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Molecular interactions at vapor-liquid interfaces: Binary mixtures of simple fluids
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Properties of vapor-liquid equilibria and planar interfaces of binary Lennard-Jones truncated and shifted
mixtures were investigated with molecular dynamics simulations, density gradient theory, and conformal solution
theory at constant liquid phase composition and temperature. The results elucidate the influence of the liquid
phase interactions on the interfacial properties (surface tension, surface excess, interfacial thickness, and
enrichment). The studied mixtures differ in the ratios of the dispersion energies of the two components ε2/ε1

and the binary interaction parameter ξ . By varying ξ and ε2/ε1, a variety of types of phase behavior is covered
by this paper. The dependence of the interfacial properties on the variables ξ and ε2/ε1 reveals regularities
that can be explained by conformal solution theory of the liquid phase. It is thereby shown that the interfacial
properties of the mixtures are dominated by the mean liquid phase interactions whereas the vapor phase has only
a minor influence.
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I. INTRODUCTION

Properties of vapor-liquid interfaces play a crucial role in
many chemical engineering applications, such as distillation
and absorption. Experimental data on interfacial properties
are in most cases limited to surface tension, from which
sometimes data on the adsorption at the fluid interface are
derived [1,2]. Hence, reliable and predictive models for such
properties are an essential need.

On a molecular level, fluid interfaces are three-dimensional
objects. In the interfacial region, which is generally only a
few nanometers wide, the density changes smoothly from the
value in one bulk phase to that in the other. This holds for the
total density as well as for the component densities. Experi-
mental methods for the investigation of such density profiles
on a molecular level are presently not available. However,
density profiles can be obtained by theoretical methods [3,4],
namely, by molecular simulation based on classical force
fields on the one side and density gradient theory (DGT) or
density functional theory (DFT) combined with an equation of
state (EOS) of the fluid on the other side. In the present paper
both molecular dynamics (MD) simulation and DGT are used
to conduct a comprehensive study of binary Lennard-Jones
truncated and shifted (LJTS) mixtures, regarding their vapor-
liquid equilibrium (VLE) and interfacial properties. Based on
that data set, it is shown by applying a conformal solution
theory (CST) that the mean molecular interactions in the
liquid phase dominate the interfacial properties of the studied
systems.

While the profile of the total density in the interfacial
region increases monotonously from the bulk vapor to the bulk
liquid phase, this does not necessarily hold for the profiles of
all individual component densities. A maximum of the com-
ponent density in the interfacial region is observed in many
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cases for the low-boiling component and can reach values
several times larger than the largest value of the two bulk den-
sities of that component [1,5]. We refer to this phenomenon as
enrichment. The enrichment of components at the interface of
mixtures is of particular interest as it is suspected to affect the
mass transfer through the interface [6–8]. Interfacial enrich-
ment has been found in many mixtures in studies [1,5,6,8–
41] that were carried out with molecular simulations, DGT,
and DFT, but no systematic evaluation of the phenomenon of
interfacial enrichment has been conducted so far to elucidate
its dependency on the type of the mixture. However, it is
known that a strong enrichment is favored by a wide-boiling
behavior of the mixture [1,5,8,14,26,29,31,35,36,42]. The
relation between the relative adsorption and the enrichment
and their relation to the molecular interactions are not yet fully
understood [1,5].

While the global phase behavior of Lennard-Jones mix-
tures or mixtures of other simple spherical molecules has
been investigated numerous times in the literature [43–47],
no systematic study of the global behavior of interfacial
properties is available.

We have therefore carried out such a study using both
molecular dynamics simulation and DGT. The focus lies on
the interfacial adsorption and enrichment and its dependency
on the molecular interactions. The studied fluid is described
by the LJTS potential. The perturbed Lennard-Jones truncated
and shifted (PeTS) EOS [5,48] is used to describe the LJTS
fluid within DGT. The planar vapor-liquid interface of 90
binary LJTS mixtures was investigated at constant tempera-
ture (T = 0.77 εk−1

B ) and constant liquid phase composition
(x′

2 = 0.05 mol mol−1). The temperature is 0.7 of the critical
temperature of the high-boiling component.

The 90 investigated mixtures were obtained by varying
the dispersion energies of the two components ε2/ε1 and
the binary interaction parameter ξ in the modified Berthelot
combination rule [49]. The size parameter of both components
was the same and was not varied in this paper. For the planar
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interfaces of these mixtures the surface tension, interfacial
thickness, relative adsorption, and enrichment of the low-
boiling component were determined, such that a large body of
data for elucidating the influence of the different interactions
on the interfacial properties became available.

All interfacial properties of different studied mixtures were
found to have common regularities regarding their ξ , ε2/ε1

dependency. Using a CST, it is shown that these regularities
can be explained in terms of the mean liquid phase interac-
tions, i.e., the internal energy. This methodology is used to
correlate the interfacial properties as functions of the internal
energy of the liquid phase. CST has been applied to bulk
properties (static [50–55] and transport [56]) but to the best
of our knowledge not to interfacial properties.

