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Slow dynamics in a single glass bead
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Slow dynamic nonlinearity is ubiquitous amongst brittle materials, such as rocks and concrete, with cracked
microstructures. A defining feature of the behavior is the logarithmic-in-time recovery of stiffness after a me-
chanical conditioning. Materials observed to exhibit slow dynamics are sufficiently different in microstructure,
chemical composition, and scale (ranging from the laboratory to the seismological) to suggest some kind of
universality. A consensus of theoretical understanding of the universality in general and the log(time) recovery
in particular is lacking. Seminal studies were focused on sandstones and other natural rocks, but in recent years
other experimental venues have been introduced with which to inform theory. One such system is unconsolidated
glass bead packs. However, bead packs still contain many contact points. The force distribution amongst the
contacts is unknown. Here, we present slow dynamics measurements on a yet simpler system—a single glass
bead confined between two large glass plates. The system is designed with a view towards rapid control of
the contact zone environment. Ultrasonic waves are used as a probe of the system, and changes are assessed
with coda wave interferometry. Three different methods of low-frequency conditioning are applied; all lead to
slow dynamic recoveries. Results imply that force chains do not play an essential role in granular media slow
dynamics, as they are absent in our system.

DOI: 10.1103/PhysRevE.101.012902

I. INTRODUCTION

About 25 years ago, it was reported that rocks demon-
strate a fascinating diminished stiffness after a mechanically
induced conditioning (“pumping”), followed by a gradual
log(time) recovery [1,2]. These behaviors are known as slow
dynamic nonlinearity and appear to be not unique to rocks.
Slow dynamics has been observed in many other materials
that possess an internal geometry composed of many contact
points, such as concrete, cement, and cracked glass. In spite of
the ubiquity of these behaviors, they are poorly understood.

The original studies on nonclassical nonlinear elasticity in
rocks and cement-based materials were performed by the geo-
physics group at Los Alamos National Laboratory (LANL)
[2–9]. They employed nonlinear resonant ultrasound spec-
troscopy (NRUS), which enabled tracking of the test samples’
fundamental vibration frequencies (at a few kHz). Application
of minor conditioning strain (as little as 10−6) led to a drop
in elastic modulus as revealed by a decrease in the resonant
frequency. In much of the LANL work, the conditioning
strain was created by oscillatory vibrations, also at a few
kHz. More significantly, the drop in modulus was followed,
after the strain was removed, by a slow recovery towards
the original value. The healing occurred over periods ranging
from a few seconds to hours after the conditioning strain was
removed, and progressed with the logarithm of time since the
conditioning ended. The same behaviors have been observed
after conditioning by temperature and humidity changes [10].
Neither the diminished stiffness, nor the recovery, nor its time
dependence are well understood.

Other laboratory techniques besides NRUS have been used
to monitor changes and recoveries. Lobkis and Weaver [11]
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monitored slow dynamic recoveries of narrow-band ultrasonic
Larsen frequency in sandstone and cement paste after impact
conditioning. Using the Larsen frequency, i.e., the ringing in
an ultrasonic feedback circuit, enabled ultrafine time resolu-
tion monitoring. Log(t)-like recovery was detected as soon
as 3 ms after the impact. Tremblay et al. [12], after condi-
tioning by impacts in concrete, monitored broad-band diffuse
reverberant ultrasonic signals and measured changes using
coda wave interferometry. Shokouhi et al. [8] used dynamic
acousto-elasticity testing (DAET) [13,14] in which changes
and recoveries were monitored by measuring the transit time
of a high-frequency ultrasonic pulse, and fit the observed
relaxations to a discrete set of exponential relaxations.

Seismic (at ≈1 Hz) wave speed near a fault after an earth-
quake exhibited a similar loss of stiffness and log(t) recovery,
e.g., Refs. [15,16]. The recoveries were monitored over peri-
ods from days to years and correlated with aftershocks. This
behavior is not well understood either.

Slow dynamics (and more generally the unusual nonlin-
earity of rocks) is believed to arise from the glassy contacts
between crystallites and the breaking of bonds due to the
pump conditioning, like that seen in dry friction [17]. But
beyond that there is little consensus, particularly in regard to
the actual physical mechanism of the recovery or the nature
of the bonds. TenCate et al. [3] noted that the slowness
might be due to a distribution of activation energies associ-
ated with atomic-scale barriers that are overcome by thermal
fluctuations. This model implies that the log(t) relaxation
should proceed at a rate proportional to temperature, though
their attempts to measure such dependence were inconclusive.
Others have proposed similar models [18–21]. All require the
activation energy distribution to be uniform over some range.
For example, if the recovery should be logarithmic from 1 ms
to 1 yr, the distribution should be flat from 0.5 to 1.1 eV.
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Neither a physical justification for such uniformity nor the
reason why it should be so universal has been given.

That slow dynamics is time-scale free and robust against
significant changes to system details (e.g., microstructure,
chemical composition, length scale) could suggest the pres-
ence of interacting healing sites and a corresponding critical-
ity [22–24], in which healing rate diminishes in time with a
universal exponent t−1. One could posit that slow dynamics
arises from crackling noise—discrete events that span a broad
range of sizes. A diverse number of physical systems are
known to exhibit crackling noise, including earthquakes, mag-
nets, and crumpled paper [23,24]. One could further speculate
that the 1/t Omori law for aftershock rate [25]—derived as a
critical phenomenon [26]—would translate as a log(t) depen-
dence for degree of healing, if the aftershocks are measures of
healing rate.

Other models have been proposed and various environmen-
tal factors have been suggested as relevant for determining the
physical mechanism [27–32]. Of particular note is moisture.
Bittner [29] showed that fully saturated cements did not ex-
hibit slow dynamics and has suggested that diffusion of water
vapor along cracks is responsible for the slowness. However,
other studies of an almost fully dried sandstone sample—held
in vacuum for months—did not show loss of slow dynamics,
suggesting water is not responsible [4].

There remains little consensus on the microphysics ul-
timately responsible for slow dynamics’ remarkable log(t)
linearity and ubiquity—in spite of the many phenomeno-
logical fits and some plausible hypotheses. This is due in
part to limited understanding of the microstructures involved.
Rocks and cements are highly complex multiphase materials,
in general consisting of water, crystallites, cracks, inclu-
sions, glassy contacts, residual stresses, and slow chemical
reactions.

