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Slow dynamic nonlinearity describes a poorly understood, creeplike phenomena that occurs in brittle
composite materials such as rocks and cement. It is characterized by a drop in stiffness induced by a mechanical
conditioning, followed by a log(time) recovery. A consensus theoretical understanding of the behavior has
not been developed. Here we introduce an alternative experimental venue with which to inform theory.
Unconsolidated glass bead packs are studied rather than rocks or cement because the structure and internal
contacts of bead packs are less complex and better understood. Slow dynamics has been observed in such
systems previously. However, the measurements to date tend to be irregular. Particular care is used here in the
experimental design to overcome the difficulties inherent in bead pack studies. This includes the design of the
bead pack support, the use of low-frequency conditioning, and the use of ultrasonic waves as a probe with coda
wave interferometry to assess changes. Slow dynamics is observed in our system after three different methods
for low-frequency conditioning, one of which has not been reported in the literature previously.

DOI: 10.1103/PhysRevE.101.012901

I. INTRODUCTION

A wide range of solid materials demonstrate fascinating
loss of stiffness after a mechanically induced conditioning
(pumping), followed by gradual log(time) recovery. These
behaviors are known as slow dynamic nonlinearity and appear
to be universal amongst porous ceramic and granular materials
such as concretes and natural rocks. In spite of the ubiquity of
these behaviors, they are poorly understood.

Studies of nonclassical nonlinear elasticity in rocks and
cement-based materials, led by remarkable work at Los
Alamos National Lab (LANL) [1–7] and employing Nonlin-
ear Resonant Ultrasound Spectroscopy (NRUS), have found
that the application of minor conditioning strain (as little
as 10−6) leads to a drop in elastic modulus. The loss of
stiffness is followed, after the strain is removed, by a slow
recovery towards the original value. In much of the work,
the conditioning strain (or pumping) was applied through
oscillatory vibrations at frequencies of a few kHz. Loss of
stiffness induced by the vibration was revealed in the sample’s
decreased fundamental vibration frequencies (also at a few
kHz). But more significantly, the modulus was found to heal
over a period from a few seconds to hours after the condi-
tioning strain was removed, where healing progressed with
the logarithm of time since the conditioning ended. Similar
behavior was observed in material “Q” related to absorption
of mechanical energy. The same behaviors were observed
after conditioning by temperature and humidity changes [8].
The behaviors are observed to scale with the first power of
conditioning strain amplitude [2]. Neither the recoveries, nor
their time dependence, are well understood.

Loss of stiffness and log(t) recovery are also seen in seis-
mic (at ∼1 Hz) wave speed near a fault after an earthquake,
e.g., Refs. [9,10], where recoveries were monitored over
periods from days to years and correlated with aftershocks.
This behavior is not well understood either.

Other laboratory techniques have been used to monitor
changes and recoveries. Lobkis and Weaver [11] monitored
slow dynamic recoveries of narrow-band ultrasonic Larsen
frequency in sandstone and cement paste samples after im-
pact conditioning, where they were able to detect log(t)-like
recovery as soon as three ms after the impact. Tremblay
et al. [12], after conditioning by impacts in concrete, mon-
itored broadband diffuse reverberant ultrasonic signals and
measured changes using coda wave interferometry. Shok-
ouhi et al. [7], after pumping with fundamental frequency
vibrations, used dynamic acoustoelasticity testing (DAET)
[13,14] to monitor changes and recoveries in the transit time
of a high-frequency ultrasonic pulse. Shokouhi et al. [7] fit
the observed relaxations to a discrete sum of exponential
relaxations. Related work (e.g., Ref. [15,16]) has focused on
fast nonlinear dynamics, in which the peculiar nonlinearity
of these materials is examined at the finest time resolutions,
comparable to or within the period of the pump conditioning.

It is widely supposed that the unusual nonlinearity of rocks
in general and slow dynamics in particular have their origin in
the glassy contacts between crystallites and to the breaking
and healing of bonds or joins there, like that seen in dry
friction [17]. But beyond that there is little consensus, in par-
ticular in regard to the mechanism of the recovery or the nature
of the bonds. TenCate et al. [18], noted that the slowness
might be due to a distribution of activation energies (uniform
between 0.5–1.0 eV) associated with atomic-scale barriers
that are overcome by thermal fluctuations. They showed that
this model implies that the log(t) relaxation should proceed at
a rate proportional to temperature. Their attempts to measure
such dependence were inconclusive. Others have proposed
similar models [19–22]. All require the distribution to be
uniform over some range. No satisfactory explanation of the
physical mechanism behind this uniformity—or why it is so
universal—has been given.
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Moisture has been suggested as relevant [23–26]. Bocquet
et al. [27] discuss moisture-induced aging for friction in gran-
ular media and derive a humidity-dependent log(t) behavior
governed by a thermal activation process. Bittner [25] showed
that fully saturated cements did not exhibit slow dynamics and
has suggested that diffusion of water vapor along cracks is
responsible for the slowness. However, TenCate’s [3] studies
of an almost fully dried sandstone sample held in vacuum for
months did not show loss of slow dynamics, suggesting water
is not responsible.