By computing the Henry’s law constants of the investigated
LJTS mixtures, the results and the physical insight from
the interfacial properties behavior are furthermore put into
relation with the gas solubility of the low-boiling component
in the high-boiling component.

II. MODELING AND SIMULATION

A. Binary Lennard-Jones truncated shifted mixtures

One of the cheapest intermolecular potentials in terms of
the required computational effort which still gives a correct
description of the behavior of simple fluids is the LJTS po-
tential [57,58] with a truncation radius of 2.5 σ . It is therefore
often used as model fluid in studies of physical phenomena
[59–63] and for the development of simulation methods.

The LJTS potential vLJTS is

vLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

and (1)

vLJTS(r) =
{
vLJ(r) − vLJ(rc) r � rc

0 r > rc
, (2)

with vLJ being the full Lennard-Jones potential [64,65] and ε

and σ being the energy and size parameter, respectively. The
distance between two particles is denoted by r. The truncation
radius rc of the potential is 2.5 σ throughout the present
paper. The abbreviation “LJTS” refers to the fluid with this
specific truncation radius here. Note that the truncation of the
potential influences the fluid’s thermodynamic bulk [66–69]
and interfacial properties [70–75].

We investigated 90 binary LJTS mixtures in the present
paper. The high-boiling component is denoted as component
1 and the low-boiling component is denoted as 2. The size
parameter of both components is the same for all investigated
mixtures, i.e., σ1 = σ2 = σ . Also the mass of both compo-
nents is the same. Component 1 is considered as reference
component here and is the same for all mixtures with ε1 = 1
and σ1 = 1. The low-boiling character of component 2 is
obtained by varying the dispersion energy with respect to
component 1 between ε2/ε1 = 0.5 and 0.95 with a decrement
of 0.05. The critical points of the high-boiling component 1
and the ten different low-boiling components 2 are shown in
Fig. 1 together with the vapor pressure curves of component
1 and two of the pure components 2 with the highest and
lowest dispersion energy ratio ε2/ε1. The results shown in
Fig. 1 were calculated with the PeTS EOS, which is known

FIG. 1. Vapor pressure curves for the pure LJTS fluids that were
considered in the present paper. The temperature for which all
simulations of the present work were carried out is T = 0.77 εk−1

B

and is indicated as a vertical dotted line. The high-boiling compo-
nent 1 is indicated in red; the different low-boiling components 2
are indicated in black. The low-boiling components 2 with lowest
(ε2/ε1 = 0.5) and highest (ε2/ε1 = 0.95) dispersion energy used in
this study are indicated as black lines. For clarity only two out of the
ten low-boiling components’ vapor pressure curves are shown. Stars
indicate the critical points of all 11 investigated pure substances. The
empty stars indicate the critical points of the low-boiling fluids with
ε2/ε1 = 0.55, 0.6, . . . , 0.85, 0.9.

to reproduce the LJTS vapor-liquid equilibrium very well
[5,48]. Throughout the present paper, the temperature is T =
0.77 εk−1

B , which corresponds to approximately 0.7 of the
critical temperature of the pure component 1 (see dashed line
in Fig. 1).

The modified Lorentz-Berthelot combination rules were
employed [49,76] for describing the interactions between
unlike LJTS particles:

σ12 = σ1 + σ2

2
, (3)

ε12 = ξ
√

ε1ε2, (4)

where the indices 1 and 2 indicate the interaction of two
particles of the same component and the double index 12
indicates the cross interaction between different components.
The value of ε12 describes the cross affinity between the two
components which is systematically varied by varying ξ . The
binary interaction parameter ξ is used as adjustable parameter,
which is considered to be state independent. For the modeling
of real fluid mixtures, its number is often obtained from a fit
to experimental data [77]. The present paper does not aim
at reproducing the phase behavior of selected real mixtures.
We are interested in studying the influence of the molecular
interactions on the interfacial behavior of LJTS mixtures.
Therefore, the binary interaction parameter is varied in the
range ξ = 0.85 and 1.25 with a decrement of 0.05. This results
in 90 binary LJTS mixtures as shown in Fig. 2.

The liquid phase composition is prescribed by setting
x′

2 = 0.05 mol mol−1 throughout this study. This composition
was chosen based on the experience from our previous stud-
ies, which showed that the enrichment is strongest at low
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FIG. 2. Overview of the investigated binary LJTS mixtures in
the plane of the binary interaction parameter ξ and the ratio of the
dispersion energies of the low- and high-boiling component ε2/ε1.
Circles indicate the 90 mixtures that were investigated in the present
work. Squares mark the mixtures investigated by Stephan et al.
[5]. The stars indicate Lennard-Jones parameters of models of real
binary mixtures proposed by Vrabec et al. [78] for argon-krypton,
argon-methane, krypton-xenon, and methane-krypton.

concentrations of the low-boiling component in the saturated
liquid phase [1,5,8,30].

