(∂τ1/∂θ )s:

θ�
(θ )
1 �2

θ,1 + (θ�
(θ )
0 + τ1�

(θ )
1 − �

(θ )
11

)
�θ,1 − �

(θ )
10

+ τ1�
(θ )
0 = 0, (A4)

where �
(θ )
0 = x1�

(θ )
10 + x2�

(θ )
20 and �

(θ )
1 = x1�

(θ )
11 + x2�

(θ )
21 .

Here we have introduced the quantities

�
(θ )
10 = γ ∗

1 θ−1τ1 − 3γ ∗
1 θ−2, �

(θ )
20 = γ ∗

2 θ−1τ2 − 3γ ∗
2 θ−2,

(A5)

�
(θ )
11 = −2γ ∗

1 − 3

2
ζ ∗

10 + τ
−1/2
1

M1/2
1

x2M2

(
∂ζ ′

1

∂β

)
x1,φ

, (A6)

�
(θ )
21 = 2

x1

x2
γ ∗

2 + 3

2

x1

x2
ζ ∗

20 + M1

x2M3/2
2

τ
3/2
2

τ 2
1

(
∂ζ ′

2

∂β

)
x1,φ

. (A7)

In Eqs. (A4)–(A7), although the subscript s has been omitted
for the sake of simplicity, it is understood that all the quantities
are evaluated in the steady state. As for dilute driven granular
mixtures [10], an analysis of the solutions to Eq. (A4) shows
that in general one of the roots leads to unphysical behavior
of the diffusion coefficients. We take the other root as the
physical root of the quadratic equation (A4).

Once the derivative �θ,1 is known, we can determine
the remaining derivatives in a similar way. In order to get
(∂τ1/∂λ1)θ,x1,φ , we take first the derivative of Eq. (A1) with
respect to λ1 and then consider the steady-state conditions.
The final result is

�λ1,1 = −τ1�
(λ1 )
0 − �

(λ1 )
10 + θ�

(λ1 )
0 �θ,1

θ�
(θ )
1 �θ,1 + τ1�

(θ )
1 − �

(θ )
11

, (A8)

where �
(λ1 )
0 = x1�

(λ1 )
10 + x2�

(λ1 )
20 , and

�
(λ1 )
10 = 2θ−1/2(θ−1 − τ1),

�
(λ1 )
20 = 2

R2

R1
θ−1/2(θ−1 − τ2). (A9)

Analogously, the derivative (∂τ1/∂x1)θ,λ1,φ in the steady
state is

�x1,1 = −τ1�
(x1 )
0 − �

(x1 )
10 + θ�

(x1 )
0 �θ,1

θ�
(θ )
1 �θ,1 + τ1�

(θ )
1 − �

(θ )
11

, (A10)

where �
(x1 )
0 = x1�

(x1 )
10 + x2�

(x1 )
20 , and

�
(x1 )
10 = −τ

3/2
1 M−1/2

1

(
∂ζ ′

1

∂x1

)
β,φ

, (A11)

�
(x1 )
20 = 2

γ ∗
1

x2
(θ−1 − τ1) − 2

γ ∗
2

x2
(θ−1 − τ2)

− 1 − τ1

x2
2

γ ∗
2 + 3

2

τ1 − τ2
3

x2
ζ ∗

2,0 − τ1

x2
ζ ∗

1,0

−τ
3/2
2 M−1/2

2

(
∂ζ ′

2

∂x1

)
β,φ

. (A12)

Finally, in the steady state, the derivative (∂τ1/∂φ)θ,x1,λ1 is

�φ,1 = −τ1�
(φ)
0 − �

(φ)
10 + θ�

(φ)
0 �θ,1

θ�
(θ )
1 �θ,1 + τ1�

(θ )
1 − �

(θ )
11

, (A13)

where �
(φ)
0 = x1�

(φ)
10 + x2�

(φ)
20 , and

�
(φ)
10 = −τ

3/2
1 M−1/2

1

(
∂ζ ′

1

∂φ

)
x1,β

, (A14)

�
(φ)
20 = −τ

3/2
2 M−1/2

2

(
∂ζ ′

2

∂φ

)
x1,β

. (A15)
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APPENDIX B: SOME TECHNICAL DETAILS ABOUT THE FIRST-ORDER CHAPMAN-ENSKOG SOLUTION

To first order in the spatial gradients, the distribution function f (1)
i obeys the Enskog kinetic equation

∂
(0)
t f (1)

i − γi
∂

∂v
· V f (1)

i − γiTex

mi

∂2 f (1)
i

∂v2
= −(D(1)

t + V · ∇) f (0)
i + γi�U · ∂ f (0)

i

∂v
− g · ∂ f (0)

i

∂v
+

2∑
j=1

J (1)
i j [ fi, f j], (B1)

where D(1)
t ≡ ∂

(1)
t + U · ∇ and J (1)

i j [ fi, f j] denotes the first-order contribution to the expansion of the Enskog collision operator

in spatial gradients. To obtain J (1)
i j [ fi, f j] one needs the expansions [18,22]

χi j (r, r ± σ i j |{n�}) →
2∑

�=1

χ
(0)
i j

[
1 ± 1

2

(
n�

∂ ln χ
(0)
i j

∂n�

+ Ii j�

)
σ i j · ∇ ln n�

]
, (B2)

f (0)
j (r ± σ i j ) →

2∑
�=1

n�

∂ f (0)
j

∂n�

σ i j · ∇ ln n� − ∂ f (0)
j

∂Vβ

(σ i j · ∇)Uβ + T
∂ f (0)

j

∂T
σ i j · ∇ ln T . (B3)

In Eq. (B3) the quantities Ii j� are defined in terms of the functional derivative of the (local) pair distribution function χi j with
respect to the (local) partial densities n�. These quantities are the origin of the primary difference between the so-called standard
and revised Enskog kinetic theories for ordinary mixtures [56,70]. The explicit forms of Ii j� for a binary mixture of hard disks
(d = 2) or spheres (d = 3) have been provided in Appendix A of Ref. [71]. Taking into account the expansions (B2) and (B3),
the operator J (1)

i j [ fi, f j] can be written as

2∑
j=1

J (1)
i j [ fi, f j] → −

2∑
j=1

2∑
�=1

{
Ki j

[
n�

∂ f (0)
j

∂n�

]
+ 1

2

(
n�

∂ ln χ
(0)
i j

∂n�

+ Ii j�

)
Ki j
[

f (0)
j

]} · ∇ ln n�

−
2∑

j=1

Ki j

[
T

∂ f (0)
j

∂T

]
· ∇ ln T + 1

2

2∑
j=1

Ki j,λ

[
∂ f (0)

j

∂Vβ

](
∂λUβ + ∂βUλ − 2

d
δλβ∇ · U

)