Models include that of Vakhnenko et al. [28], who offer
a soft-ratchet model of ruptured and recovering intergrain
defects that reproduces log(t)-like slow dynamics, and Snieder
et al. [20], who show that they can fit a log(t) relaxation
to a distribution of exponential relaxations. Attempts have
been made to explain how slow dynamics is related to other
nonlinear phenomena associated with rocks as well. Zaitsev
et al. [29] suggest an origin for both hysteresis and slow
dynamics in bistable contacts between grains. A similar sug-
gestion is made by Lebedev and Ostrovsky [21], whose model
incorporates two types of contact forces, Herztian-elastic and
adhesion, and a metastable state (see also Ref. [22]). The
(assumed uniform distribution of) activation energy model
of Li et al. [19] reproduces log(t) slow dynamic recovery as
well as certain observed sweep-rate dependences in resonance
curves.

In spite of the many phenomenological fits and some plau-
sible hypotheses, there is still little consensus on the micro-
physics ultimately responsible for slow dynamics’ remarkable
log(t) linearity or ubiquity. This may in part be because the
microstructures are so poorly understood. Rocks and cements
are highly complex multiphase materials, in general consist-
ing of water, crystallites, cracks, inclusions, glassy contacts,
residual stresses, and slow chemical reactions.

Studies in simpler structures may therefore be of value.
Zaitsev et al. [30] demonstrated slow dynamics in glass rods
with a small number of thermal cracks. (They also suggest
a thermoelastic mechanism in which the slowness is owed
to thermal diffusion around microcracks.) Slow dynamics
has also been observed in other cracked glass structures by
Johnson and Sutin [4] and Bittner [25]. Both report no slow
dynamics in pristine, crackless glass bodies.

It may be argued that unconsolidated glass bead assem-
blages are even simpler than the glass systems mentioned
above. The structure and internal contacts of bead packs are
better understood than the crack geometries of the glasses.
Depending on pore size the packs may also allow ready and
controlled ingress of heat and water vapor. Slow dynamics
has been observed in such systems. Johnson and Jia [31]
present evidence of slow dynamics using NRUS at 17 kHz.
Their recoveries, while highly irregular, appeared logarithmic
from minutes to hours. Tournat and Gusev [32] focused on
bead pack acoustic nonlinearity in general rather than just
slow dynamics, but show evidence for it in passing. They
introduce a “resemblance parameter” similar to the distortion
parameter of coda wave interferometry [33] with which they
quantify how their high-frequency diffuse waveform varies
during the pump phase and the relaxation. Slow relaxation
of the amplitude of a nonlinearly demodulated wave [29] and
of a nonlinearly induced modulation side lobe [34] have been

demonstrated in glass beads as well. Jia et al. [35] demonstrate
slow dynamic log(t) recovery of the low-frequency ballistic
ultrasound speed, increasing from an (enormous by the stan-
dards of the field) 8% deficit relative to the base speed to a 4%
deficit after 8000 s.

Unfortunately, the measurements to date have tended to be
irregular and contain a high degree of noise. One challenge
is loading and supporting the unconsolidated packs without
contaminating the acoustics. Glass bead packs are further
complicated by their complex albeit fascinating acoustics
[32,36]. Nonlinearity is strong, especially at low static con-
fining pressures. Even the linear regime is complex; high-
frequency waves are strongly scattered and highly diffuse
[37–39].

Here we present our studies of ultrasound in glass bead
packs and employ coda wave interferometry as a probe of slow
dynamic recoveries after various conditionings. We suggest
this system could be a useful venue for examining the effects
of various structural parameters on slow dynamics and thereby
informing theory for its microphysical basis. In the next
section we describe the experimental design, and the prop-
agation and spectrum of linear ultrasound in the bead pack.
The subsequent section presents the coda wave interferometry
technique [33,40,41] for measuring tiny changes in diffuse
ultrasonic waveforms. Then we present the results of the slow
dynamic experiments and conclude with a discussion of the
advantages of this system for slow dynamic studies.

II. EXPERIMENTAL DESIGN AND
ULTRASOUND PROPAGATION

The experimental design is shown in Fig. 1. Common
soda-lime glass beads, nominally monodisperse with a di-
ameter of 2.97 ± 0.05 mm and a mass of 30 mg, were used
to construct a cylindrical bead pack 71 mm in diameter and
33 mm thick. The mass of the bead pack is measured to be
221 g, corresponding to a density of ρbp = 1.69 g/cm3. The
packing fraction, η = ρbp/ρglass is 0.67 (using ρglass = 2.52),
much less than hexagonal close-packed (0.74) but greater
than random close-packed (0.64).1 The pack is sandwiched
by 1.6 mm steel plates, which are in turn sandwiched by high
strength foam [FOAMULAR® 1000 Extruded Polystyrene
(XPS), with a quoted strength of 100 psi]. The bead pack is
surrounded on the sides by the same high-strength foam. To
ensure uniform force distribution in the bead pack [42], the
foams walls are floating, i.e., they are held up solely from
the frictional force with the beads. A 87 kg (or 215 kPa)
dead-weight static load consisting of four steel slabs [label
(i) in Fig. 1(b)] is placed on top of the bead pack. This
load assures maximum coordination number and good contact
between the beads [36]; further load, and in particular condi-
tioning strains, will not change topology. It also leads to the
amplitude of ultrasound we use being in the linear regime.
We prefer a dead-weight static load—as opposed to an active
press—because we can accurately estimate the pressure on
the bead pack and have no interference from noise associated