The binary interaction parameter ξ and the ratio of the
dispersion energies ε2/ε1 is not only used in the MD simu-
lations, but the same number is also used in the PeTS EOS,
and therefore also in the DGT calculations. It has been shown
before that no adjustments are necessary: the phase behavior
and interfacial properties that are obtained from both methods
match well, when the same numbers for ξ and ε2/ε1 are used
in MD and DGT [5,30].

Throughout the present paper, all physical properties are
reduced using the Lennard-Jones parameters of the high-
boiling component ε1 and σ1, the molecular mass M, as well
as the Boltzmann constant kB [64].

B. Molecular simulations

1. Direct vapor-liquid equilibrium simulations

In the MD simulations of vapor-liquid interfaces, systems
were studied in which a liquid phase that is arranged as a slab
in the middle of the simulation volume is equilibrated with
two vapor phases on each side. Periodic boundary conditions
were applied in all directions. The coordinate z is perpendic-
ular to the interfaces. The elongation of the simulation box
normal to the interface was 80 σ and the thickness of the
liquid slab in the middle of the simulation box was 40 σ to
avoid finite size effects [5,70]. The elongation in the directions
parallel to the interfaces was at least 20 σ . The simulations
were performed with the MD code ls1 MARDYN [79] in the
NVT ensemble with N = 16 000 particles. The equation of
motion was solved by a leapfrog integrator [80] with a time
step of �t = 0.001 σ

√
M/ε. The equilibration was executed

for 2.5 × 106 time steps. The production was conducted for
7.5 × 106 time steps. Density and pressure profiles were
computed in block averages of 500 000 time steps during

the production phase. The statistical error was estimated to
be three times the standard deviation of all block averages.

The vapor pressure ps, the saturated densities ρ ′ and ρ ′′,
and the saturated vapor and liquid phase mole fractions x′

i
and x′′

i were computed as an average over the respective
phases excluding the area close to the interface, where the
first derivative of the density with respect to the z coordinate
significantly deviates from zero.

Also the density profiles were obtained as averages over
all sampling points (blocks) in the production phase. To avoid
smearing of the averaged density profiles from fluctuations
of the liquid slab position in the box, the individual density
profiles from one block average were shifted by setting the
z-axis origin at ρtot = ρ ′′

tot + 0.5(ρ ′
tot − ρ ′′

tot ), where ρtot is the
total local density ρtot = ρ1 + ρ2 before averaging, as it was
done in our previous works [5,8,30].

The initial bulk phase compositions and number densities
were estimated with the PeTS EOS [5,48] to ensure that the
desired value of x′

2 = 0.05 mol mol−1 was found in the sim-
ulations after equilibration. Further details on this procedure
are given in the Supplemental Material [112].

The interfacial tension was obtained from the devia-
tion between the normal and the tangential diagonal com-
ponents of the overall pressure tensor [81,82], i.e., the
mechanical route:

γ = 1

2

∫ ∞

−∞
(pN − pT) dz. (5)

The normal pressure pN is given by the z component of the
diagonal of the pressure tensor, and the tangential pressure
pT is determined by averaging over x and y components of
the diagonal of the pressure tensor. The interfacial area S of
each vapor-liquid interface is given by the cross section of the
simulation volume normal to the z axis.

2. Henry’s law constant simulations

Henry’s law constants H2,1 of the low-boiling component 2
in the solvent 1 were determined in the NpT ensemble with
1372 solvent particles using Widom’s test particle method
[83]. The simulations were performed with the program ms2
[84]. In the simulations, the residual chemical potential μ∞

2 of
the solute is sampled, which is directly related to the Henry’s
law constant by [85]

H2,1 = ρ ′ T exp
(
μ∞

2 /T
)
, (6)

where ρ ′ is the saturated liquid density of the solvent and T
is the temperature. Each simulation run consisted of 300 000
time steps of equilibration and 1 × 106 time steps of pro-
duction. The time step was set to �t = 0.001 σ

√
M/ε. We

carried out 5200 trial insertions per time step. The statistical
uncertainty of the Henry’s law constant is estimated to be
three times the standard deviation of the ten block averages
(the block size was 100 000 time steps).

C. PeTS EOS and density gradient theory

1. PeTS EOS

The PeTS EOS [5,48] was developed to model the thermo-
dynamic properties of the LJTS fluid. It is based on the per-
turbation theory of Barker and Henderson [86], which splits
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the free energy per particle a into the ideal gas contribution
aID, the free energy of a hard sphere potential aHS, and the
perturbation contribution apert due to dispersion:

a = aID + aHS + apert. (7)

The perturbation contribution is modeled as a sum of first-
and second-order contributions, i.e., apert = a1 + a2, which
are developed in Taylor series as functions of the packing
fraction η.