+ 1

d

2∑
j=1

Ki j,λ

[
∂ f (0)

j

∂Vλ

]
∇ · U +

2∑
j=1

(
J (0)

i j

[
f (1)
i , f (0)

j

]+ J (0)
i j

[
f (0)
i , f (1)

j

])
, (B4)

where the operator Ki j[Xj] is given by [18,22]

Ki j[Xj] = σ d
i jχ

(0)
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12 )̂σ

[
α−2

i j f (0)
i (v′′

1 )Xj (v′′
2 ) + f (0)

i (v1)Xj (v2)
]
. (B5)

As for monocomponent granular suspensions [14], upon deriving Eq. (B4) use has been made of the symmetry property
Ki j,λ[∂Vβ

f (0)
j ] = Ki j,β [∂Vλ

f (0)
j ], which follows from the isotropy in velocity space of the zeroth-order distributions f (0)

i .
To first order, the balance equations are

D(1)
t ni = −ni∇ · U, D(1)

t U = −ρ−1∇p − �U
2∑

i=1

ρi

ρ
γi + g + ρ−1(γ1 − γ2)j(1)

1 , (B6)

D(1)
t T = −2p

dn
∇ · U − ζ (1)T − 2

2∑
i=1

γixiT
(1)

i . (B7)

Here p is given by Eq. (64), and ζ (1) is the first-order contribution to the cooling rate. Since ζ (1) is a scalar, corrections to
first order in the gradients can arise only from ∇ · U since ∇ni and ∇T are vectors and the tensor ∂λUβ + ∂βUλ − 2

d δλβ∇ · U
is a traceless tensor. Thus, ζ (1) = ζU ∇ · U, where ζU can be decomposed as ζU = ζ (1,0) + ζ (1,1). The coefficient ζ (1,0) can be
evaluated explicitly with the result [23]

ζ (1,0) = − 3

nT

πd/2

d2�
(

d
2

) 2∑
i=1

2∑
j=1

nin jμ jiσ
d
i jχ

(0)
i j T (0)

i

(
1 − α2

i j

)
. (B8)
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On the other hand, the coefficient ζ (1,1) is given in terms of the first-order distributions f (1)
i . Its expression will be displayed later.

In addition, according to Eq. (64), ∇p can be written as

∇p =
2∑

i=1

ni
∂ p

∂ni
∇ ln ni + p

(
1 + θ

∂ ln p∗

∂θ

)
∇ ln T, (B9)

where we recall that p∗ = p/nT .
The right-hand side of Eq. (B1) can be evaluated by using Eqs. (B6)–(B9) and the expansion (B4) of the Enskog operator.

With these results, the corresponding kinetic equation for f (1)
i reads

∂
(0)
t f (1)

i − γi
∂

∂v
· V f (1)

i − γiTex

mi

∂2 f (1)
i

∂v2
−
⎛⎝T ζ (1,1) + 2
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j=1

x jγ j� j

⎞⎠∂ f (0)
i

∂T
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1 · ∂ f (0)
i

∂V

−
2∑
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(
J (0)

i j

[
f (1)
i , f (0)

j

]+ J (0)
i j

[
f (0)
i , f (1)

j

]) = Ai · ∇ ln T +
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Bi j · ∇ ln n j + Ci,λβ

1

2

(
∂λUβ + ∂βUλ − 2

d
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)
+ Di∇ · U + Ei · �U, (B10)

where

Ai(V) = −VT
∂ f (0)

i
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∂ ln p∗
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)
∂ f (0)
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, (B11)

Bi j (V) = −Vn j
∂ f (0)

i

∂n j
− n j

ρ

∂ p

∂n j

∂ f (0)
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−
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f (0)
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, (B12)

Ci,βλ(V) = Vλ

∂ f (0)
i

∂Vβ

+
2∑

j=1

Ki j,λ

[
∂ f (0)

j

∂Vβ

]
, (B13)

Di(V) = 1

d

∂
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· (V f (0)

i

)+
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ζ (1,0) + 2

d
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)

T
∂ f (0)
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− f (0)

i +
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{
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∂ f (0)
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[
∂ f (0)

j

∂Vλ
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, (B14)

Ei(V) =
⎛⎝γi −

2∑
j=1

ρ j

ρ
γ j

⎞⎠∂ f (0)
i

∂V
. (B15)

Note that in Eq. (B10), ζ
(1)
1 and �i are functionals of the first-order distributions f (1)

i . In Eq. (B12) the derivative ∂ f (0)
i /∂n j can

be more explicitly written when one takes into account the scaling solution (43):

n j
∂ f (0)

i

∂n j
= δi j f (0)

j + n j f (0)
i

(
∂ ln ϕi

∂x1

∂x1

∂n j
+ ∂ ln ϕi

∂λ1

∂λ1

∂n j
+ ∂ ln ϕi

∂φ

∂φ

∂n j

)
, (B16)

where

n j
∂x1

∂n j
= x j (x2δ1 j − x1δ2 j ), n j

∂φ

∂n j
= φ j, (B17)

n j
∂λ1

∂n j
= λ1

(
φ j

∂ ln R1

∂φ
+ ∂ ln R1

∂x1
n j

∂x1

∂n j

)
− λ1x j − λ1

ρ j

ρ
. (B18)

The solution to Eq. (B10) is given by Eq. (72). Because of the gradients ∇ni, ∇T , and ∇ · U as well as the traceless tensor
∂λUβ + ∂βUλ − 2

d δλβ∇ · U are all independents, substitution of the form (72) into Eq. (B10) leads to the following set of linear
integral equations for the unknowns Ai(V), Bi j (V), Ci,λβ (V), and Di(V):

�(0)T ∂TAi −
⎡⎣2

2∑
j=1

γ jx j

(
θ−1 + θ

∂τ j

∂θ
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2
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∂
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· VAi − γiTex

mi

∂2

∂v2
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∂ f (0)
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−
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j=1

(
J (0)

i j

[
Ai, f (0)

j

]+ J (0)
i j

[
f (0)
i ,A j

]) = Ai, (B19)
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�(0)T ∂TBi j − γi
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mi