It is therefore worthwhile to introduce simpler structures
for the study of slow dynamics. In particular, unconsolidated
glass bead assemblages have been proposed. The structure
and internal contacts of bead packs are better understood than
the crack geometries of the rocks, cements, and bulk glasses.
Depending on pore size the packs may also allow ready and
controlled ingress of heat and water vapor. Slow dynamics
has been observed in such systems [32–36]. Johnson and
Jia [33], using NRUS at 17 kHz, were the first to present
evidence of slow dynamics in bead packs. Their recoveries,
while highly irregular, appeared logarithmic from minutes to
hours. Unfortunately, the measurements to date have tended to
be irregular and hard to reproduce cleanly. Glass bead packs
are further complicated by their complex albeit fascinating
acoustics [36,37]. Nonlinearity is strong, especially at low
static confining pressures. Even the linear regime is complex;
high-frequency waves are strongly scattered and highly dif-
fuse [38–40]. We recently reported a study of slow dynamics
in glass bead packs, using experimental methods similar to
those presented below (i.e., Sec. III), that has greater precision
and lower noise than the studies referenced above [41].

However, can an even simpler structure be used to study
slow dynamics? Though we understand the character of the
contacts within bead packs better than those in rocks and
concrete, there are still many such contacts. Here we propose
a system to study slow dynamics that has only two contact

FIG. 1. A schematic of the experimental setup (not to scale). A
glass plate rests on top of two thumbtacks (one directly behind the
other in the picture) and a single glass bead, which in turn rests
on a top of an identical glass plate. The lower plate rests on small
rubber feet. The plates have dimensions 19 × 200 × 155 mm. The
bead has a diameter of 3 mm. A 1.6-mm-thick rubber sheet (red
and cross-hatched in Fig. 1) is placed between the two slabs in the
region where they overlap. A hole is cut in the rubber sheet so that the
bead directly touches the glass plates and does not touch the rubber.
Two ultrasonic transducers are placed on the upper slab, and one
transducer is placed on the lower slab. A 10-ns-duration high-voltage
broadband ultrasonic pulse is sent to the source transducer every
0.1 s. The received signals in the upper and lower slabs are amplified
by 40-dB preamplifiers and then digitized. The signal in the lower
plate depends on transmission through the bead and is markedly
different from the signal in the upper plate. The horizontal distances
from the bead and the thumbtacks to the upper plate’s center of mass
are labeled r1 and r2, respectively.

points. It is composed of a single glass bead confined between
two glass plates (Fig. 1). The system is probed using low-
amplitude ultrasonic waves, and changes within the system
are assessed using coda wave interferometry. This system is
simple enough to suggest a model for the ultrasonics (see the
Appendix). We believe the system may permit rapid control
of the environment at the contact points. It will also provide
an indication of whether force chains play a role in slow
dynamics. Force chains arise in granular systems, [42,43] but
should not arise in this two-contact system. If slow dynamics
is observed in the system, it would suggest that force chain
rearrangements do not play an essential role.

This paper presents studies of slow dynamic recoveries
in this simplified, two-contact system. Slow dynamics is ob-
served for three different methods of conditioning. We suggest
this system could be a useful venue for examining slow
dynamic dependence on various structural and environmental
parameters, thereby informing theory for its microphysical
basis. In the next section we describe the experimental design,
and the resonant transmission of linear ultrasound through
the glass bead. The following section presents the coda wave
interferometry technique [44–46] for measuring changes in
the transmitted diffuse ultrasonic waveform. In Sec. IV we
present the results of the slow dynamics measurements. We
conclude with a discussion of the advantages of this system
for slow dynamic investigations and some implications.
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II. EXPERIMENTAL SETUP AND DIFFUSE
ULTRASONIC TRANSMISSION

Two glass plates are coupled by a single glass bead (see
Fig. 1). The left side of the top plate rests on two thumbtacks,
and the bottom plate rests on small pieces of hard rubber. Each
plate is 19 × 200 × 155 mm and has a mass of 1.5 kg. The
glass bead has a diameter of 2.97 mm and a mass of 30 mg.
Both the plates and the bead are made of common soda-lime
glass. From the locations of where the thumbtacks and bead
support the upper plate, the weight from the upper slab on
the bead is estimated as F = 3.4 N.1 To reduce transmission
from the upper slab through the air to the lower slab, a piece
of 1.6-mm-thick rubber is placed between the slabs. A hole
is cut out of the rubber sheet so that the bead makes direct
contact with both slabs (and not with the rubber). The entire
system is placed on a vibration isolation table, as we found
that the ultrasound transmission through the bead is sensitive
to ambient vibrations from the laboratory floor.

Using our estimate for the contact force of 3.4 N, Hertzian
contact theory provides an estimate for the radius of the
contact circle, a = ( 3FR(1−ν2 )

2E )1/3, where R is the radius of
the glass bead, E is the elastic modulus of glass, and ν

is the Poisson ratio of glass [47]. Using E = 70 GPa, ν =
0.22, R = 1.5 mm, F = 3.4 N gives a contact radius of a =
47 μm. A maximum pressure [p0 = 3F/(2πa2)], the maxi-
mum shear stress (=0.31p0), and the maximum tensile stress
[=(1/3)(1 − 2ν)p0] can also be estimated. We find these to
be 735, 228, and 137 MPa, respectively. The maximum shear
stress would occur at the center of the contact circle a distance
0.48a = 23 μm below the center of contact. The maximum
tensile stress occurs at the edge of the contact circle. The
maximum tension is above the nominal tensile strength of
glass (tens of megapascals). Thus, we should expect to see
ring cracks in the glass plates and glass bead. However, we
do not observe any cracks when we inspect the plates and
bead under a microscope after disassembly. Either our glass is
stronger than 137 MPa, or the cracks close after disassembly
and become invisible.

It is an open question as to whether the slow dynamics
observed here (Sec. IV) is due to microcracking in the bead
and/or slabs, or is a function of contact mechanisms at the
bead-slab interface. For future work, we suggest the use of
tempered glass, at least at the contact points, as tempered glass
is less likely to crack at these loads.