The PeTS EOS was extended to binary mixtures [5] using
van der Waals one-fluid theory [53], which is known to
perform well as long as the size parameters σ1 and σ2 of both
components are similar [87–89]. The modified combination
rules of Lorentz and Berthelot are used for the computation of
the cross interaction parameters σ12 and ε12 [see Eqs. (3) and
(4)]. The full equations of the PeTS EOS are given in [5,48].

The PeTS EOS was fitted to vapor-liquid equilibrium sim-
ulation data of the LJTS fluid [48]. It was shown in previous
work that the PeTS EOS accurately describes thermodynamic
properties of the LJTS fluid both for stable and metastable
states [48] as well as interfacial properties [63]. The PeTS
EOS describes not only the pure LJTS fluid well but also LJTS
mixtures [5]. No adjustment of parameters is required for the
accurate description of both bulk and interfacial properties of
LJTS mixtures.

2. Density gradient theory

The free energy of the heterogeneous system is expanded
in DGT in a Taylor series in the derivatives of the density with
respect to the spatial coordinate normal to the interface ∇mρ,
m = 1, 2, ... and truncated after the square gradient term. To
model fluid interfaces, DGT only requires a model of the free
energy of the bulk fluid and the so-called influence parameter
κi j . The influence parameter describes the influence of the
density gradients on the free energy. For a comprehensive
introduction we refer to [3,90–92]. For a planar interface of
a binary mixture with the components i and j, the free energy
can be written as

a(ρ ) = a0(ρ) +
2∑

i=1

2∑
j=1

1/2 κi j∇ρi · ∇ρ j, (8)

where a0(ρ) is the free energy of the homogeneous system
at the local composition, ρ indicates the vector of the number
densities ρi, and ∇ρ are the corresponding gradients. κi j are
the influence parameters for the pure substances (if i = j) and
the cross interaction (if i �= j). In the case of i = j, indices are
labeled only with one subscript for simplicity in the following,
e.g., κ11 = κ1. The PeTS EOS is employed for calculating the
free energy in Eq. (8).

The cross-interaction influence parameter was assumed
here to be the geometric mean of the pure substance influence
parameters [93,94]

κi j = √
κiκ j . (9)

In a previous work of our group it was shown that this
assumption leads to almost perfect agreement between results
from DGT and computer experiment [5] for LJTS mixtures
in the entire composition range. The influence parameter
of the high-boiling component was adopted from [48], i.e.,

κ1 = 2.7334 σ 5ε. The influence parameters of the low-boiling
component 2 were calculated by κ2 = κ1

ε2
ε1

. The results for
the interfacial properties of mixtures are thereby predictions.

To obtain the equilibrium density profiles ρi(z) of both
components connecting the bulk phases, Eq. (8) has to be min-
imized. For solving the DGT equation for both components in
the interfacial domain, we used the stabilized DGT algorithm
proposed by Mu et al. [95], which is numerically robust and
avoids choosing a reference component, which has numerical
pitfalls [96]. The domain length is set to 20 σ with a spatial
discretization of 0.02 σ .

The surface tension γ was calculated by

γ =
∫ 2∑

i=1

2∑
j=1

κi j∇ρi∇ρ j dz. (10)

D. Interfacial properties

The MD simulations as well as the DGT yield the com-
ponent density profiles ρi(z) of both components i = 1, 2 in
the interfacial region. On the basis of the density profiles
ρ1(z) and ρ2(z), the relative adsorption of the low-boiling
component as defined by Gibbs [97] can be computed by the
symmetric interface segregation according to Telo da Gama
and Evans (see [98,99]):



(1)
2 = −(ρ ′

2 − ρ ′′
2 )

∫ ∞

−∞

[
ρ1(z) − ρ ′

1

ρ ′
1 − ρ ′′

1

− ρ2(z) − ρ ′
2

ρ ′
2 − ρ ′′

2

]
dz,

(11)

where ρ ′
1, ρ ′′

1 and ρ ′
2, ρ ′′

2 are the component densities at satu-
ration in the bulk liquid and bulk vapor phase, respectively.



(1)
2 is the relative surface adsorption of component 2 at

component 1.
The interfacial excess can also be characterized by the

so-called enrichment Ei [1] which is defined as the ratio of
the maximum local density of component i in the interfacial
region and the larger of the corresponding densities in the
two bulk phases. Hence, the enrichment of the low-boiling
component 2 is

E2 = max[ρ2(z)]

max(ρ ′
2, ρ

′′
2 )

. (12)

The relative adsorption and the enrichment are linked, but do
not contain the same information [1,5]. Adsorption may occur
although no enrichment (E2 = 1) is present, for example, if
the two component density profiles are shifted relative to
each other [5]. But an enrichment will generally result in an
adsorption.