∂2

∂v2
E i + ρ−1(γ2 − γ1)DU

1
∂ f (0)

i

∂V
−

2∑
j=1

(
J (0)

i j

[
E i, f (0)

j

]+ J (0)
i j

[
f (0)
i ,E j

]) = Ei, (B23)

where �(0) is defined by Eq. (66). Upon deriving the above integral equations use has been made of the constitutive equation
(78) for the mass flux j(1)

1 and the result

∂
(0)
t ∇ ln T = ∇∂

(0)
t ln T = ∇

(
2

2∑
i=1

γixi(θ
−1 − τi ) − ζ (0)

)

= −
2∑

j=1

(
n j

∂ζ (0)

∂n j
− 2n j

2∑
�=1

{
γ�x�

[
(θ−1 − τ�)

(
∂ ln γ�

∂n j
+ ∂ ln x�

∂n j

)
−
(

∂τ�

∂x1

∂x1

∂n j
+ ∂τ�

∂λ1

∂λ1

∂n j
+ ∂τ�

∂φ

∂φ

∂n j

)]})
∇ ln n j

−
[

2
2∑

i=1

γixi

(
θ−1 + θ

∂τi

∂θ

)
+ 1

2
ζ (0) + ζ (0)θ

∂ ln ζ ∗
0

∂θ

]
∇ ln T . (B24)

Moreover, since ζ (1,1) is coupled to Di, its explicit form can be easily identified after expanding the expression (30) of the cooling
rate to first order. The result is [23]

ζ (1,1) = 1

nT

π (d−1)/2

d�
(

d+3
2

) 2∑
i=1

2∑
j=1

σ d−1
i j χ

(0)
i j mi j

(
1 − α2

i j

) ∫
dv1

∫
dv2 g3

12 f (0)
i (V1)D j (V2). (B25)

The integral equations (73)–(76) can be obtained from Eqs. (B19)–(B22) when the steady-state condition (�(0) = 0) is assumed.

APPENDIX C: ALGEBRAIC EQUATIONS DEFINING THE TRANSPORT COEFFICIENTS

In this Appendix, we display the set of algebraic equations defining the diffusion transport coefficients, the shear viscosity
coefficient, and the first-order contributions to the partial temperatures. In the case of the diffusion coefficients DT

i , Di j , and DU
i ,

the set of algebraic equations are, respectively, given by

2∑
j=1

{
νi j + (γ2 − γ1)

ρi

ρ
δ1 j −

[
2

2∑
�=1

γ�x�(θ−1 − θ�θ,�) + 1

2
ζ (0) + ζ (0)θ

∂ ln ζ ∗
0

∂θ
− γi

]
δi j

}
DT

j

= − pρi

ρ2

(
1 + θ

∂ ln p∗

∂θ
− ρniT

(0)
i

pρi

)
+ T

ni

ρ
θ�θ,i + πd/2

d�
(

d
2

) niT

ρ

2∑
j=1

n jμi jχ
(0)
i j σ d

i j (1 + αi j )(τ j + θ�θ, j ), (C1)

2∑
�=1

[
νi� + (γ2 − γ1)

ρi

ρ
δ1� + γiδi�

]
m�D� j = ρT

ρ j

{
n jτ jδi j + n

[
n j

∂x1

∂n j
xi�x1,i + n j

∂λ1

∂n j
xi�λ1,i + xiφ j�φ,i

]}

+ ρ2

mj

(
∂ζ (0)

∂n j
− 2

2∑
�=1

{
γ�x�

[(
θ−1 − τ�

)(∂ ln γ�

∂n j
+ ∂ ln x�

∂n j

)
−
(

∂x1

∂n j
�x1,� + ∂λ1

∂n j
�λ1,� + φ j

n j
�φ,�

)]})
DT

i
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− ρi

m j

∂ p

∂n j
+ ρT

ρ j

πd/2

d�
(

d
2

) 2∑
�=1

nin�σ
d
i�χ

(0)
i� mi�(1 + αi�

{[
δ j� + 1

2

(
n j

∂ ln χ
(0)
i�

∂n j
+ Ii� j

)](
τi

mi
+ τ�

m�

)

+ nj

m�

∂x1

∂n j
�x1,� + n j

m�

∂λ1

∂n j
�λ1,� + φ j

m�

�φ,�

}
, (C2)

2∑
j=1

[
νi j + (γ2 − γ1)

ρi

ρ
δ1 j + γiδi j

]
DU

j = ρi

⎛⎝γi −
2∑

j=1

ρ j

ρ
γ j

⎞⎠. (C3)

Here the derivatives ∂x1/∂n j and ∂λ1/∂n j are given by Eqs. (B17) and (B18), respectively, and the collision frequencies νi j

appearing in Eqs. (C1)–(C3) are defined as

νii = − mi

dniTi

∫
dv V · J (0)

i j

[
fi,MV, f (0)

j

]
, (C4)

νi j = − mi

dn jTj

∫
dv V · J (0)

i j

[
f (0)
i , f j,MV

]
, (C5)

for i �= j. Note that the self-collision terms of νii arising from J (0)
ii [ fiMV, f (0)

i ] do not occur in Eq. (C4) since they conserve
momentum for the component i. In addition, upon deriving Eqs. (C1) and (C2), use has been made of the results∫

dvmiV · Ki j

[
T

∂ f (0)
j

∂T

]
= πd/2

�
(

d
2

)nin jσ
d
i jχ

(0)
i j μi j (1 + αi j )T

(0)
j

(
1 + θ

τ j
�θ, j

)
, (C6)∫

dvmiV ·
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Ki�
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∂ f (0)
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∂n j
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+ 1
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∂n j
+ Ii� j
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Ki�
[

f (0)
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]} = πd/2

�
(

d
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)niT n�σ
d
i�χ

(0)
i� mi�(1 + αi�)

×
{[

δ j� + 1

2

(
n j

∂ ln χ
(0)
i�

∂n j
+ Ii� j

)](
τi

mi
+ τ�

m�

)
+ n j
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∂x1

∂n j
�x1,� + n j

m�

∂λ1

∂n j
�λ1,� + φ j

m�

�φ,�

}
, (C7)

where f (0)
i has been replaced by fi,M. The explicit forms of the collision frequencies νii and νi j also can be easily obtained by

considering the latter replacement. They are given by [72]

νii = 2π (d−1)/2

d�
(

d
2

) n jσ
d−1
i j χ

(0)
i j μ jiv0(1 + αi j )

(
βi + β j

βiβ j

)1/2

, (C8)

νi j = −2π (d−1)/2

d�
(

d
2

) niσ
d−1
i j χ

(0)
i j μi jv0(1 + αi j )

(
βi + β j

βiβ j

)1/2

. (C9)