1The difference from rpc is ascribable to surface effects and resid-
ual crystalline order near the steel plates.
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FIG. 1. (a) A schematic, and (b) photo of the experimental setup. (a) shows that the bead pack is sandwiched by 1.6 mm steel plates,
which, in turn, are sandwiched by thick-walled hollow cylinders of high-strength foam. The same foam is used to confine the beads laterally.
A broadband pulse is sent to the top steel plate where it spreads laterally and then propagates into the bead pack. A transducer at the bottom
receives the signal, which is then sent to a preamp before being digitized. The foam walls are themselves surrounded by a metal ring to support
the foam walls against splitting. The walls are floating; nothing is supporting them from the bottom, but rather they are held up solely by the
frictional forces with the beads. This is to ensure a uniform force distribution [42]. The picture in (b) shows the four 5 × 30.5 × 21 cm steel
slabs (i) that rest on top of the bead pack (iv). They result in a 215 kPa static pressure on the bead pack. The four legs (ii) near the bottom are
meant only for safety, as a precaution against toppling. Rubber shims (iii) were loosely placed between the tops of these legs and the static
load. These were used to reduce swaying from the conditioning and from background vibrations (20–30Hz) of the laboratory floor. We believe
the legs to take up a minimal amount of the 87 kg weight, however, and we have verified that the rubber shims do not affect the slow dynamic
experiments. The picture also shows the dynamical shaker (v) used in harmonic conditioning (Sec. IV). It rests on top of the static load and
drives a 1 kg mass (black object at very top) at 60 Hz.

with the press. After the beads are assembled and stirred,
the structure is shaken to encourage settling of the beads.
Also a few cycles of adding and removing the steel slabs are
performed. We allow the bead pack to settle for at least 24 h
before a measurement is conducted.

As the 87 kg load is resting on a comparatively small area,
four legs are used for a safety precaution against toppling
[label (ii) in Fig. 1(b)]. Rubber shims were put between the
tops of these legs and the static load [label (iii) in Fig. 1(b)].
These were used to reduce swaying from the conditioning as
well as background vibrations (20–30 Hz) of the laboratory
floor. The vibrations noisily modulated the ultrasonic signals,
which in turn increased the noise of the coda wave interfer-
ometry analysis (next section). We believe the legs to take up
a minimal amount of the 87 kg weight, however, and we have
verified that the rubber shims do not affect the slow dynamic
measurements (Sec. IV), except in that they reduce the noise.

The source and receiver ultrasonic transducers [Physical
Acoustics Corp. (Mistras) micro30] are coupled to the top and
bottom steel plates with glue. A 10-ns-duration high-voltage
broadband ultrasonic pulse is sent to the upper transducer
every 0.01 s. The received signal at the lower transducer is am-
plified by a 40 dB ultrasonic preamplifier (Panametrics model
5670) and then recorded by a digitizer (GaGe CSE8442) at
10 Msamples/s. 100 received signals are repetition averaged
to improve signal-to-noise. A repetition-averaged ultrasonic
signal is produced approximately every three seconds (the ac-
quisition software consumes two seconds). Changes in these

signals are quantified using coda wave interferometry (next
section); these changes are used to assess how the bead pack
responds to conditioning (Sec. IV).

Figure 2 shows a typical ultrasonic signal [Fig. 2(a)]
through the bead pack and its spectrum [blue curve in
Fig. 2(b)]. The signal lasts a couple of milliseconds. A first
arrival can be identified at 40 microseconds inset of Fig. 2(a)].
It is notably lower frequency (∼65 kHz) than what arrives
later (∼150 kHz). The first arrival time corresponds to a
wave speed of c = 825 m/s, comparable to other studies of
ultrasound in unconsolidated glass bead packs [39]. Most of
the energy arrives later, at around 400 microseconds, suggest-
ing diffusive transport. The energy can be fit to a diffusion
equation (Fig. 3) with a diffusivity of D = 0.36 m2/s and an
absorption of α = 4200 s−1. This diffusivity is comparable
to that reported by Jia [39], when rescaled for differences in
bead diameter and central frequency and with allowances for
different pressure. This diffusivity corresponds to a dwell time
τdwell = a2/(6D) = 4μs (where a = 3 mm is the diameter of
a bead), obtained from the diffusivity of a three-dimensional
(3D) random walk with random steps a every τdwell.

The bead pack acts as a low pass filter with a sharp cutoff
at approximately 200 kHz [blue curve in Fig. 2(b)]. The
signal is fairly narrowband with support mostly between 150–
200 kHz. It is strikingly different from the signal recorded on
the upper plate [red curve in Fig. 2(b)], which has support
up to and beyond 1 MHz. Using the language of phononics,
the spectrum can be thought of as the acoustical branch of
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FIG. 2. (a) Typical ultrasonic signal and its spectrum [blue curve in (b)] through the glass bead pack. The inset in (a) shows the signal at
very early times. A first arrival at 40 ms can be identified that is notably lower frequency (∼65 kHz) than what arrives after 100 μs. Most of
energy arrives even later, suggesting diffusive transport. The spectrum of the signal through the bead pack is the blue curve in (b). It has a
sharp cutoff frequency near 200 kHz. The bead pack acts as a low pass filter because much higher frequencies are sent into the bead pack, as
evidenced by the red curve in (b).

an amorphous granular medium and consists of rigid body
degrees of freedom for the beads under weak coupling [43].2

Following the work of Merkel et al. [44,45], a formula
for the highest cutoff frequency of a hexagonal close-packed
(hcp) granular crystal of rigid spheres can be obtained:

fcutoff = 1

2π

√
40Ks

mb
(1)

where mb is the mass of a glass bead and Ks is the shear
rigidity of the interbead contacts. Of the three types of vibra-
tional modes in a granular crystal—longitudinal, shear, and
rotational—the rotational modes determine the highest cutoff
frequency. Using Hertzian contact theory, the shear rigidity
can be expressed in terms of material properties as:

Ks = (3aF )1/3E2/3 (1 − ν2)1/3

(1 + ν)(2 − ν)
(2)

where F is the force between beads, ν is the Poisson ratio,
E is the elastic modulus, and a is the diameter of a bead.
Estimating F to be 1.5 N (from a 215 kPa pressure and
the cross-sectional area of a single 3 mm bead)3, and using

2We also observe the first two optical branches, at 900 kHz and
1500 kHz respectively (not shown). Transmission at these frequen-
cies is very weak, however, and detection requires the use of a thinner
(9 mm compared to 33 mm thick) bead pack.