To describe the thickness of the planar interface, we use
the 90-10% definition for the effective interfacial thickness
L90

10 according to Lekner and Henderson [100], which is the
distance between the points where the total local density
ρtot (z) = ρ1(z) + ρ2(z) reaches 10 and 90% of the total bulk
number densities, respectively:

L90
10 = z

(
ρ tot

90

) − z
(
ρ tot

10

)
,

ρ tot
10 = ρ ′′

tot + 0.1(ρ ′
tot − ρ ′′

tot ), (13)

ρ tot
90 = ρ ′′

tot + 0.9(ρ ′
tot − ρ ′′

tot ).
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FIG. 3. Selection of isothermal p-x phase diagrams of binary LJTS mixtures at T = 0.77 εk−1
B for different binary interaction parameters

ξ and ratios of the dispersion energies of both components ε2/ε1. The phase diagrams were calculated by the PeTS EOS [5,48]. Columns
have constant binary interaction parameter as indicated at the top; rows have constant ratio of the dispersion energies as indicated on the right.
Corner A is top left, and corner B is bottom right (see text).

The origin on the z axis of interfacial profiles from both MD
and DGT was chosen such that ρtot (z) = 0 at ρtot = ρ ′′

tot +
0.5(ρ ′

tot − ρ ′′
tot ).

III. RESULTS AND DISCUSSION

A. Vapor-liquid equilibria

The vapor-liquid equilibrium of LJTS mixtures (see Fig. 2)
was investigated at T = 0.77 εk−1

B with both MD simulations
and the PeTS EOS. The MD simulations were carried out for a
liquid phase mole fraction of the low-boiling component 2 of
x′

2 = 0.05 mol mol−1. The numerical values of the VLE data

at x′
2 = 0.05 mol mol−1 and T = 0.77 εk−1

B obtained from MD
and the PeTS EOS are reported for all 90 mixtures in the
Supplemental Material [112] (vapor pressure, gas phase com-
position, and saturated densities). The PeTS EOS was used to
calculate the isothermal phase diagrams of all 90 mixtures.
Representative results for 30 systems are shown in Fig. 3.
For all mixtures the high-boiling component 1 is the same.
Its vapor pressure is ps = 0.0104 εσ−3 at T = 0.77 εk−1

B . The
low-boiling component 2 in the mixtures varies. Results for
different values of ε2/ε1 are shown in the different rows of
the matrix depicted in Fig. 3. For high values of ε2/ε1, the
component 2 is subcritical, for small values of ε2/ε1, it is
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B

0.5

0.2

0.4

A

0.6

0.6

0.8

1.20.7 1.1
0.8 1

0.9 0.9

FIG. 4. Henry’s law constant of binary LJTS mixtures 1 + 2 at
T = 0.77 εk−1

B as a function of the binary interaction parameter ξ

and the ratio of the dispersion energies ε2/ε1. Results from MD: blue
points; results from PeTS EOS [5,48]: orange points. The surface is
a linear interpolation of the EOS results. The color of the surface is
coded by its height.

supercritical. The critical temperature of the pure component
2 is Tc = 0.77 εk−1

B for ε2/ε1 = 0.71. In the columns of the
matrix shown in Fig. 3, results for different choices of ξ are
presented. For ξ = 1 the mixtures are almost ideal in the sense
of Raoult’s law. For ξ > 1 attractive interactions prevail and
the mixtures tend to form high-boiling azeotropes, while for
ξ < 1 repulsive interactions prevail and the mixtures tend to
form low-boiling azeotropes. Decreasing ξ below the lowest
value that was studied in the present work (ξ = 0.85) leads
to a liquid-liquid phase split at T = 0.77 εk−1

B . As studying
liquid-liquid equilibria was out of the scope of the present
paper, only mixtures with ξ > 0.85 were studied. The critical
pressures of the mixtures with small values of ε2/ε1 show
an interesting behavior: they remain almost constant upon
lowering ξ and increase only sharply for the lowest value of ξ

shown in Fig. 3.
Qualitatively, the bubble lines of the mixtures in the ξ ,

ε2/ε1 plane differ more than the dew lines. This can be
interpreted as a consequence of the fact that the interactions in
the liquid phase are dominating the VLE behavior compared
to a minor influence of the vapor phase. This is evident, since
the self interactions and cross interactions have a stronger
impact in the dense liquid phase.

The results for the Henry’s law constants of all 90
investigated mixtures at T = 0.77 εk−1

B that were obtained
from the MD simulations as well as from the PeTS EOS
are shown in Fig. 4 as a function of the binary interaction
parameter ξ and the ratio of the dispersion energies ε2/ε1.
The numeric values are reported in the Supplemental Material
[112]. The results from the computer experiment and the
theory are found to be in good agreement for all mixtures.
As expected, the Henry’s law constant H2,1 increases steadily
with decreasing ratio of dispersion energies ε2/ε1 as well as
with decreasing values of ξ .