The source ultrasonic transducer is placed on the top glass
plate. A receiver transducer is placed on the top plate, and
another on the bottom plate. All transducers are coupled with
oil. The source, and receiver on the bottom, are Physical

1This force is obtained by force and torque balance. The bead is
approximately in the center of the out-of-plane direction of Fig. 1.
Thus, one-dimensional force balance gives F + f = M g, where F
is the force of the bead on the plate, f is the force of the thumbtacks
on the plate, M is the mass of the plate, and g is standard gravity.
Torque balance gives r1F = r2 f , where r1 (r2) is the distance of the
bead (thumbtacks) from the plate’s center of mass—see Fig. 1. Thus,
F = Mg/(1 + r1/r2) = 3.4 N, with M = 1.5 kg, r1 = 6.75 cm, and
r2 = 2 cm.

FIG. 2. Typical ultrasonic signal that is received at the lower
plate. The signal has been delayed and filtered by the bead which
couples the upper and lower plate. The inset shows the signal
received in the upper plate. The energy on the top arrives practically
instantaneously and decays while the transmitted energy rises over
the first 2 ms and then decays.

Acoustics Corp. (Mistras) micro30 with a quoted best re-
sponse from 150 to 400 kHz. The receiver on the top plate is a
Digital Wave B-1025 with a quoted range of 50–2000 kHz.
A 10-ns-duration high-voltage broadband ultrasonic pulse
is sent to the source transducer every 0.1 s. The received
signals are amplified by 40-dB ultrasonic preamplifiers and
then recorded by a digitizer at 10 Msamples/s. We repeti-
tion average 20 received signals to improve signal-to-noise.
A repetition-averaged ultrasonic signal is produced approxi-
mately every 3 s (1 s is consumed by the acquisition software).
Changes in the signals recorded at the bottom slab are quan-
tified using coda wave interferometry (next section); these
changes are used to assess how the transmission responds to
conditioning (Sec. IV).

Figure 2 shows a typical ultrasonic signal received on the
top plate (Fig. 2 inset) and through the bead on the bottom
plate. The signals extends out to 15 ms or more. The two
signals have a different character: the energy on the top side
arrives immediately and decays while the transmitted energy
rises over the first 2 ms and then decays. The signal on the
bottom has a more irregular envelope, suggesting it is more
narrow band.

We expect the bead to significantly modify the ultrasound
that is transmitted to the bottom glass plate. Transmission
should only occur near the resonances of the bead. These
resonances are predicted by Hertzian contact theory, which
enables calculation of the rigid body modes of the bead. There
should be three modes: the first corresponding to vertical
motion perpendicular to the plane of the plates, a second
(doubly degenerate) mode corresponding to horizontal motion
parallel to the plane, and a third (also doubly degenerate)
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mode corresponding to rotational motion around horizontal
axes. The respective frequency of each mode is given by

f⊥ = 1

2π

√
2k⊥
mb

(1a)

f‖ = 1

2π

√
2k‖
mb

(1b)

frot = 1

2π

√
2k‖

2mb/5
(1c)

where k⊥ (k‖) is the stiffness perpendicular (parallel) to the
plane of the glass plates and mb is the mass of the bead. The
factor 2/5 in the denominator of frot arises from the moment
of inertia of a solid sphere. The total stiffness is 2k (rather than
just k) because stiffness is present at both the upper and lower
contact points.

Hertzian contact theory provides formulas for contact of a
solid sphere and a half space. For the case in which the sphere
and half space are made from the same material, the force-
displacement relation is

F = 2

3

E

(1 − ν2)
R1/2δ3/2 (2)

where E , ν, R are defined above, and δ is the mutual approach
of distant points. F is the vertical contact force. Thus, the
vertical (perpendicular) stiffness is given by

k⊥ = ∂F

∂δ
= 3F

2δ
=

(
3RE2

2(1 − ν2)2

)1/3

F 1/3. (3)

The horizontal (parallel) stiffness is related to the perpen-
dicular one by [48]

k‖ = 2 (1 − ν)

(2 − ν)
k⊥. (4)

The resonant frequencies [Eq. (1)] of the three modes scale
with the sixth root of the force: f ∼ F 1/6.

Taking the previously estimated contact force F to be 3.4
N and using E = 70 GPa, ν = 0.22, R = 1.5 mm, we find that
δ = 1.47 μm and k⊥ = 3.5 × 106 N/m. Thus, f⊥ = 76 kHz,
f‖ = 72 kHz, and frot = 113 kHz.

We expect the spectrum of the signal through the bead to
have three narrow frequency bands centered at the frequencies
of the three rigid body modes of the bead. Figure 3 shows
the observed lower slab spectrum (blue curve) as well as
the spectrum of the signal received in the upper plate (black
curve) for comparison. The wide-band spectrum of the upper
plate reflects the wide-band nature of both the transducers and
the propagation in the upper plate. The frequency content in
the lower plate is very different. As expected, the spectrum
is narrow band. However, we identify only one peak near
110 kHz—presumably corresponding to the rotational mode
of the bead—rather than three (see inset in Fig. 3). The
absence of the lower modes is curious. It is possibly due to
the transducer’s weak response at 70 kHz. In support of this
hypothesis we increase the force on the bead, by placing an
extra 2 kg on the upper plate (such that F is now 23 N) and
then identify three peaks near the (new) expected frequencies

FIG. 3. The spectrum of a typical signal received in the lower
plate (blue curve) and one in the upper plate (black curve). The
wide-band spectrum of the upper plate reflects the wide-band nature
of the transducers. The narrow-band spectrum of the lower plate in-
dicates that the bead only allows transmission in a narrow frequency
range. The inset expands the spectrum in the lower plate around the
frequency region near the resonant frequencies predicted by Eq. (1):
f⊥ = 76 kHz, f‖ = 72 kHz, and frot = 113 kHz. Only a single peak,
near 110 kHz, can be identified—presumably corresponding to the
rotational mode.