3From the contact force of F = 1.5N , Johnson [50] tells us that
radius of the contact circle is 36 μm, the maximum contact pressure
is 559 MPa, the maximum shear stress is 182 MPa, and the maximum
tensile stress is 104 MPa. The tensile stress is just above the nominal
tensile strengths in glass (10–100 MPa). However, glass can have a
tensile strength much higher. Microscope inspection of glass beads
after disassembly did not reveal any cracks. Either there were none,

ν = 0.22, E = 70 GPa, a = 3 mm, mb = 30 mg, we obtain a
cutoff frequency of fcutoff = 249 kHz. This aligns adequately
with the experimental data. The difference is ascribable to the
bead pack corresponding better to random close pack than
hexagonal, with lower coordination number than that of the
perfect crystal. Furthermore, group velocity will be zero at

or they closed upon disassembly. We suggest the use of tempered
glass beads in the future to prevent cracking.

FIG. 3. A plot of energy (smoothed signal squared) versus signal
time (solid blue curve). A fit to a diffusion equation is plotted as
well (dashed red curve): E = A√

t
e−αt−L2/4Dt. A diffusivity of D =

0.36 m2/s and an absorption of α = 4200 s−1 were used to create the
curve.
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the cutoff frequency, so one would not expect discernable
amplitude at precisely fcutoff .

The steel plates were chosen to be quite thin—1.6 mm—
to ensure that the resonances of the plates did not con-
taminate the spectrum and to enhance radiation loss rate
into the beads. At 160 kHz, the wavelength of a flexural
wave in the steel plate is 10 mm [the dispersion relation
for flexural waves in a plate is k = √

3.464 ω/cplh where

cpl =
√

Esteel/(ρsteel(1 − ν2
steel )) and h is the thickness of the

plate]. This wavelength is small compared to the plate di-
ameter, so many modes exist in the plate, ensuring that
the individual modes will not be well resolved. We further
estimate that the lifetime of a flexural wave in the plate,
against radiation into longitudinal waves in the bead pack, is
short: 9 μs(= ρsteelh/ρbpcbp). This implies that a typical wave
in the plate has travelled 27 mm before entering the bead
pack. Therefore, the intensity entering the bead pack is planar,
as the ultrasound has spread across the steel plate before
leaving it.

Foam is employed to support and surround the bead pack
because it ensures that any leakage of ultrasound into the
support will not return to the bead pack. Consequently, the
coda wave interferometry analysis (next section) is not con-
taminated by waves that have spent time in the support struc-
tures rather than the beads. Separate measurements confirm
that the foam has much greater absorptivity than the bead
pack. Moreover, the impedance mismatch between the foam
and beads is high: Zbp/Zfoam = 19 (using the measured wave
speed of 1250 m/s and density 59 kg/m3 for the foam). Thus,
ultrasound that has explored the foam is not an important part
of the signal received at the bottom [i.e., signals like Fig. 2(a)].

Because the walls of the bead pack are foam, there was
concern that the slow dynamic conditioning and relaxation
presented below (Sec. IV) are due to the foam itself rather
than the bead pack. We replaced the foam walls with a brass
cylinder and found the slow dynamics, though noisier, to have
the same magnitude as with foam walls. Similarly, there was
concern that the observed slow dynamic recovery was actually
due to the rubber shims between the safety legs and the static
load. However, we removed these shims, leaving an air gap,
and found the slow dynamic magnitude to be unaffected,
though the noise increased. Thus, we are confident that the
slow dynamics results presented below are due to the glass
bead pack and not other parts of our apparatus. We choose to
present the results with the lower noise level.

III. CODA WAVE INTERFEROMETRY

Coda wave interferometry (CWI) is used to quantify
changes in the bead pack over time. Figure 4 summarizes
the process. A normalized cross correlation X i

n is constructed
between a reference signal, φ, and all signals produced in a
measurement, ψn, which were captured at laboratory times Tn.
The cross correlation is over a certain signal-time window i
centered at t i and having a width W :

X i
n(τ ) = 1

Ai
n

∫ t i+W/2

t i − W/2
dt ′φ(t ′)ψn(t ′ + τ ) (3)

where Ai
n is the normalization factor:

Ai
n =

√∫
dt ′φ2(t ′)

∫
dt ′ψ2

n (t ′ + τ ) (4)

The integrals in Ai
n are over the same time region as those

in the numerator of X i
n. We distinguish between laboratory

time and signal time to emphasize the different time scales
involved. Laboratory time Tn ranges from seconds to minutes
and its index n goes from 1 to N , where N is the total number
of signals captured in a measurement. (It is labeled as “time”
in Figs. 5–8, below.) Window times t i range from 100 s of
microseconds to milliseconds, and the index i labels a window
of signal time. The range of i varies with window width W
and how much signal is being examined. t ′ is signal time
after the main bang of the pulser and ranges from 0–3ms.
Typically, we choose W = 200 μs and extend i to include
the signal up to 2.5 ms. The first signal-time window begins
at t1 − W/2 = 50 μs.