The plot of H2,1 over ε2/ε1 and ξ shown in Fig. 4 has
some interesting features. First, moving along the diagonal
connecting the corner points (ε2/ε1 = 0.5, ξ = 0.85, labeled

B
-0.04

0.5

-0.02

0.6

0

A

2 / 
-3 0.02

0.7 1.2

0.04

1.10.8
1

0.9 0.9

FIG. 5. Difference in the bulk number density of the low-
boiling component �ρ2 = ρ ′

2 − ρ ′′
2 at T = 0.77 εk−1

B and x′
2 =

0.05 mol mol−1 as a function of the binary interaction parameter ξ

and the ratio of the dispersion energies ε2/ε1. Results from MD: blue
points; results from PeTS EOS [5,48]: orange points. The surface is
a linear interpolation of the EOS results. The color of the surface is
coded by its height position. The black line indicates the trace of the
zero crossing line �ρ2 = 0 from the EOS results.

here as corner A, and ε2/ε1 = 0.95, ξ = 1.25, labeled here
as corner B), the Henry’s law constant first increases only
weakly but then steeply. This is due to the fact that towards
corner B the mean dispersive interactions in the liquid phase
become less attractive, which decreases the solubility of the
low-boiling component 2 in the high-boiling component 1.

Furthermore, the surface H2,1 = H2,1(ε2/ε1, ξ ) has a re-
markably simple shape. The traces of the level curves in
the ε2/ε1, ξ plane can be approximated by segments of root
functions (see Fig. 4), which results in an approximately
radial symmetry of the function H2,1 = H2,1(ε2/ε1, ξ ) in the
investigated range of ε2/ε1 and ξ . As only a segment of the
function is plotted in Fig. 4, the curvature can only be seen by
inspecting the traces of the isolines. Going from corner A to
corner B in a straight line follows the gradient of that function.

Figure 5 shows the difference of the number density of
the low-boiling component between the bulk vapor and bulk
liquid phase �ρ2 = ρ ′

2 − ρ ′′
2 at x′

2 = 0.05 mol mol−1 and T =
0.77 εk−1

B as a function of the binary interaction parameter ξ

and the ratio of the dispersion energies ε2/ε1. The difference
of the number density of the low-boiling component �ρ2 was
calculated for all 90 LJTS mixtures using both MD simulation
and the PeTS EOS. The computer experiments and the EOS
have a distinct offset which vanishes in corner B, but the qual-
itative behavior of the results from both methods agrees well.

The deviations show that the VLE behavior of LJTS mix-
tures is not described perfectly by the PeTS EOS, but in as-
sessing the deviations it has to be considered that �ρ2 is a very
sensitive property. The same symmetry as for the Henry’s law
constant (see Fig. 4) is also found for �ρ2(ε2/ε1, ξ ) (Fig. 5)
but the trends are inverse: �ρ2 is low where H2,1 is high. This
is not unexpected since both properties express the tendency
of the low-boiling component to portion on both phases.

An interesting feature of �ρ2(ε2/ε1, ξ ) is the zero crossing
line of �ρ2 close to corner B. In a wide range of inves-
tigated mixtures �ρ2 > 0, i.e., the low-boiling component
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FIG. 6. Selection of density profiles at planar vapor-liquid interfaces calculated by DGT: local density of the low-boiling component 2
(black line) and high-boiling component 1 (red line) as a function of the spatial coordinate z normal to the interface in the plane of the binary
interaction parameter ξ and the ratio of the dispersion energies ε2/ε1. Columns have constant binary interaction parameter as indicated on the
top; rows have constant ratio of the dispersion energies as indicated on the right. The temperature is always T = 0.77 εk−1

B and the liquid phase
concentration is x′

2 = 0.05 mol mol−1. Corner A is top left, and corner B is bottom right (see text).

accumulates in the liquid phase. In contrast, for �ρ2 < 0
the low-boiling component has a preferential residency in the
vapor phase.

B. Vapor-liquid interfaces

Planar vapor-liquid interfaces were investigated by both
MD and DGT at T = 0.77 εk−1

B and x′
2 = 0.05 mol mol−1.

Besides the density profiles, the interfacial enrichment [see
Eq. (12)], relative adsorption [see Eq. (11)], interfacial tension
[see Eqs. (10) and (5)], and interfacial thickness [see Eq. (13)]
were investigated for all 90 binary LJTS mixtures (see Fig. 2).
Density profiles are shown in Fig. 6, the enrichment is shown
in Fig. 7, the relative adsorption is shown in Fig. 8, the surface
tension is shown in Fig. 9, and the interfacial thickness is
shown in Fig. 10.