FIG. 4. Comparison of the spectrum received at the lower plate
when the only weight on the bead is the upper plate (blue curve)
and when an additional 2 kg is added (red curve). The additional
weight increases the force from 3.4 to 23 N. Three peaks can be
discerned when extra weight is added. Each one is identified with a
rigid-body mode of the single bead, and predicted by Hertzian theory
to be f⊥ = 105 kHz, f‖ = 98 kHz, and frot = 156 kHz.
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FIG. 5. Summary of the coda wave interferometry procedure. Panel (a) shows the reference signal φ (blue curve) and the 60th signal ψ60

(red curve) in a measurement. The plot is shaded to highlight the windows (W = 200 μs) used to construct X i=1,2, ...
202 . Panel (b) shows an

expanded region of panel (a) to demonstrate that ψ60 is delayed with respect to φ. The delay is quantified by calculating the lapse-time value
where X i

n is maximum, Ti
n = arg max X i

n(τ ). Panel (c) shows X 5
60(τ ) with its maximum at T5

60 designated by the red vertical line. Thus, in the
fifth signal time window, the 60th capture ψ60(t ) is delayed relative to φ(t ) by about 0.1 μs. The Ti

n values for a given n are plotted vs window
time t i, as shown in the blue curve of panel (d) for n = 60. We fit the early time part of the curve (i.e., signal time up to 1 ms) to a straight line
(solid red curve): Ti

n = σnt i + b′
n. The slope σn may be called early time stretch. It is one signature of changes in the system. (The y intercept

b′
n is close to zero and not meaningful.) As shown in the Appendix, this stretch is not equal to the true bead stretch. We also fit the entire

curve, i.e., signal time up to 10 ms, to an additional straight line (dashed black curve): Ti
n = σ ′

nt i + bn. The y intercept bn is a second signature
of changes in the system. (Now the slope σ ′

n is not meaningful.) Thus, we have two signatures of slow dynamics: short-time stretch σn and y
intercept bn.

(see Fig. 4). The first internal resonance of the bead [49]
is also distinguishable near 900 kHz (not shown), though
transmission there is very weak. Our measurements reported
below (Sec. IV) were all conducted at the 3.4-N load with a
new bead and different position between plates.

III. CODA WAVE INTERFEROMETRY

Coda wave interferometry (CWI) is used to quantify
changes in this two-contact-point system. Figure 5 summa-

rizes the process. A normalized cross-correlation X i
n is con-

structed between a reference signal φ and all signals produced
in an experiment ψn (n = 1, 2, . . .) captured at laboratory
times Tn. The cross-correlation is calculated over a certain
signal-time window i centered at t i and having a width W :

X i
n(τ ) = 1

Ai
n

∫ t i+W/2

t i − W/2
dtφ(t )ψn(t + τ ) (5)
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FIG. 6. The slow dynamics results for impulsive pumping. Stretch (over the first millisecond), σn, is plotted vs laboratory time, Tn, in panel
(a). The recovery is logarithmic in time, as seen in panel (b): stretch vs the logarithm of time after the ball drop at Tdrop ∼ 2.5 min. Stretch
measurements have precision of about 5 × 10−7. Panels (c) and (d) show the slow dynamic results using the y intercept, bn, instead of stretch.
Recovery in intercept is also ln(T). The slopes (Table I) were estimated by fitting the recovery from 15 s after recovery to 3 min after recovery.

where A is the normalization factor:

Ai
n =

√∫
dtφ2(t )

∫
dtψ2

n (t + τ ). (6)

The integrals in A are over the same region in t as those
in the numerator of X i

n. We distinguish between “laboratory
time” and “signal time” to emphasize the different time scales
involved. Laboratory time Tn ranges from seconds to minutes
and its index n goes from 1 to N , where N is the total
number of signals captured in a measurement. N is typically
between 100 and 400. (Laboratory time is labeled as “time”
in Figs. 6–8, below.) Window times t i range from hundreds of
microseconds to milliseconds, and the index i labels a window

of signal time. The range of i varies with window width W
and how much signal is being examined. t is signal time after
the main bang of the pulser and ranges from 0 to 14 ms. For
the results shown below W = 200 μs, and the first signal-time
window begins at t1 − W/2 = 50 μs. We specify the range of
i below.

We take the reference signal φ to be the first signal
in an experiment, always before conditioning is applied.
Figure 5(a) plots an example comparison between the refer-
ence signal φ (blue curve) and the 60th signal ψ60 (red curve),
recorded about 180 s after φ. Small differences exist between
the signals. The plot is shaded to highlight the windows
(W = 200 μs) used to construct X i=1,2, ...

60 . Figure 5(b) is an
expanded region of panel (a) to show that ψ60 is delayed
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FIG. 7. The slow dynamic results for harmonic pumping. Stretch (over the first millisecond), σn, is plotted vs laboratory time, Tn, in panel
(a). The shaded regions indicate conditioning, i.e., when the shaker was on. The recovery is logarithmic in time, as seen in panel (b): stretch vs
the logarithm of time for the last recovery section. Precision in stretch when the shaker is off is better than 10−6. Panels (c) and (d) show the
slow dynamic results using the y intercept, bn, instead of stretch. Recovery in intercept is also log(t). The slopes (Table I) were estimated by
fitting the recovery from 15 s after recovery to 3 min after recovery.

with respect to φ. The delay is quantified by calculating the
lapse-time value where X i

n is maximum, Ti
n = arg max X i

n(τ ).
Figure 5(c) shows X 5

60(τ ) with T5
60 designated by the red

vertical line. The Ti
n values for a given n are plotted versus

signal time t i [Fig. 5(d), for n = 60]. We fit the ordered pairs
(t1,T1

n), (t2,T2
n) . . . to a straight line:

Ti
n = σnt i + bn. (7)

For most studies that employ CWI, the plot of Ti
n versus

t i fits well to a straight line with bn = 0, e.g., [41,44,50]. The
slope is then called waveform dilation or “stretch.” It can be
interpreted as a relative change in wave speed and therefore
a relative change in modulus: σ = 
v

v
= 1

2

M

M . The plot is
linear when conditioning affects every part of the system

so a wave is continuously delayed during its propagation.
However, this is not the case for our system. Here the only
components affected by conditioning are the single bead and
its contact points with the plates. Thus, after a wave has
passed through the bead it is no longer dilated; subsequent
propagation within the lower plate is unchanged. Similarly,
propagation within the upper plate before transmission is not
dilated either. Consequently, at late times, i.e., when the CWI
analysis is extended out to 10 ms or so in signal time, we
expect not a stretch but rather a shift. This average shift
may be identified with the typical ray’s sojourn in the bead
multiplied by the intrinsic stretch within the bead. What we
observe, however, is a highly erratic Ti