We recall that i �= j in Eqs. (C8) and (C9). With these results, the explicit form of DT
1 can be written as

DT
1 =

[
νD + ρ1γ2 + ρ2γ1

ρ
− 2

2∑
j=1

x jγ j (θ
−1 − θ�θ, j ) − ζ (0)

(
1

2
+ θ

∂ ln ζ ∗
0

∂θ

)]−1{T n1

ρ
θ�θ,1

− pρ1

ρ2

(
1 + θ

∂ ln p∗

∂θ
− ρn1T (0)

1

pρ1

)
+ πd/2

d�
(

d
2

) n1T

ρ

[
n1

2
χ

(0)
11 σ d

1 (1 + α11)(τ1 + θ�θ,1)

+ n2μ12χ
(0)
12 σ d

12(1 + α12)(τ2 + θ�θ,2)

]}
, (C10)

where νD is

νD = ν11 − ν12 = 2π (d−1)/2

d�
(

d
2

) nσ d−1
12 χ

(0)
12 v0(1 + α12)

(
β1 + β2

β1β2

)1/2

(x1μ12 + x2μ21). (C11)

We consider now the kinetic contribution ηk to the shear viscosity coefficient η. The kinetic coefficient ηk = ηk
1 + ηk

2, where
the partial contributions ηk

i (i = 1, 2) obey the set of equations

2∑
j=1

(τi j + 2γiδi j )η
k
j = niT

(0)
i + ρiT πd/2

d (d + 2)�
(

d
2

) 2∑
j=1

n jμ jiσ
d
i jχ

(0)
i j (1 + αi j )

[
μ ji
(
3αi j − 1

)( τi

mi
+ τ j

m j

)
− 4

τi − τ j

mi + mj

]
, (C12)
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where the collision frequencies τi j are defined as

τii = − 1

(d − 1)(d + 2)

1

niT
(0)2

i

⎛⎝∫ dvRi,λβJ (0)
ii

[
f (0)
i , fiMRi,λβ

]+
2∑

j=1

∫
dvRi,λβJ (0)

i j

[
fi,MRi,λβ, f (0)

j

]⎞⎠, (C13)

τi j = − 1

(d − 1)(d + 2)

1

n jT
(0)2
j

∫
dvRi,λβJ (0)

i j

[
f (0)
i , f j,MRj,λβ

]
, (i �= j). (C14)

Upon deriving Eq. (C12) use has been made of the result [23]∫
dv Ri,λβKi j,λ

[
∂ f (0)

j

∂Vβ

]
= −πd/2(d − 1)

d�
(

d
2

) ρin jT μ jiσ
d
i jχ

(0)
i j (1 + αi j )

[
μ ji(3αi j − 1)

(
τi

mi
+ τ j

m j

)
− 4

τi − τ j

mi + mj

]
. (C15)

Explicit expressions of the collision frequencies τii and τi j can be obtained by considering the Maxwellian approximation
(103) to f (0)

i . The results are [23]

τii = 2π (d−1)/2

d (d + 2)�
(

d
2

)v0

{
niσ

d−1
i χ

(0)
ii (2βi )

−1/2(3 + 2d − 3αii )(1 + αii ) + 2n jχ
(0)
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3/2
i β

−1/2
j

×
[

(d + 3)βi jβ
−2
i (βi + β j )

−1/2 + 3 + 2d − 3αi j

2
μ jiβ

−2
i (βi + β j )

1/2 + 2d (d − 1) − 4

2(d − 1)
β−1

i (βi + β j )
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, (C16)

τi j = 4π (d−1)/2
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i j μi jβ
3/2
j β

−1/2
i (1 + αi j )

[
(d + 3)βi jβ

−2
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1/2 − 2d (d + 1) − 4
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β−1

j (βi + β j )
−1/2

]
, (C17)

where βi j = μi jβ j − μ jiβi and i �= j.
Finally, the first-order contributions T (1)

i to the partial temperatures are defined as T (1)
i = �i∇ · U. The set of algebraic

equations defining the coefficients �i are given by

2∑
j=1

[
ωi j + 2γ jx j (τi + θ�θ,i ) − 2γiδi j + (T (0)
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∂n j
�φ,i

)}
, (C18)

where ζ (1,0) is defined by Eq. (B8) and the collision frequencies ωi j are

ωii = 1

dniT
(0)

i

⎛⎝ 2∑
j=1

∫
dvmiV

2J (0)
i j

[
fi,MWi, f (0)

j

]+
∫

dvmiV
2J (0)
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f (0)
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]⎞⎠, (C19)

ωi j = 1

dniT
(0)
j

∫
dvmiV

2J (0)
i j

[
f (0)
i , f j,MWj

]
(i �= j). (C20)

Upon deriving Eq. (C18), we have accounted for that
∑

j n j∂n j x1 = 0, and use has been made of the result [21]∫
dvmiV

2Ki j,λ

[
∂ f (0)
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. (C21)

Moreover, in the Maxwellian approximation (103), the collision frequencies ωii and ωi j read [27]

ωii = − π (d−1)/2

2dT (0)
i �

(
d
2

)v3
0

{
3√
2

niσ
d−1
i miχ

(0)
ii β
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i
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i j χ
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j [3μ ji(1 + αi j )(βi + β j ) − 2(2βi + 3β j )]

}
, (C22)

ωi j = π (d−1)/2

2dT (0)
j �

(
d
2

)v3
0n jmi jσ

d−1
i j χ

(0)
i j (1 + αi j )(βi + β j )

−1/2β
−1/2
i β

−3/2
j [3μ ji(1 + αi j )(βi + β j ) − 2β j]. (C23)

In Eqs. (C22)–(C23) it is understood that i �= j.

012904-21



GONZÁLEZ, KHALIL, AND GARZÓ PHYSICAL REVIEW E 101, 012904 (2020)

[1] M. E. Möbius, B. E. Lauderdale, S. R. Nagel, and H. M. Jaeger,
Brazil-nut effect: Size separation of granular particles, Nature
(London) 414, 270 (2001).

[2] M. A. Naylor, M. R. Swift, and P. J. King, Air-driven Brazil nut
effect, Phys. Rev. E 68, 012301 (2003).

[3] P. Sánchez, M. R. Swift, and P. J. King, Stripe Formation in
Granular Mixtures Due to the Differential Influence of Drag,
Phys. Rev. Lett. 93, 184302 (2004).

[4] J. J. Wylie, Q. Zhang, H. Y. Xu, and X. X. Sun, Drag-induced
particle segregation with vibrating boundaries, Europhys. Lett.
81, 54001 (2008).