The prescribed liquid phase composition is exactly
matched in DGT, but not by MD due to fluctuations. The
mole fraction of the low-boiling component in the liquid
phase obtained from the MD simulations is in the range x′

2 =
0.05–0.07 mol mol−1. The numeric values of the interfacial
properties from both MD and DGT as well as the actual liquid
phase composition in MD are reported in Table I. The error
bars of the MD simulation results are not shown in the plots

B
1

1.5

0.5

2 E
2

2.5

3

0.6
A

1.20.7
1.10.8 10.9 0.9

FIG. 7. Enrichment E2 of the low-boiling component 2, as de-
fined by Eq. (12), at the interface as a function of the binary
interaction parameter ξ and the ratio of the dispersion energies ε2/ε1

at T = 0.77 εk−1
B and x′

2 = 0.05 mol mol−1. Results from MD: blue
points; results from DGT: orange points. The surfaces are linear
interpolations of the respective results. The color of the surfaces is
coded by its height position. The black line indicates the trace of zero
crossing line �ρ2 = 0 from the DGT results (see Fig. 5). Corners A
and B to which the text refers are indicated.
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FIG. 8. Relative adsorption 

(1)
2 of the low-boiling component 2,

as defined by Eq. (11), at the interface as a function of the binary
interaction parameter ξ and the ratio of the dispersion energies ε2/ε1

at T = 0.77 εk−1
B and x′

2 = 0.05 mol mol−1. Results from MD: blue
points; results from DGT: orange points. The surfaces are linear
interpolations of the respective results. The color of the surfaces is
coded by its height position. The black line indicates the trace of the
zero crossing line 


(1)
2 = 0 from the DGT results.

in Figs. 7–10 for clarity, but the statistical uncertainties are
reported in Table I.

1. Density profiles and enrichment

Selected results for the density profiles are shown in Fig. 6.
The plot is organized in the same way as Fig. 3, i.e., the
selected systems are the same. The density profiles are plot-
ted as a function of the spatial coordinate z normal to the
planar interface. For clarity, only the DGT density profiles

B
0.25

A
0.5

0.3

0.35

0.4

1.2

0.45

0.6 1.10.7
10.8

0.90.9

FIG. 9. Interfacial tension γ , as defined by Eqs. (10) and (5), as a
function of the binary interaction parameter ξ and the ratio of the dis-
persion energies ε2/ε1 at T = 0.77 εk−1

B and x′
2 = 0.05 mol mol−1.

Results from MD: blue points; results from DGT: orange points. The
surfaces are linear interpolations of the respective results. The color
of the surfaces is coded by its height position. The black dot indicates
the surface tension γ1 of the pure component 1 at T = 0.77 εk−1

B

according to Stephan et al. [63]. The black line indicates the crossing
line of γ = γ1 from the DGT results.
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FIG. 10. Interfacial thickness L90
10 , as defined by Eq. (13), as a

function of the binary interaction parameter ξ and the ratio of the dis-
persion energies ε2/ε1 at T = 0.77 εk−1

B and x′
2 = 0.05 mol mol−1.

Results from MD: blue points; results from DGT: orange points. The
surfaces are linear interpolations of the respective results. The color
of the surfaces is coded by its height position.

are shown here. It was already shown by Stephan et al. [5]
that the density profiles of LJTS mixtures predicted by MD
and DGT + PeTS agree very well. This is confirmed in the
present paper. It can be seen from Fig. 6 that the enrichment
of the low-boiling component E2, i.e., the relative height of
the peak in ρ2(z), generally increases with decreasing ε2/ε1

and decreasing ξ . Details become clearer in Fig. 7, where E2

is plotted as a function of ε2/ε1 and ξ . The layout of the plot
is similar to that in Figs. 4 and 5.

In contrast to the density profile of the low-boiling compo-
nent 2, which dramatically changes in the ξ , ε2/ε1 plane, the
density profile of the high-boiling component 1 remains fairly
similar among the different mixtures, as already discussed
in our previous work [5]. No enrichment of the high-boiling
component 1 is observed in any mixture.

Starting in corner A, no enrichment of the low-boiling
component 2 is found. The enrichment increases with a
decreasing �ρ2 towards corner B (see Fig. 5). The density
profiles in the region of the ξ , ε2/ε1 plane where �ρ2 is close
to zero show a particularly high enrichment. A significant en-
richment of the low-boiling component is found for mixtures
that exhibit a low solubility of the low-boiling component in
component 1, i.e., large Henry’s law constants (see Fig. 4).