We take the reference signal to be the first signal in
a measurement: φ, usually before conditioning is applied.
Figure 4(a) plots an example comparison of two signals: the
reference signal (blue curve) and the n = 202nd signal (red
curve), recorded about 600 s after φ. Small differences exist
between the signals. The plot is shaded to signify the 13
windows (W = 200 μs) used to construct X i=1,2, ...13

202 . Figure
4(b) shows an expanded region of Fig. 4(a) to highlight that
ψ202 is delayed with respect to φ. The delay is quantified
by calculating the lapse-time value where X i

n is maximum,
T i

n = arg max X i
n(τ ). Figure 4(c) shows X 5

202(τ ) with T 5
202

designated by the red vertical line. The T i
n values for a given

n are plotted versus signal time t i [Fig. 4(d), for n = 202]. If
the difference between the signals and the reference signal is
a pure dilation, this plot should be linear with zero y intercept
[33,46]. Thus, we fit the ordered pairs (t1, T 1

n ), (t2, T 2
n ) . . . to

a straight line:

T i
n = σnt i (5)

The slope σn is called waveform dilation or stretch. It can be
interpreted as a relative change in wave speed and therefore
a relative change in modulus: σ = �v

v
= 1

2
�M

M . Hence, stretch
will be our signature of changes in a sample. Observation of
a log(lab time Tn) recovery in stretch corresponds to log(time)
recovery in the elastic modulus. With our sign conventions, a
negative value of stretch means the signal ψn is slower than
the reference signal φ. If the difference between signals is not
a pure dilation, a similar analysis can still be done. This was
the case in a companion paper for a glass system with only
two contact points [47].

The value of maximum correlation, X i
n(τ = T i

n ), is also
potentially interesting but not pursued here. The logarithm of
this value has been termed distortion and signifies differences
between φ and ψn that are not a simple dilation [33]. Some-
thing akin to distortion, called the resemblance parameter
X i

n(τ = 0), has been used previously in acoustic nonlinearity
studies of glass bead packs [32,35]. It is an alternative way
to quantify how the high-frequency diffuse waveforms vary
during conditioning and relaxation.
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FIG. 4. Summary of the coda wave interferometry procedure. (a) shows the reference signal, φ, (blue curve) and the 202nd signal (red
curve) in a measurement. The plot is shaded to signify the 13 windows (W = 200 μs) used to construct X i=1,2, ...13

202 . (b) shows a magnified
region of (a) to highlight that ψ202 is delayed with respect to φ. The delay is quantified by calculating the lapse-time value where X i

n is
maximum, T i

n = arg max X i
n(τ ). (c) shows X 5

202(τ ) with its maximum at T 5
202 designated by the red vertical line. The T i

n values for a given n are
plotted versus signal time t i, as shown in the blue curve of (d) for n = 202. We fit the curve to a straight line (red curve) with zero y intercept:
T i

n = σnt i. The slope σn is called stretch. It is a signature of changes in the diffuse ultrasound and the sample.

IV. SLOW DYNAMICS RESULTS

A pump-probe scheme is used to study slow dynamics
in the bead pack, as used in NRUS experiments and else-
where. Here the probe consists of the low-amplitude, nonin-
vasive, multiply scattered diffuse ultrasonic waves described
above. As confirmed a posteriori, the probe ultrasound is
of sufficiently low amplitude to ensure that the probe waves
themselves are not significantly conditioning the bead pack.4

4We confirmed that the ultrasound was not itself conditioning the
bead pack by beginning a measurement with the pulse amplitude low.
After a sufficient number of repetition-averaged pulses to establish a
consistent value of stretch, the pulse amplitude was approximately

For the CWI processing, a time window of W = 200 μs
was used for all stretch calculations, and the first and last
nonoverlapping time windows were centered at t1 = 150 μs
and t13 = 2550 μs, respectively.

Three methods of pumping are employed: impulsive, har-
monic, and quasistatic (see Table I). The first two were chosen
to correspond to pump methods used by others [3,11,18,31].

quadrupled. The stretch values, after the pulse amplitude increased,
were unchanged. We took this to be sufficient evidence that the
ultrasound was not itself conditioning the bead pack. Taking extra
care, we kept the pulse amplitude at the initial low value for all slow
dynamic experiments shown here.
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FIG. 5. The slow dynamics results for impulsive pumping. Stretch is plotted versus laboratory time in (a). The recovery is logarithmic in
time, as seen in (b): stretch versus the logarithm of time after the ball drop at Tdrop ∼ 3 m. The slope (Table I) was estimated by fitting the
recovery from 15 s after recovery to 3 min after recovery.

The third, to our knowledge, has not been published in the
literature to date.

A. Slow dynamics from impulsive conditioning

Our impulsive pump is a rubber ball (mass of 150 g,
diameter of 6.25 cm) dropped from 0.2 m on top of the 87 kg
static load. Impulsive pumping has been previously used on
cement paste and sandstone samples by dropping a small

wooden ball [11] and on concrete samples by dropping a
small metal ball [12]. Primary benefits of impulsive pumping
are a clear time of conditioning and ease of application
[11,12].