[5] C. P. Clement, H. A. Pacheco-Martínez, M. R. Swift, and P. J.
King, The water-enhanced Brazil nut effect, Europhys. Lett. 91,
54001 (2010).

[6] J. C. Pastenes, J. C. Géminard, and F. Melo, Interstitial gas
effect on vibrated granular columns, Phys. Rev. E 89, 062205
(2014).

[7] D. L. Koch and R. J. Hill, Inertial effects in suspensions and
porous-media flows, Annu. Rev. Fluid Mech. 33, 619 (2001).

[8] G. Gradenigo, A. Sarracino, D. Villamaina, and A. Puglisi,
Fluctuating hydrodynamics and correlation lengths in a driven
granular fluid, J. Stat. Mech. (2011) P08017.

[9] V. Garzó, S. Tenneti, S. Subramaniam, and C. M. Hrenya,
Enskog kinetic theory for monodisperse gas-solid flows, J. Fluid
Mech. 712, 129 (2012).

[10] N. Khalil and V. Garzó, Transport coefficients for driven granu-
lar mixtures at low-density, Phys. Rev. E 88, 052201 (2013).

[11] H. Hayakawa, S. Takada, and V. Garzó, Kinetic theory of shear
thickening for a moderately dense gas-solid suspension: From
discontinuous thickening to continuous thickening, Phys. Rev.
E 96, 042903 (2017).

[12] N. G. van Kampen, Stochastic Processes in Physics and Chem-
istry (North-Holland, Amsterdam, 1981).

[13] D. R. M. Williams and F. C. MacKintosh, Driven granular
media in one dimension: Correlations and equation of state,
Phys. Rev. E 54, R9 (1996).

[14] R. Gómez González and V. Garzó, Transport coefficients for
granular suspensions at moderate densities, J. Stat. Mech.
(2019) 093204 .

[15] S. Chapman and T. G. Cowling, The Mathematical Theory of
Nonuniform Gases (Cambridge University Press, Cambridge,
1970).

[16] N. Khalil and V. Garzó, Heat flux of driven granular mixtures at
low density: Stability analysis of the homogeneous steady state,
Phys. Rev. E 97, 022902 (2018).

[17] N. Khalil and V. Garzó, Erratum: Transport coefficients for
driven granular mixtures at low density [Phys. Rev. E 88,
052201 (2013)] and Heat flux of driven granular mixtures at
low density: Stability analysis of the homogeneous steady state
[Phys. Rev. E 97, 022902 (2018)], Phys. Rev. E 99, 059901
(2019).

[18] V. Garzó, Granular Gaseous Flows (Springer Nature Switzer-
land, Basel, 2019).

[19] V. Garzó and J. M. Montanero, Transport coefficients of a
heated granular gas, Physica A 313, 336 (2002).

[20] V. Garzó, Transport coefficients of driven granular fluids at
moderate volume fractions, Phys. Rev. E 84, 012301 (2011).

[21] R. Gómez González and V. Garzó, Influence of the first-order
contributions to the partial temperatures on transport properties

in polydisperse dense granular mixtures, Phys. Rev. E 100,
032904 (2019).

[22] V. Garzó, J. W. Dufty, and C. M. Hrenya, Enskog theory for
polydisperse granular mixtures. I. Navier-Stokes order trans-
port, Phys. Rev. E 76, 031303 (2007).

[23] V. Garzó, C. M. Hrenya, and J. W. Dufty, Enskog theory for
polydisperse granular mixtures. II. Sonine polynomial approxi-
mation, Phys. Rev. E 76, 031304 (2007).

[24] J. A. Murray, V. Garzó, and C. M. Hrenya, Enskog theory for
polydisperse granular mixtures. III. Comparison of dense and
dilute transport coefficients and equations of state for a binary
mixture, Powder Technol. 220, 24 (2012).

[25] M. I. García de Soria, P. Maynar, and E. Trizac, Universal
reference state in a driven homogeneous granular gas, Phys.
Rev. E 85, 051301 (2012).

[26] M. G. Chamorro, F. Vega Reyes, and V. Garzó, Homogeneous
steady states in a granular fluid driven by a stochastic bath with
friction, J. Stat. Mech. (2013) P07013.

[27] R. Gómez González and V. Garzó, Simple shear flow in granular
suspensions: Inelastic Maxwell models and BGK-type kinetic
model, J. Stat. Mech. (2019) 013206.

[28] X. Yin and S. Sundaresan, Drag law for bidisperse gas-solid
suspensions containing equally sized spheres, Ind. Eng. Chem.
Res. 48, 227 (2009).

[29] X. Yin and S. Sundaresan, Fluid-particle drag in low-Reynolds-
number polydisperse gas-solid suspensions, AIChE 55, 1352
(2009).

[30] W. Holloway, X. Yin, and S. Sundaresan, Fluid-particle drag
in inertial polydisperse gas-solid suspensions, AIChE 56, 1995
(2010).

[31] T. P. C. van Noije and M. H. Ernst, Velocity distributions
in homogeneous granular fluids: The free and heated case,
Granular Matter 1, 57 (1998).

[32] C. Henrique, G. Batrouni, and D. Bideau, Diffusion as a mixing
mechanism in granular materials, Phys. Rev. E 63, 011304
(2000).

[33] S. R. Dahl, C. M. Hrenya, V. Garzó, and J. W. Dufty, Kinetic
temperatures for a granular mixture, Phys. Rev. E 66, 041301
(2002).

[34] A. Barrat and E. Trizac, Lack of energy equipartition in homo-
geneous heated binary granular mixtures, Granular Matter 4, 57
(2002).

[35] N. Brilliantov and T. Pöschel, Kinetic Theory of Granular Gases
(Oxford University Press, Oxford, 2004).

[36] V. Garzó and J. W. Dufty, Homogeneous cooling state for a
granular mixture, Phys. Rev. E 60, 5706 (1999).

[37] V. Garzó, M. G. Chamorro, and F. Vega Reyes, Trans-
port properties for driven granular fluids in situations close
to homogeneous steady states, Phys. Rev. E 87, 032201
(2013).

[38] M. I. García de Soria, P. Maynar, and E. Trizac, Linear hydro-
dynamics for driven granular gases, Phys. Rev. E 87, 022201
(2013).

[39] V. Garzó and J. W. Dufty, Dense fluid transport for inelastic
hard spheres, Phys. Rev. E 59, 5895 (1999).

[40] V. Garzó and F. V. Reyes, Segregation of an intruder in a heated
granular gas, Phys. Rev. E 85, 021308 (2012).