n versus t i with a net
average shift, quantified by the y-intercept value b. We also
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FIG. 8. The slow dynamic results for quasistatic pumping. Stretch (over the first millisecond), σn, is plotted versus laboratory-time, Tn,
in panel (a). The shaded regions indicate the times in which the 65-g mass was placed on the top plate. Both conditioning (65 g added) and
recovery (65 g subtracted) are logarithmic in time. Panel (b) shows stretch minus its mean vs the logarithm of time for the last conditioning
and recovery sections. The mean is subtracted to more easily plot both curves in one panel. Like the other conditioning measurements (Figs. 6
and 7), stretch has a precision better than 10−6. Panels (c) and (d) show the slow dynamic results using the y intercept, bn, instead of stretch.
Recovery in shift is also log(t), though with some peculiar and unexplained irregularity for the first few seconds after conditioning by adding
weight [panel (d), solid line]. The slopes (Table I) were estimated by fitting the recovery from 15 s after recovery to 2.5 min after recovery.

observe a persistent slope σ at early times (t < 1 ms) with
zero y intercept. For these early times, the recorded signal is
dominated by waves that have spent a significant fraction of
their propagation in the bead. This stretch is not equal to the
true bead stretch, though presumably related to it. For more
discussion, we refer the reader to the Appendix.

An early time stretch, followed by an overall shift, is
observed in the plots of Ti

n versus t i [see Fig. 5(d)]. We fit
the early time part of the curve to a straight line [solid red
curve in Fig. 5(d)]: Ti

n = σnt i + b′
n, where σn may be defined

as short-time stretch. (The y intercept b′
n is close to zero.)

We also fit the entire curve to a second straight line [dashed
black curve in Fig. 5(d)]: Ti

n − T1
n = σ ′

nt i + bn, where now
the relevant parameter is the y intercept bn. We subtract T1

n
from Ti

n to compensate for additional noise that is due to
uncontrolled trigger jitter associated with the data acquisition.
Forcing the first point in the plots of Ti

n versus t i to be equal
to zero is a reasonable constraint, as there should be very little
difference between signals for the first 200 μs.

Thus, we have two signatures of waveform differences:
short-time apparent stretch and the y intercept. As will be
shown in the next section, both quantities, short-time stretch
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TABLE I. Summary of the different conditionings used in the slow dynamics measurements (Sec. IV). The strains associated with each
conditioning and the slopes of the recovery are given. The slopes were estimated by fitting the recovery from 15 s after recovery to 3 min after
recovery for impulsive and harmonic conditioning. For quasistatic the slopes were estimated by fitting the recovery from 15 s after recovery to
2.5 min after recovery. The method for estimating the strains for each conditioning are described in the subsections of Sec. IV.

Type of conditioning Description ε: estimated strain
m: slope of early time
stretch vs ln(T) plot

Slope of y intercept vs
ln(T) plot

Impulsive Dropped a
6.35-mm-diameter
wooden ball from 20 cm

εpeak = 5.7 × 10−5 2.5 × 10−5 0.0083 μs

Harmonic Shaker placed on bottom
plate

εrms = 8.4 × 10−6 5.7 × 10−5 (shaker off) 0.025 μs (shaker off)

Quasistatic Added and subtracted
65-g mass

ε = 1.2 × 10−4 1.7 × 10−4 (adding
weight)

0.052 μs (adding weight)

1.3 × 10−4 (subtracting
weight)

0.051 μs (subtracting
weight)

σn and y intercept bn, exhibit slow dynamics. The only pa-
rameter that differs when calculating stretch or shift is the
range of i in signal time, t i. For stretch, i goes from 1 to
5, where t5 = 0.95 ms; for shift, i goes from 1 to 50, where
t50 = 9.95 ms.

IV. SLOW DYNAMICS RESULTS

To examine if our plate-bead-plate system exhibits slow
dynamic nonlinearity, we probe with the ultrasonic waves
described above. As confirmed a posteriori, the ultrasound
is of sufficiently low amplitude to ensure that the probe
waves themselves are not significantly conditioning the bead.2

Three types of conditioning, or “pumps,” are employed:
impulsive, harmonic, and quasistatic (see Table I). The first
two were chosen to correspond to pump methods used by
others [4,9,11,33]. The same three pump types were used in
a recent study of slow dynamics in unconsolidated glass bead
packs [41].

Estimates for the strain produced from each conditioning
method are given below. We define conditioning strain under
a small change 
F (in Newtons) in contact force as

ε = 
δ

R
= 
F

k⊥R
= 1.9 × 10−4
F. (8)

This is the gross strain across the bead (as opposed to
the microscopic strains)3 and can be compared with strain
estimates that have been reported in the literature, such as [3].

2We confirmed that the ultrasound was not itself conditioning
the single bead system by beginning an experiment with the pulse
amplitude low. After a sufficient number of repetition-averaged
pulses to establish a consistent value of stretch, the pulse amplitude
was approximately quadrupled. The stretch values after the pulse
amplitude was quadrupled did not show any changes. We took this to
be sufficient evidence that the ultrasound was not itself conditioning
the single bead system.

3The microscopic strains, e.g., εmicro = 
p0/E , are somewhat
greater but vary from place to place within the contact region and
scale differently with F and R.

A. Slow dynamics from impulsive conditioning

Our impulsive pump is a wooden ball (mass of 90 mg,
diameter of 6.35 mm) dropped from 21 cm above the upper
slab near where the slab is coupled to the glass bead. Im-
pulsive pumping has been previously used on cement paste
and sandstone by dropping similarly sized wooden balls [11]
and on concrete by dropping small metal balls [12]. Primary
benefits of impulsive pumping are a clear time of conditioning
and ease of application [11,12].

Results for the impulsive conditioning are shown in Fig. 6.
Slow dynamics is observed, as the characteristic drop in
stretch followed by a slow recovery is clearly present in
Fig. 6(a). Stretch measurements have a rms deviation from
a smoothed fit of about 5 × 10−7, which we interpret as
the precision. The recovery is also clearly logarithmic in
time [Fig. 6(b)]: σ = m ln(Tn − Tz ) + const, where the slope
m = 2.5 × 10−5 and Tz was chosen to give good linearity at
early times.4 The slope was estimated by fitting the recovery
from 15 s after impact to 3 min after impact. The time for
full recovery, i.e., when the curve in Fig. 6(b) would cross
the σ= 0 axis, can be estimated as 4 h. Observation of full
recovery is, however, difficult due to potential contamination
by drifts in temperature and/or residual recoveries due to
earlier mechanical disturbances. We do not attempt it here.
The results for y intercept b, rather than stretch, are shown in
Figs. 6(c) and 6(d). The same behavior is observed.