Results for impulsive conditioning of the glass bead pack
are shown in Fig. 5. Slow dynamics is observed, as the charac-
teristic drop in stretch followed by a slow recovery is clearly
evident in Fig. 5(a). The recovery is also clearly logarithmic
in lab time [Fig. 5(b)]: σ = m ln(Tn − Tz ) + constant, where
the slope m = 4.2 × 10−5, and Tz was chosen to give good

FIG. 6. The slow dynamic results for harmonic pumping. Stretch is plotted versus laboratory time in (a). The shaded regions indicate
conditioning, i.e., the shaker was on in the shaded regions. Both conditioning and recovery are logarithmic in time. (b) shows stretch versus
the logarithm of time for the last conditioning and recovery sections. The slopes (Table I) were estimated by fitting the recovery from 15 s after
recovery to 3 min after recovery.
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FIG. 7. The slow dynamic results for quasistatic pumping. Stretch is plotted versus the laboratory time in (a). The shaded regions indicate
the times in which the 1 kg mass was placed on top of the large static load. Both conditioning (1 kg added) and recovery (1 kg subtracted) are
logarithmic in time. (b) shows stretch minus its mean versus the logarithm of time for the last conditioning and recovery sections. The slopes
(Table I) were estimated by fitting the recovery from 15 s after recovery to 3 min after recovery. The mean is subtracted to more easily plot
both curves in one panel.

linearity at early times.5 This slope was estimated by fitting
the recovery from 15 s to 3 min after impact. (This time period
was used for the slope estimates below as well.) The time for
full recovery, i.e., when the curve in Fig. 5(a) would cross
the σ = 0 axis, can be estimated as 50 h. Observation of full
recovery is, however, difficult due to potential contamination
by drifts in temperature and/or ongoing slow recoveries after
earlier mechanical disturbances. We do not attempt it here.
The uptick in slope after 400 s is not meaningful; it could be
ascribed to a temperature drift.

The strain induced by the ball drop can be estimated using
the formula:

ε = F/A

ρc2
= LF

mbpc2
= (2.19 × 10−7)F (6)

where L = 33 mm is the thickness of the bead pack, mbp =
221 g is the mass of the pack, c = 825 m/s is the low-
frequency wave speed, and F is the force on the bead pack
in Newtons. We estimate the impulsive force by placing an
accelerometer on top of the load, which has a mass of mL =

5We do not have independent measure of the zero time Tz [equal
to the time of impact, the time at which harmonic conditioning starts
or ceases (Sec. IV B), or the time at which the quasistatic loads are
changed (Sec. IV C)]. The data itself, however, clearly indicate this
zero time to within the three second interval between data points. In
the plots [Figs. 5(b), 6(b), 7(b), and 8(a)] we adjust Tz so as to make
them fully linear. Different choices for Tz within the known interval
will distort the linearity only for the first few data points. Strictly
speaking, we only demonstrate linearity for Tn − Tz >∼ 15 s, but we
note that good linearity has been observed back to 18 ms [11]. It is
recommended that future work record the zero time independently,
e.g., Ref. [11]. The potential to unambiguously record the zero time
is one of the advantages of impulsive conditioning.

87 kg. Assuming the peak strain occurs at a time after the
ball has rebounded,6 we identify the maximum acceleration 6
ms after the impact: aL = 0.15 g (g = 9.81 m/s2 being stan-
dard gravity). Thus, the peak force is Frb = mLaL = 128N ,
and we obtain a peak strain of εpeak = 2.8 × 10−5 using
Eq. (6).

B. Slow dynamics from harmonic conditioning

The harmonic pump is a dynamical shaker, which rests
on top of the static load and vibrates a 1 kg mass [label
(v) in Fig. 1(b)]. The driving frequency was fD = 60 Hz, far
from the fundamental longitudinal resonance of the structure
( fres = 20 Hz). Much of the work from LANL [1–4,18,31]
used harmonic pumping because NRUS was employed to
measure slow dynamics. NRUS experiments used a sustained
sinusoidal excitation at the longitudinal resonance of the
sample for conditioning. One advantage of harmonic pumping
is the ability to control and easily measure how much pump
strain is being exerted on the sample.

The results for our harmonic conditioning are shown in
Fig. 6. The shaded regions in Fig. 6(a) indicate when the
shaker was on. There is extra noise in these regions associated
with the shaker vibrations contaminating the ultrasonic sig-

6Hertzian contact theory provides an estimate for the contact time
of the rubber ball with the static load. The contact time is given by

T ∗ = 2.87(
m2

rb
RE2vi

)1/5 = 2.2 ms, where R is the radius of the rubber

ball, mrb is the mass of the ball, vi = √
2ghi = 2m/s is the speed

of the ball before impact, and 1/E = (1 − ν2
1 )/E1 + (1 − ν2

2 )/E2

with ν1, E1 (ν2, E2) being the Poisson ratio and Young’s modulus,
respectively, of rubber (steel). We used 0.50 and 0.29 for the Poisson
ratio of rubber and steel and 28 MPa and 200 GPa for the Young’s
modulus of rubber and steel.
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FIG. 8. Slow dynamics recovery for different pump strain levels. (a) shows stretch versus log(time) for the last recovery after five cycles of
harmonic conditioning and relaxation (i.e., the shaker was turned on and off five times). The voltage of the shaker was adjusted to change the
strain level. The method for estimating strain level is presented in Sec. IV B. (b) shows the early time slope of the recovery in (a) versus strain
level. The slopes were estimated by fitting the recovery from 15 s after recovery to 3 min after recovery. There is a linear relationship between
slope and strain, for strains at and above 1 microstrain, as observed elsewhere [2].

nals. Again, slow dynamics is observed during the recovery
(shaker off). Slow dynamics is also observed during the con-
ditioning (shaker on), as the value of stretch drops suddenly
and then more slowly continues to decrease. This is consistent
with NRUS experiments (e.g., Fig. 2 in Ref. [18]). Figure 6(b)
shows that both the conditioning and recovery are logarithmic
in time. The magnitude of the slopes are similar, but not the
same (see Table I). Determination of an extrapolated time for
full recovery with harmonic conditioning is difficult because it
is not clear to what value stretch is recovering. For impulsive
conditioning, it was straightforward: zero value of stretch.
For harmonic conditioning, the quiescent state is distorted
by previous cycles of conditioning and relaxation. However,
some cycling is necessary, as the sample must first reach
a steady state; one period of conditioning is not sufficient
[Fig. 6(a)].