[41] N. Khalil and V. Garzó, Homogeneous states in driven
granular mixtures: Enskog kinetic theory versus molecular

012904-22

https://doi.org/10.1038/35104697
https://doi.org/10.1038/35104697
https://doi.org/10.1038/35104697
https://doi.org/10.1038/35104697
https://doi.org/10.1103/PhysRevE.68.012301
https://doi.org/10.1103/PhysRevE.68.012301
https://doi.org/10.1103/PhysRevE.68.012301
https://doi.org/10.1103/PhysRevE.68.012301
https://doi.org/10.1103/PhysRevLett.93.184302
https://doi.org/10.1103/PhysRevLett.93.184302
https://doi.org/10.1103/PhysRevLett.93.184302
https://doi.org/10.1103/PhysRevLett.93.184302
https://doi.org/10.1209/0295-5075/81/54001
https://doi.org/10.1209/0295-5075/81/54001
https://doi.org/10.1209/0295-5075/81/54001
https://doi.org/10.1209/0295-5075/81/54001
https://doi.org/10.1209/0295-5075/91/54001
https://doi.org/10.1209/0295-5075/91/54001
https://doi.org/10.1209/0295-5075/91/54001
https://doi.org/10.1209/0295-5075/91/54001
https://doi.org/10.1103/PhysRevE.89.062205
https://doi.org/10.1103/PhysRevE.89.062205
https://doi.org/10.1103/PhysRevE.89.062205
https://doi.org/10.1103/PhysRevE.89.062205
https://doi.org/10.1146/annurev.fluid.33.1.619
https://doi.org/10.1146/annurev.fluid.33.1.619
https://doi.org/10.1146/annurev.fluid.33.1.619
https://doi.org/10.1146/annurev.fluid.33.1.619
https://doi.org/10.1088/1742-5468/2011/08/P08017
https://doi.org/10.1088/1742-5468/2011/08/P08017
https://doi.org/10.1088/1742-5468/2011/08/P08017
https://doi.org/10.1017/jfm.2012.404
https://doi.org/10.1017/jfm.2012.404
https://doi.org/10.1017/jfm.2012.404
https://doi.org/10.1017/jfm.2012.404
https://doi.org/10.1103/PhysRevE.88.052201
https://doi.org/10.1103/PhysRevE.88.052201
https://doi.org/10.1103/PhysRevE.88.052201
https://doi.org/10.1103/PhysRevE.88.052201
https://doi.org/10.1103/PhysRevE.96.042903
https://doi.org/10.1103/PhysRevE.96.042903
https://doi.org/10.1103/PhysRevE.96.042903
https://doi.org/10.1103/PhysRevE.96.042903
https://doi.org/10.1103/PhysRevE.54.R9
https://doi.org/10.1103/PhysRevE.54.R9
https://doi.org/10.1103/PhysRevE.54.R9
https://doi.org/10.1103/PhysRevE.54.R9
https://doi.org/10.1088/1742-5468/ab3786
https://doi.org/10.1088/1742-5468/ab3786
https://doi.org/10.1088/1742-5468/ab3786
https://doi.org/10.1103/PhysRevE.97.022902
https://doi.org/10.1103/PhysRevE.97.022902
https://doi.org/10.1103/PhysRevE.97.022902
https://doi.org/10.1103/PhysRevE.97.022902
https://doi.org/10.1103/PhysRevE.99.059901
https://doi.org/10.1103/PhysRevE.99.059901
https://doi.org/10.1103/PhysRevE.99.059901
https://doi.org/10.1103/PhysRevE.99.059901
https://doi.org/10.1016/S0378-4371(02)00994-9
https://doi.org/10.1016/S0378-4371(02)00994-9
https://doi.org/10.1016/S0378-4371(02)00994-9
https://doi.org/10.1016/S0378-4371(02)00994-9
https://doi.org/10.1103/PhysRevE.84.012301
https://doi.org/10.1103/PhysRevE.84.012301
https://doi.org/10.1103/PhysRevE.84.012301
https://doi.org/10.1103/PhysRevE.84.012301
https://doi.org/10.1103/PhysRevE.100.032904
https://doi.org/10.1103/PhysRevE.100.032904
https://doi.org/10.1103/PhysRevE.100.032904
https://doi.org/10.1103/PhysRevE.100.032904
https://doi.org/10.1103/PhysRevE.76.031303
https://doi.org/10.1103/PhysRevE.76.031303
https://doi.org/10.1103/PhysRevE.76.031303
https://doi.org/10.1103/PhysRevE.76.031303
https://doi.org/10.1103/PhysRevE.76.031304
https://doi.org/10.1103/PhysRevE.76.031304
https://doi.org/10.1103/PhysRevE.76.031304
https://doi.org/10.1103/PhysRevE.76.031304
https://doi.org/10.1016/j.powtec.2011.09.030
https://doi.org/10.1016/j.powtec.2011.09.030
https://doi.org/10.1016/j.powtec.2011.09.030
https://doi.org/10.1016/j.powtec.2011.09.030
https://doi.org/10.1103/PhysRevE.85.051301
https://doi.org/10.1103/PhysRevE.85.051301
https://doi.org/10.1103/PhysRevE.85.051301
https://doi.org/10.1103/PhysRevE.85.051301
https://doi.org/10.1088/1742-5468/2013/07/P07013
https://doi.org/10.1088/1742-5468/2013/07/P07013
https://doi.org/10.1088/1742-5468/2013/07/P07013
https://doi.org/10.1088/1742-5468/aaf719
https://doi.org/10.1088/1742-5468/aaf719
https://doi.org/10.1088/1742-5468/aaf719
https://doi.org/10.1021/ie800171p
https://doi.org/10.1021/ie800171p
https://doi.org/10.1021/ie800171p
https://doi.org/10.1021/ie800171p
https://doi.org/10.1002/aic.11800
https://doi.org/10.1002/aic.11800
https://doi.org/10.1002/aic.11800
https://doi.org/10.1002/aic.11800
https://doi.org/10.1002/aic.12127
https://doi.org/10.1002/aic.12127
https://doi.org/10.1002/aic.12127
https://doi.org/10.1002/aic.12127
https://doi.org/10.1007/s100350050009
https://doi.org/10.1007/s100350050009
https://doi.org/10.1007/s100350050009
https://doi.org/10.1007/s100350050009
https://doi.org/10.1103/PhysRevE.63.011304
https://doi.org/10.1103/PhysRevE.63.011304
https://doi.org/10.1103/PhysRevE.63.011304
https://doi.org/10.1103/PhysRevE.63.011304
https://doi.org/10.1103/PhysRevE.66.041301
https://doi.org/10.1103/PhysRevE.66.041301
https://doi.org/10.1103/PhysRevE.66.041301
https://doi.org/10.1103/PhysRevE.66.041301
https://doi.org/10.1007/s10035-002-0108-4
https://doi.org/10.1007/s10035-002-0108-4
https://doi.org/10.1007/s10035-002-0108-4
https://doi.org/10.1007/s10035-002-0108-4
https://doi.org/10.1103/PhysRevE.60.5706
https://doi.org/10.1103/PhysRevE.60.5706
https://doi.org/10.1103/PhysRevE.60.5706
https://doi.org/10.1103/PhysRevE.60.5706
https://doi.org/10.1103/PhysRevE.87.032201
https://doi.org/10.1103/PhysRevE.87.032201
https://doi.org/10.1103/PhysRevE.87.032201
https://doi.org/10.1103/PhysRevE.87.032201
https://doi.org/10.1103/PhysRevE.87.022201
https://doi.org/10.1103/PhysRevE.87.022201
https://doi.org/10.1103/PhysRevE.87.022201
https://doi.org/10.1103/PhysRevE.87.022201
https://doi.org/10.1103/PhysRevE.59.5895
https://doi.org/10.1103/PhysRevE.59.5895
https://doi.org/10.1103/PhysRevE.59.5895
https://doi.org/10.1103/PhysRevE.59.5895
https://doi.org/10.1103/PhysRevE.85.021308
https://doi.org/10.1103/PhysRevE.85.021308
https://doi.org/10.1103/PhysRevE.85.021308
https://doi.org/10.1103/PhysRevE.85.021308