The strain induced by the ball drop is estimated by placing
an accelerometer directly over the bead during a ball drop. The

4We do not have independent measure of the zero time Tz [the time
of impact, the time at which harmonic conditioning starts or ceases
(Sec. IV B), or the time at which the quasistatic loads are changed
(Sec. IV C)]. The data itself, however, clearly indicate this zero time
to within the 3-s interval between data points. In the plots [panels (b)
and (d) of Figs. 6–8 and 9] we adjust Tz so as to make them fully
linear. Different choices for Tz within the known interval will distort
the linearity only for the first few data points. Strictly speaking, we
only demonstrate linearity for Tn − Tz >∼ 15 s. It is recommended
that future work record the zero time independently, e.g., [11]. A
precise record of the zero time can be one of the advantages of
impulsive conditioning.
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accelerometer records a signal a(t ). A second accelerometer
was placed over the thumbtacks (see Fig. 1). The acceleration
recorded there was much smaller than a(t ), indicating that the
position of the thumbtacks can be taken as the pivot point O. If
the bead is a horizontal distance l from O, the torque around
O is 
F l = IOa(t )/l . The moment of inertia is IO = Icm +
M(r2)2, so 
F (t ) = (0.731 kg) × a(t ), where L = 0.2 m is
the length of the slab, r2 = 0.02 m, l = 0.0875 m, and M =
1.5 kg. The force signal looks approximately like a single
cycle sine wave with a peak value of 
Fpeak = 0.30 N. Using
Eq. (8), we obtain a peak strain of εpeak = 5.7 × 10−5.

B. Slow dynamics from harmonic conditioning

Harmonic pumping is provided by a shaker that rests
on the lower slab and vertically vibrates a 166-g mass at
200 Hz. Much of the work from LANL [2–5,9,33] used
harmonic pumping, as it can be integrated with NRUS. In
those experiments a sustained sinusoidal excitation at the lon-
gitudinal resonance of the sample was used for conditioning.
One advantage of harmonic pumping is the ability to control
and easily measure how much pump strain the sample is
experiencing.

The results for our harmonic conditioning are shown in
Fig. 7. The shaded regions in Figs. 7(a) and 7(c) indicate when
the shaker was on. Again, slow dynamics was observed in
the stretch recoveries while the shaker was off. Figure 7(b)
shows that the stretch recovery is logarithmic in time with
a slope of m = 5.7 × 10−5 for the last recovery. As in im-
pulsive conditioning, the slopes were estimated by fitting the
recovery from 15 s after recovery to 3 min after recovery.
Slow dynamics is also observed in y-intercept measurements
[Figs. 7(c) and 7(d)]. An extrapolated time for full recovery
with harmonic conditioning is difficult to determine. It is
not clear to what value stretch is recovering, as it was for
impulsive conditioning: zero value of stretch. For harmonic
conditioning, the quiescent state is distorted by previous cy-
cles of conditioning and relaxation. However, some cycling is
necessary, as the sample must first reach a steady state; one
period of conditioning is not sufficient [Fig. 7(a)].

As with the impulsive conditioning, the strain induced by
the shaker can be estimated by attaching an accelerometer,
a(t ), to the upper slab over the bead contact point and a
second one over the thumbtacks. The acceleration recorded
over the thumbtacks was again much smaller than a(t ), so
the point O is still a pivot point. Using the same reasoning as
previously, 
F (t ) = (0.731 kg) × a(t ). We estimate the rms
force—from the observed rms a(t )—as 
Frms = 0.0441 N.
The rms strain is thus εrms = 8.4 × 10−6.

C. Slow dynamics from quasistatic conditioning

The quasistatic pump involved the periodic placing and
removing of an additional 65-g mass on the top plate directly
over the bead. The results are shown in Fig. 8. The shaded
regions in Figs. 8(a) and 8(c) indicate when the 65 g was
added. It is expected that relative wave speed would increase
when the extra mass is added (frequency f ∝ F 1/6, according
to Hertzian theory [37]) leading to a positive stretch. However,
that f would continue to increase logarithmically [Fig. 8(b)]

after the addition signifies nontrivial slow dynamics. Simi-
larly, when subtracting the mass, we expect stretch to return
to its initial value, i.e., zero. Rather, the measured value over-
shoots the expected value and then recovers slowly towards it.
Similar, albeit noisier, behavior is observed in shift [Figs. 8(c)
and 8(d)]. Slope estimates are given in Table I. They were
estimated by fitting the recovery from 15 s after adding or
subtracting the additional mass to 2.5 min after adding or
subtracting. The strain for quasistatic conditioning can be
estimated directly from 
F = (0.065 kg) × (9.81 m/s2) =
0.64 N, giving ε = 1.2 × 10−4.

For quasistatic conditioning we can also predict how much
stretch should occur long after adding the additional mass.
By Hertzian theory, frequency f should be proportional to
the sixth root of the force. The addition of 65 g increases
the static force on the bead approximately 19%, so the fully
relaxed stretch should be 0.031. If we take the short-time
dilation σ of the transmitted wave to be one-quarter (see the
Appendix) of the actual bead stretch δ f / f , and assume δ f / f
goes to a value of 0.031 eventually, then an extrapolation of
the observed log(time) relaxation rate m = 1.7 × 10−4 from
σ = 0.0046 at log(time) = 3 to σ = 0.00775 requires 70 yr.
This striking number, and its great difference from the 5-h
extrapolated time to full recovery for impulsive conditioning
(Sec. IVA), begs to be explained. We observed the same pe-
culiarity after quasistatic conditioning in the glass bead pack
for which an extrapolated time to full recovery had a similar,
conspicuously large, magnitude [41]. This extrapolation is,
however, quite sensitive to the poorly understood difference
between apparent stretch σ and the actual bead stretch δ f / f .