The strain induced by the shaker can be estimated by
attaching an accelerometer to the 87 kg static load. The force

on the bead pack was calculated by

Fhar = keff u(t )=(
mLω2

res

)(−aL/ω2
D

) =−mL( fres/ fD)2aL(t )
(7)

where mL is the mass of the load, u is the vertical displacement
of the slabs, and aL is their acceleration. We use the rms of the
accelerometer signal to determine aL. For the measurement in
Fig. 6, aL = 0.03g, and the rms force on the bead pack is
consequently Frms = 2.8N . Using Eq. (6) above, we obtain a
steady-state rms strain of εrms = 6.15 × 10−7.

C. Slow dynamics from quasistatic conditioning

The quasistatic pump involved the periodic adding and
subtracting of an additional mass on top of the static load.
The additional mass was 1 kg. The results are shown in
Fig. 7. The shaded region in Fig. 7(a) denote when the 1
kg was added. It is expected that relative wave speed would

TABLE I. Summary of different conditioning used in the slow dynamics experiments (Sec. IV and Figs. 5–7) as well as the estimated
strains associated with each conditioning and the slopes of the recovery. The slopes were estimated by fitting the recovery from 15 s after
recovery to 3 min after recovery.

Type of conditioning Description ε – Estimated strain m – Slope of sigma vs ln(T) plot

Impulsive Dropped rubber ball
from 0.2 meters

εpeak = 2.8 × 10−5 4.2 × 10−5

Harmonic Dynamical shaker resting
on top of static load

[label (v) in Fig. 1(b)]

εrms = 6.15 × 10−7 1.4 × 10−5 (shaker off)

−9.7 × 10−6 (shaker on)

Quasistatic Added and subtracted
1 kg mass from 87 kg

static load

ε = 2.15 × 10−6 2.4 × 10−5 (adding weight)

7.9 × 10−6 (subtracting weight)
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increase when the extra mass was added (speed ∝ F 1/6, ac-
cording to Hertzian theory [36]) leading to a positive stretch.
However, that the wave speed would continue to increase
logarithmically [Fig. 7(b)] after the addition is a sign of
nontrivial slow dynamics. Similarly, when subtracting the
mass, we expect stretch to return to its initial value, i.e., zero.
Rather, the measured value overshoots the expected value and
then recovers slowly towards it. The strain for quasistatic
conditioning can be estimated using Eq. (6) above, where now
Fqs = (1 kg) × (9.81 m/s2) = 9.81N . The strain from adding
the extra mass is consequently 2.15 × 10−6.

For quasistatic conditioning we can also predict how much
stretch should occur long after adding the extra 1 kg mass. By
Hertzian theory, speed should be proportional to the sixth root
of the force. The addition of 1 kg increases the static force
on bead pack approximately 1.1%, so the fully relaxed stretch
should be 0.011/6 = 1.8 × 10−3. Our measured stretch after
three minutes of 3 × 10−4 is less than this by a factor of
6. An extrapolation based on the observed slope, m = 2.4 ×
10−5, indicates that it would take many times the age of the
universe (1021 years) to reach the predicted value of final
stretch. This striking number, and its difference from the 50 h
extrapolated time to full recovery for impulsive conditioning,
begs to be explained. It cannot be ascribed to a misestimate
of Tz. We also observed a similarly large time to full re-
covery in a simplified glass system with only two contact
points [47].

Slow dynamic experiments with quasistatic conditioning
have not been reported in the literature previously. The results
show clearly the symmetry breaking of the inducing source,
as both tensile and compressive conditionings lead to a relax-
ation characterized by a slow dynamic increase in modulus,
regardless of the sign of the pumping. This asymmetry has
been emphasized by TenCate et al. [2] as a key characteristic
of slow dynamics and distinguishes it from other creep phe-
nomena.

V. DISCUSSION

Glass bead packs offer three advantages over the more
commonly used materials to study slow dynamics. First, bead
packs have a simplified chemistry and history compared to
these materials, where cement pastes need many days to cure
and sandstones are created over the course of multiple 106

years. Glass bead packs, on the other hand, have virtually
no history. Second, bead packs have many internal surfaces
that are easier to characterize than the grain contacts present
in sandstones or cement. Third, glass bead packs can have a
high porosity and large pores, enabling better control of the
environment at the contact points. It can be difficult to control,
or even know, the internal structure and environment within
cement paste or sandstones.