ENSKOG KINETIC THEORY FOR MULTICOMPONENT … PHYSICAL REVIEW E 101, 012904 (2020)

dynamics simulations, J. Chem. Phys. 140, 164901
(2014).

[42] B. D. Lubachevsky, How to simulate billiards and similar
systems, J. Comput. Phys. 94, 255 (1991).

[43] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Clarendon, Oxford, 2005).

[44] J. F. Lutsko, J. J. Brey, and J. W. Dufty, Diffusion in
a granular fluid. II. Simulation, Phys. Rev. E 65, 051304
(2002).

[45] J. F. Lutsko, Rheology of dense polydisperse granular fluids
under shear, Phys. Rev. E 70, 061101 (2004).

[46] J. M. Montanero, V. Garzó, M. Alam, and S. Luding, Rheology
of two- and three-dimensional granular mixtures under uniform
shear flow: Enskog kinetic theory versus molecular dynamics
simulations, Granular Matter 8, 103 (2006).

[47] G. Lois, A. Lemaître, and J. M. Carlson, Spatial force correla-
tions in granular shear flow. II. Theoretical implications, Phys.
Rev. E 76, 021303 (2007).

[48] P. P. Mitrano, V. Garzó, and C. M. Hrenya, Instabilities in
granular binary mixtures at moderate densities, Phys. Rev. E
89, 020201(R) (2014).

[49] V. Garzó and J. W. Dufty, Hydrodynamics for a granular binary
mixture at low density, Phys. Fluids 14, 1476 (2002).

[50] V. Garzó and A. Santos, Kinetic Theory of Gases in Shear Flows.
Nonlinear Transport (Kluwer Academic Publishers, Dordrecht,
2003).

[51] V. Garzó, J. M. Montanero, and J. W. Dufty, Mass and heat
fluxes for a binary granular mixture at low density, Phys. Fluids
18, 083305 (2006).

[52] N. Khalil and V. Garzó, Unified hydrodynamic description for
driven and undriven inelastic Maxwell mixtures at low density,
arXiv:1910.12679.

[53] H. Margeneau and G. M. Murphy, The Mathematics of Physics
and Chemistry (Krieger, Huntington, NY, 1956).

[54] J. Karkheck and G. Stell, Transport properties of the Widom–
Rowlinson hard-sphere mixture model, J. Chem. Phys. 71, 3620
(1979).

[55] J. Karkheck and G. Stell, Bulk viscosity of fluid mixtures, J.
Chem. Phys. 71, 3636 (1979).

[56] M. López de Haro, E. G. D. Cohen, and J. Kincaid, The Enskog
theory for multicomponent mixtures. I. Linear transport theory,
J. Chem. Phys. 78, 2746 (1983).

[57] T. Boublik, Hard-sphere equation of state, J. Chem. Phys. 53,
471 (1970).

[58] E. W. Grundke and D. Henderson, Distribution functions of
multi-component fluid mixtures of hard spheres, Mol. Phys. 24,
269 (1972).

[59] L. L. Lee and D. Levesque, Perturbation theory for mixtures of
simple liquids, Mol. Phys. 26, 1351 (1973).

[60] J. F. Lutsko, Transport properties of dense dissipative hard-
sphere fluids for arbitrary energy loss models, Phys. Rev. E 72,
021306 (2005).

[61] V. Garzó, Grad’s moment method for a granular fluid at moder-
ate densities: Navier–Stokes transport coefficients, Phys. Fluids
25, 043301 (2013).

[62] J. M. Montanero, A. Santos, and V. Garzó, DSMC evaluation
of the Navier–Stokes shear viscosity of a granular fluid, in 24th
International Symposium on Rarefied Gas Dynamics, 2004 in
Bari, Italy, edited by M. Capitelli, AIP Conf. Proc., Vol. 762
(AIP, Melville, NY, 2005), pp. 797–802.

[63] J. J. Brey, M. J. Ruiz-Montero, D. Cubero, and R. García-Rojo,
Self-diffusion in freely evolving granular gases, Phys. Fluids
12, 876 (2000).

[64] J. M. Montanero and V. Garzó, Shear viscosity for a heated
granular binary mixture at low density, Phys. Rev. E 67, 021308
(2003).

[65] V. Garzó and J. M. Montanero, Shear viscosity for a moder-
ately dense granular binary mixture, Phys. Rev. E 68, 041302
(2003).

[66] V. Garzó and J. M. Montanero, Diffusion of impurities in a
granular gas, Phys. Rev. E 69, 021301 (2004).

[67] V. Garzó and F. Vega Reyes, Mass transport of impurities in
a moderately dense granular gas, Phys. Rev. E 79, 041303
(2009).

[68] J. J. Brey and M. J. Ruiz-Montero, Shearing instability of a
dilute granular mixture, Phys. Rev. E 87, 022210 (2013).