The results, especially Fig. 8(a), show clearly the sym-
metry breaking of the inducing source, as both tensile and
compressive forces lead to a relaxation characterized by a
slow dynamic increase in modulus regardless of the sign
of the pumping. This asymmetry has been emphasized by
TenCate et al. [3] as a key characteristic of slow dynamics
and distinguishes it from other creep phenomena. We observe
the same symmetry breaking in an unconsolidated glass bead
pack under quasistatic conditioning [41].

V. DISCUSSION

It is important to confirm that the slow dynamic relaxation
was occurring at the contact points between the bead and the
plates, rather than elsewhere in the system. When we examine
the signals received on top (signals like that shown in the
inset in Fig. 2) using CWI, no slow dynamics is observed
in the upper plate.5 This indicates that neither the glass plate
itself nor the thumbtacks supporting it exhibit slow dynamics.
Moreover, when using the same pump-probe scheme (with
any of the three pumps) on only a single glass plate, we do
not observe any slow dynamics. This eliminates the possibility

5At times before the Heisenberg time in the upper plate, ∼12 ms,
most rays in the upper plate have not visited the bead. So any
slow dynamics in that wave field due to the bead would be diluted
there. Moreover, only frequencies near the bead resonances are
significantly exposed to the bead’s properties, and that would further
dilute the effect of the bead’s slow dynamics.
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FIG. 9. The slow dynamics recovery results after impulsive conditioning for different kinds of bead coating. Both stretch (a) and y intercept
(b) are plotted vs the log(time). Both are also normalized so that all curves reach zero at ln(T ) = 6. Three different hydrophobic coatings were
used: Surfactis’ Seesurf, Silcotek’s Dursan, and Silcotek’s experimental coating. A bead without any coating (labeled “normal”) is plotted for
comparison. Results for a fifth bead coated in oil are also shown. For the oiled bead the recovery is not linear after 20 s or so. This may be due
to the oil flowing during the measurement. Different bead coatings do not qualitatively affect the log(time) recovery.

that slow dynamics was occurring between the lower plate and
the rubber feet supporting it.

In a recent study of slow dynamics in a glass bead pack
system [41], we expounded three advantages of that system
over the more commonly used materials to study slow dy-
namics (natural rocks, cements, concrete). Those advantages
were (i) a simplified chemistry and history, (ii) many internal
surfaces that are easier to characterize, and (iii) a high porosity
and large pores, enabling better control of the environment
at the contact points. The single bead system presented here
offers those same advantages to an even greater degree. As
with glass bead packs, the chemistry is straightforward and
there is virtually no history—the system is formed once
the top plate rests on the single bead. The contacts can be
modeled with Hertzian contact theory, and because there are
only two contacts it is possible to formulate a model for the
ultrasonic changes (see the Appendix). It can be difficult to
control, or even know, the internal structure within cement
paste or sandstones, as the conditions internally may be dif-
ferent from those on the surface. These difficulties do not
arise in our single bead system, as air can easily enter the
contact area and equilibrate with its surroundings. The system
is also small enough to enclose easily for controlling its
environment.

To demonstrate the usefulness of this experimental venue,
we conclude with a preliminary investigation into the role
of fluid at the bead-plate contacts. This was motivated by
the work of Bittner [29] and Bittner and Popovics [30], who
imaged the transport of moisture within small (1–10 mm)
cement paste discs before and after harmonic conditioning.
They observed the migration of water out of micron-size pores
during conditioning and the slow migration back into the
pores afterwards. Our investigation examines the effects of

hydrophobic surface treatments on slow dynamic recovery.
If water at the contacts is a key part of the mechanism, one
expects that a hydrophobic surface would behave differently
from a normal one. Our results are shown in Fig. 9. A normal
glass bead was replaced with a glass bead having a hy-
drophobic coating. Three different hydrophobic coatings were
used: Silcotek’s Dursan, Silcotek’s experimental coating, and
Surfactis’s Seesurf. We also placed a bead coated in oil be-
tween the plates. The same qualitative slow dynamic behavior
was observed regardless of the coating. That slow dynamics
remains after surface treatments perhaps indicates that it is
microcracking that is responsible for the behavior. However,
as mentioned above, we did not find any microcracks when
we inspected the plates and bead under a microscope after
disassembly. There remains the possibility that cracks formed
under static load and then closed before we inspected the bead
or plates. More careful monitoring for cracks is indicated for
future work.

To our knowledge, the single bead system possesses the
lowest number of contact points to exhibit slow dynamics.
Previous granular systems, unconsolidated or consolidated,
that exhibited slow dynamics had many contact points. One
could conjecture that slow dynamics in bead packs could
be an indication of changing force chains [42,43]. Our re-
sults demonstrate that force chains cannot be an essential
mechanism behind slow dynamics. No force chains could
arise in this simplified system, yet slow dynamics remains.
However, we should emphasize that although there are only
two macroscopic contact points, presumably—depending on
roughness—each macroscopic contact point consists of many
microscopic ones. Zaitsev et al. [32] reported many nanoscale
asperities on a single glass bead. We further recall the reader’s
attention to the possibility that the contact areas have been
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FIG. 10. A waveform (a) and its spectrum (b) constructed numerically from Eq. (A3).

cracked by the tensile stresses at their perimeter and that the
slow dynamics is a process occurring at these cracks.

VI. CONCLUSION

It has been demonstrated that a single bead system exhibits
the nonlinear elastic phenomena of slow dynamics. The use
of ultrasonic wave probes with CWI processing provides low
noise and great sensitivity to changes (of the order 10−6

or less in stretch) in the bead. Slow dynamic response has
been observed after a variety of low-frequency pumps—not
just harmonic but also impulsive and quasistatic pumping.
We believe that this venue has a number of benefits. It is
particularly suited for determining slow dynamic dependence
on environmental parameters, like humidity and temperature.
Our results indicate that force chains do not play an essential
role in the physical mechanism behind slow dynamic recov-
ery.

ACKNOWLEDGMENTS

We are most grateful to John Popovics and James Bittner
for their interest and encouragement and for many fruitful
discussions.