Here we have not attempted to test proposed mechanisms
for slow dynamics. However, we do argue that unconsolidated
glass bead packs may provide a useful experimental venue
in which to study slow dynamics, and that they are particu-
larly suited for determining how slow dynamic behavior may
depend on (i) environmental factors, such as humidity and
temperature, (ii) the properties of the bead pack, such as grain
size, pack thickness, material, and bead surface treatments,

and (iii) changes to the medium, such as saturating the bead
pack with water or other liquids. Here we have shown that
ultrasonic probes and CWI processing allow for great preci-
sion in measuring stretch in glass bead packs. Precision for the
stretch measurements here appears to be better than 10−6. The
noise level in the slow dynamic measurements reported here
(Figs. 5–7) is lower than previous slow dynamic experiments
in these media (e.g., Fig. 2(c) in Ref. [31]). In a companion
paper [47], we have also studied a glass system with only
two contact points—a single bead confined between two glass
plates. This system shares the advantages expounded above.

It has been shown that this bead pack system exhibits slow
dynamics—when probed by ultrasound combined with CWI
and for a variety of pump methods—and does so with good
precision. We conclude with an application: a preliminary
study of the slow dynamic recovery dependence on rms pump
strain. TenCate et al. [2] showed that recovery slope m is
linear in rms pump strain, at least for εrms > 10−6. Below
that, m levels off. Their minimum and maximum strain values
used were 0.40 × 10−6 and 2.64 × 10−6. Here we repeat
the measurement of Sec. IV B and Fig. 6, for rms strains
of εrms = 5.74 × 10−8, 1.13 × 10−7, 2.72 × 10−7, 6.15 ×
10−7, and 1.32 × 10−6. The results are shown in Fig. 8.
Like TenCate et al. [2], we see an apparent linear regime at
pump strains near one microstrain and a leveling off below
that [Fig. 8(b)]. Attempts to measure slow dynamics with
pump strains lower than 5.74 × 10−8 were unsuccessful as
the response was contaminated by drifts, presumably from
temperature changes.7 If temperature were controlled, it might
be possible to investigate if slow dynamics persists at even
lower pump strains.

Other investigations [48,49] of general nonlinear and
nonequilibrium behavior in rocks (i.e., not confined to slow
dynamics) have identified a threshold strain, εM , below which
the nonequilibrium nonlinear behavior, including slow dy-
namic nonlinearity, does not occur and above which it does.
For Berea sandstone εM = 5 × 10−7, while for Fontainebleau
sandstone εM = 2 × 10−7 [48]. The threshold was calculated
by, first, measuring the resonant frequency f0 of the sample
(the fundamental longitudinal mode in a rod of the material)
at very low strain (∼ 10−9), second, driving the sample at a
higher strain εD, and, third, measuring f0 again. By repeating
this three-step process for different values of εD, the threshold
could be determined. For εD < εM , f0 did not change when it
was measured after the sample was driven at εD; for εD > εM ,
f0 did change (and would subsequently relax back logarithmi-
cally in time to its original value taken before the conditioning
at εD).

Johnson and Jia [31] attempted to determine a threshold
strain for glass bead packs. They stated that εM should be
of order a microstrain, though it will increase with pressure.
However, the results shown here (Fig. 8) indicate that the
threshold may be much lower—below 6 × 10−8—if it exists
at all, as we still observe log(t) recovery (i.e., nonequilibrium
behavior) at this strain level. (The pressure in our measure-
ments, 215 kPa, falls within the range of Johnson and Jia,

7While temperature drifts are a plausible explanation for the slight
accelerations in recoveries in Fig. 8, it remains only a hypothesis.
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70–300 kPa.) We emphasize here that “threshold strain” is
defined as the strain below which nonequilibrium behavior
does not occur [31,48,49]. This may not be the most useful
definition. Rather, we suggest defining the threshold strain as
the strain below which there is no longer a linear relationship
between strain and the slope m of the log(t) recovery. Strain
values below this alternative threshold would still incur slow
dynamics. The leveling off observed here [Fig. 8(b)] indicates
that there is no clear delineation between two strain regimes
(where slow dynamics occurs and where it does not). This
may have implications for dynamical earthquake triggering,
for the strain threshold was emphasized by Johnson and Jia
[31] as being part of the triggering mechanism. The absence
of a sharp delineation is also significant for determining if a
relationship exists between hysteresis and slow dynamics, as it
is widely believed that the threshold pertains to both behaviors
[21,22].

Moreover, the paradigm of associating slow dynamics with
the changes in the resonant frequency f0 of bar experiments
may not be the most helpful. Even though f0 remains un-
changed, it is not guaranteed that slow dynamic nonlinearity is
not still occurring. Ultrasonic waves (100 s of kHz) are more
sensitive to changes in a sample than the resonant frequencies
(1–10 kHz), and CWI takes advantage of this sensitivity. Work
with DAET [7] and others [11,12] have already demonstrated
the value of ultrasonic waves. It would be of interest to employ
ultrasound and CWI on Berea and Fontainebleau sandstone

samples with pump strains lower than εM to determine if slow
dynamics remains.

VI. CONCLUSION

In this paper, we have presented an alternative experimen-
tal venue in which to study the poorly understood nonlinear
elastic phenomena of slow dynamics. The material used here
is unconsolidated glass bead packs, which in themselves offer
advantages over other materials for slow dynamics studies.
Our careful experimental design, which includes floating
walls, a static dead-weight load, foam surroundings, and the
use of ultrasonic wave probes with CWI processing pro-
vides low noise and great sensitivity to changes in the bead
pack. The combination of these constituents has provided
clear observation of slow dynamic relaxation. We have also
demonstrated slow dynamic response to a variety of low-
frequency pumps—not just harmonic but also impulsive and
quasistatic pumping. We anticipate future methodical tests of
slow dynamic dependence on sundry parameters.
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