[69] J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, On the va-
lidity of linear hydrodynamics for low-density granular flows
described by the Boltzmann equation, Europhys. Lett. 48, 359
(1999).

[70] H. van Beijeren and M. H. Ernst, The modified Enskog equation
for mixtures, Physica A 70, 225 (1973).

[71] V. Garzó, Thermal diffusion segregation in granular binary
mixtures described by the Enskog equation, New J. Phys. 13,
055020 (2011).

[72] V. Garzó and J. M. Montanero, Navier–Stokes transport coeffi-
cients of d-dimensional granular binary mixtures at low density,
J. Stat. Phys. 129, 27 (2007).

012904-23

https://doi.org/10.1063/1.4871628
https://doi.org/10.1063/1.4871628
https://doi.org/10.1063/1.4871628
https://doi.org/10.1063/1.4871628
https://doi.org/10.1016/0021-9991(91)90222-7
https://doi.org/10.1016/0021-9991(91)90222-7
https://doi.org/10.1016/0021-9991(91)90222-7
https://doi.org/10.1016/0021-9991(91)90222-7
https://doi.org/10.1103/PhysRevE.65.051304
https://doi.org/10.1103/PhysRevE.65.051304
https://doi.org/10.1103/PhysRevE.65.051304
https://doi.org/10.1103/PhysRevE.65.051304
https://doi.org/10.1103/PhysRevE.70.061101
https://doi.org/10.1103/PhysRevE.70.061101
https://doi.org/10.1103/PhysRevE.70.061101
https://doi.org/10.1103/PhysRevE.70.061101
https://doi.org/10.1007/s10035-006-0001-7
https://doi.org/10.1007/s10035-006-0001-7
https://doi.org/10.1007/s10035-006-0001-7
https://doi.org/10.1007/s10035-006-0001-7
https://doi.org/10.1103/PhysRevE.76.021303
https://doi.org/10.1103/PhysRevE.76.021303
https://doi.org/10.1103/PhysRevE.76.021303
https://doi.org/10.1103/PhysRevE.76.021303
https://doi.org/10.1103/PhysRevE.89.020201
https://doi.org/10.1103/PhysRevE.89.020201
https://doi.org/10.1103/PhysRevE.89.020201
https://doi.org/10.1103/PhysRevE.89.020201
https://doi.org/10.1063/1.1458007
https://doi.org/10.1063/1.1458007
https://doi.org/10.1063/1.1458007
https://doi.org/10.1063/1.1458007
https://doi.org/10.1063/1.2336755
https://doi.org/10.1063/1.2336755
https://doi.org/10.1063/1.2336755
https://doi.org/10.1063/1.2336755
http://arxiv.org/abs/arXiv:1910.12679
https://doi.org/10.1063/1.438805
https://doi.org/10.1063/1.438805
https://doi.org/10.1063/1.438805
https://doi.org/10.1063/1.438805
https://doi.org/10.1063/1.438806
https://doi.org/10.1063/1.438806
https://doi.org/10.1063/1.438806
https://doi.org/10.1063/1.438806
https://doi.org/10.1063/1.444985
https://doi.org/10.1063/1.444985
https://doi.org/10.1063/1.444985
https://doi.org/10.1063/1.444985
https://doi.org/10.1063/1.1673824
https://doi.org/10.1063/1.1673824
https://doi.org/10.1063/1.1673824
https://doi.org/10.1063/1.1673824
https://doi.org/10.1080/00268977200101431
https://doi.org/10.1080/00268977200101431
https://doi.org/10.1080/00268977200101431
https://doi.org/10.1080/00268977200101431
https://doi.org/10.1080/00268977300102531
https://doi.org/10.1080/00268977300102531
https://doi.org/10.1080/00268977300102531
https://doi.org/10.1080/00268977300102531
https://doi.org/10.1103/PhysRevE.72.021306
https://doi.org/10.1103/PhysRevE.72.021306
https://doi.org/10.1103/PhysRevE.72.021306
https://doi.org/10.1103/PhysRevE.72.021306
https://doi.org/10.1063/1.4798824
https://doi.org/10.1063/1.4798824
https://doi.org/10.1063/1.4798824
https://doi.org/10.1063/1.4798824
https://doi.org/10.1063/1.870342
https://doi.org/10.1063/1.870342
https://doi.org/10.1063/1.870342
https://doi.org/10.1063/1.870342
https://doi.org/10.1103/PhysRevE.67.021308
https://doi.org/10.1103/PhysRevE.67.021308
https://doi.org/10.1103/PhysRevE.67.021308
https://doi.org/10.1103/PhysRevE.67.021308
https://doi.org/10.1103/PhysRevE.68.041302
https://doi.org/10.1103/PhysRevE.68.041302
https://doi.org/10.1103/PhysRevE.68.041302
https://doi.org/10.1103/PhysRevE.68.041302
https://doi.org/10.1103/PhysRevE.69.021301
https://doi.org/10.1103/PhysRevE.69.021301
https://doi.org/10.1103/PhysRevE.69.021301
https://doi.org/10.1103/PhysRevE.69.021301
https://doi.org/10.1103/PhysRevE.79.041303
https://doi.org/10.1103/PhysRevE.79.041303
https://doi.org/10.1103/PhysRevE.79.041303
https://doi.org/10.1103/PhysRevE.79.041303
https://doi.org/10.1103/PhysRevE.87.022210
https://doi.org/10.1103/PhysRevE.87.022210
https://doi.org/10.1103/PhysRevE.87.022210
https://doi.org/10.1103/PhysRevE.87.022210
https://doi.org/10.1209/epl/i1999-00490-0
https://doi.org/10.1209/epl/i1999-00490-0
https://doi.org/10.1209/epl/i1999-00490-0
https://doi.org/10.1209/epl/i1999-00490-0
https://doi.org/10.1016/0031-8914(73)90247-4
https://doi.org/10.1016/0031-8914(73)90247-4
https://doi.org/10.1016/0031-8914(73)90247-4
https://doi.org/10.1016/0031-8914(73)90247-4
https://doi.org/10.1088/1367-2630/13/5/055020
https://doi.org/10.1088/1367-2630/13/5/055020
https://doi.org/10.1088/1367-2630/13/5/055020
https://doi.org/10.1088/1367-2630/13/5/055020
https://doi.org/10.1007/s10955-007-9357-2
https://doi.org/10.1007/s10955-007-9357-2
https://doi.org/10.1007/s10955-007-9357-2
https://doi.org/10.1007/s10955-007-9357-2