APPENDIX: THEORY AND NUMERICS FOR
CONDITIONED TRANSMISSION THROUGH

A BEAD BETWEEN TWO PLATES

We suggest a model for the diffuse wave transmission
through a single glass bead between two slabs, and how that
transmission is modified by property changes (conditioning
and relaxation) at the bead and its contacts. Numerical simula-
tions are found to be in accord with laboratory measurements
that show the time delay of the signal in the lower slab after
conditioning is linear in signal age, at least until 1 ms, and
then becomes erratic.

We express the signal in the lower slab as a convolution
of three time series. A propagation GU in the upper slab from
the source to the bead, a resonant transmission T through the
bead, and a propagation GL from the bead to the receiver in
the lower slab. The signals before and after conditioning are
(at times such that few rays have interacted more than once
with the bead) given by

φ(t ) = GU (t ) ⊗ T (t ) ⊗ GL(t ), (A1a)

ψ (t ) = GU (t ) ⊗ T ′(t ) ⊗ GL(t ). (A1b)

T and T ′ are the transfer functions through the bead
before and after conditioning. We write them in the fre-
quency domain as T (ω) = [(ω − iγ )2 − ω2

d ]−1 and T ′(ω) =
[(ω − iγ ′)2 − ω′2

d ]−1, where ωd and ω′
d are the bead’s

damped natural frequencies before and after conditioning, and
γ and γ ′ are the corresponding resonance widths. At times
before the Heisenberg time6 rays are unlikely to visit the
same site, so GU and GL are well represented as centered
white noises η and ν under exponentially decaying envelopes
representing absorption:

GU (t ) = η(t ) exp(−σU t ), (A2a)

GL(t ) = ν(t ) exp(−σ Lt ). (A2b)

The above model assumes transmission through a single
resonant bead mode. However, the bead has at least five non-
trivial rigid body modes (Sec. II). Measured spectra (Fig. 3)
suggest the chief transmission is at the rotational resonance,
of which there are two modes. In order to model transmission

6The Heisenberg time is equal to the modal density 2πdN/dω,
where N is the mode count. Heisenberg time is about 12.3 ms at
110 kHz for glass slabs of volume 589 cm3 and surface area 755 cm2.
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FIG. 11. The delays Ti plotted vs window time t i. Each curve
corresponds to a different realization of the random number gen-
erator used to construct η and ν. The delays T, i.e., lapse-time
values where X i

n is maximum, are extracted from a pair of signals φ

[Eq. (A3)] and ψ for the case of two bead modes—with close but not
equal resonant frequencies, ωd1 = 628 000 Hz and ωd2 = 1.02ωd1,
and with equal γ = 1256. Each bead mode frequency is stretched
by an amount ε = 0.0004, with no stretch of the widths [such that
ω′

d1 = ωd1(1 − ε), ω′
d2 = ωd2(1 − ε) and γ ′ = γ ]. The delays

were calculated as described in Sec. III, with nonoverlapping 200-μs
windows. The behavior is rather like that seen in the laboratory.
For the first millisecond the delays are proportional to signal age.
For greater ages, the delays become increasingly erratic functions of
time.

via two modes, we would modify the above,

φ(t ) = GU1(t ) ⊗ T1(t ) ⊗ GL1(t ) + GU2(t ) ⊗ T2(t ) ⊗ GL2(t ),
(A3)

with a similar formula, though with T ′
1 and T ′

2 , for the
signal ψ (t ) in the conditioned structure. Here G1 and G2

differ in having statistically independent white noises η

and ν corresponding to the two horizontal polarizations of
the elastic waves at the bead: GU1(t ) = η1(t ) exp(−σU t ),
GU2(t ) = η2(t ) exp(−σU t ), GL1 = ν1(t ) exp(−σ Lt ), and
GL2(t ) = ν2(t ) exp(−σ Lt ). T1 and T2 are as indicated above,
with closely spaced or identical resonant frequencies and
widths.

It is a straightforward matter to evaluate the above model
numerically. We take the absorptions σ to have the inde-

pendently measured values: σU = 345 s−1 and σ L = 472 s−1.
Waveforms φ and ψ are constructed with a time spacing dt =
0.1 μs using random number generators for the white noises.
Convolutions are performed by multiplying in the frequency
domain.

Figure 10 shows a typical waveform and its spectrum
(|FFT|) as constructed using two modes, with close—but not
fully degenerate—resonant frequencies ωd1 = 628 000 s−1

and ωd2 = 1.02ωd1. We choose the bead loss rates of each
resonance to be equal: γ1 = γ2 = γ = 1256 s−1. The figure
shows that the spectrum is narrow, in accord with γ 	 ωd1,
with most of the amplitude confined to the region around
100 kHz. But under the envelope of those Lorentzians, we
see irregular features that may be identified as Erickson noise
associated with the longer lived reverberant fields in the
slabs. In the time domain these features manifest in a signal
[Fig. 10(a)] which is a narrow-band process at 100 kHz with
an irregular envelope, a beat pattern amongst the Erickson
peaks and between the two modes.

Figure 11 shows the delays T extracted from a pair of
signals φ and ψ for the case of two bead modes (at 100 and
102 kHz, each with γ = 1256). Each bead mode frequency is
stretched in ψ by an amount ε = 0.0004 relative to φ: ω′

d1 =
ωd1(1 − ε) and ω′

d2 = ωd2(1 − ε). No stretch is applied
to the widths: γ ′ = γ . The several curves are for different
realizations of the random number generator. The delays
were calculated as described in Sec. III, with nonoverlapping
windows 200 μs in width.

The behavior is rather like that seen in the laboratory.
For the first millisecond the delays are proportional to signal
time. For greater signal times, the delays become increasingly
erratic.

The slope of the curves at early time, interpretable as an
apparent stretch, are not equal to the bead stretch itself. In
the considered example, the slope appears to be about one-
quarter of the bead stretch of 0.0004. Taken at face value one
would conclude that the lower slab signal at early times t is
composed of waves that have sojourned an average time t/4
in the bead (and the remainder of the time in the slabs where
they are not subject to any delays.) That the effective amount
of time spent in the bead must be less than 100% is evident;
why the fraction should be constant for the first millisecond
or why it should be 25% is less so. Presumably this difference
depends on parameters such as σ and γ .

There is much room for further study on this model.
What determines the erratic behaviors? What determines the
early time nonerratic slope and its duration? What features
are sensitive to the presence of two, rather than one, bead
mode? Such questions are, however, outside the current
scope.
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