The predictions for the enrichment E2 from the computer
experiments and the theory are found to be in good qualitative
agreement for all investigated mixtures. DGT overestimates
the enrichment predicted by MD for mixtures close to corner
B. Such an overestimation of the enrichment E2 by DGT
compared to MD results was also reported previously by
Becker et al. [1] and Stephan et al. [5] for mixtures where
the low-boiling component is supercritical. The enrichment
predicted by MD in corner A is slightly above unity, while
DGT predicts no enrichment, i.e., E2 = 1, in that region. As
already discussed in [5], the deviation of the MD results from
E2 = 1 is attributed to the fluctuations in connection with the
definition of the enrichment [see Eq. (12)].
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TABLE I. Interfacial properties of the investigated binary LJTS mixtures. Results from MD and DGT+PeTS EOS. The temperature is
T = 0.77 εk−1

B . The DGT results are calculated at the liquid phase composition x′
2 = 0.05 mol mol−1. The exact MD liquid phase composition

is given in the second column. The other columns are, from left to right, the surface tension, the relative adsorption, the enrichment of the
low-boiling component 2, and the interfacial thickness. The number in the parentheses indicates the statistical uncertainty in the last decimal
digit.

γ /εσ−2 

(1)
2 /σ−2 E2 L90

10/σ

ε2/ε1 x′
2/mol mol−1 MD EOS MD EOS MD EOS MD EOS

ξ = 0.85
0.5 0.058(2) 0.23(3) 0.263 0.30(3) 0.248 1.71(3) 2.05 4.08(9) 3.24
0.55 0.058(1) 0.26(3) 0.287 0.28(2) 0.231 2.10(3) 2.53 3.8(1) 3.10
0.6 0.063(3) 0.28(2) 0.310 0.23(4) 0.207 2.3(2) 3.09 3.53(9) 2.96
0.65 0.062(2) 0.32(2) 0.330 0.18(4) 0.181 2.1(1) 2.91 3.37(8) 2.84
0.7 0.061(1) 0.32(2) 0.349 0.18(2) 0.156 1.92(8) 2.53 3.3(1) 2.76
0.75 0.063(2) 0.34(2) 0.365 0.15(3) 0.133 1.66(8) 2.20 3.16(7) 2.68
0.8 0.062(2) 0.35(2) 0.379 0.15(3) 0.112 1.6(1) 1.93 3.08(8) 2.62
0.85 0.061(1) 0.36(1) 0.392 0.15(2) 0.094 1.57(7) 1.70 3.03(8) 2.56
0.9 0.065(2) 0.38(2) 0.403 0.11(4) 0.077 1.3(1) 1.51 2.95(4) 2.52
0.95 0.064(1) 0.39(2) 0.413 0.11(4) 0.063 1.29(9) 1.34 2.91(5) 2.48
ξ = 0.9
0.5 0.059(4) 0.27(2) 0.305 0.22(3) 0.195 2.16(5) 2.53 3.63(9) 2.96
0.55 0.059(3) 0.30(1) 0.326 0.23(2) 0.172 2.3(1) 2.83 3.44(7) 2.86
0.6 0.059(1) 0.31(2) 0.346 0.18(2) 0.149 2.0(1) 2.45 3.27(9) 2.76
0.65 0.062(1) 0.34(2) 0.363 0.14(3) 0.128 1.74(7) 2.13 3.19(7) 2.66
0.7 0.061(2) 0.35(2) 0.378 0.12(2) 0.108 1.6(1) 1.87 3.09(6) 2.60
0.75 0.062(2) 0.37(2) 0.391 0.11(3) 0.090 1.46(8) 1.65 3.02(6) 2.54
0.8 0.062(1) 0.38(2) 0.402 0.09(2) 0.074 1.38(6) 1.47 2.93(6) 2.50
0.85 0.063(2) 0.38(3) 0.413 0.10(1) 0.060 1.3(1) 1.32 2.89(4) 2.46
0.9 0.065(2) 0.40(2) 0.422 0.07(3) 0.048 1.20(7) 1.19 2.83(5) 2.44
0.95 0.066(1) 0.42(2) 0.429 0.03(3) 0.037 1.09(6) 1.09 2.80(4) 2.42
ξ = 0.95
0.5 0.057(1) 0.30(2) 0.337 0.20(3) 0.152 2.22(5) 2.53 3.43(7) 2.78
0.55 0.059(1) 0.33(2) 0.355 0.17(2) 0.131 1.90(7) 2.19 3.27(8) 2.70
0.6 0.061(3) 0.34(2) 0.372 0.14(2) 0.111 1.7(1) 1.91 3.14(9) 2.62
0.65 0.061(1) 0.36(3) 0.386 0.13(1) 0.092 1.53(8) 1.68 3.05(8) 2.56
0.7 0.062(2) 0.37(3) 0.399 0.11(3) 0.076 1.4(1) 1.49 3.01(8) 2.50
0.75 0.061(1) 0.37(2) 0.410 0.10(2) 0.062 1.38(3) 1.34 3.00(5) 2.46
0.8 0.064(2) 0.40(2) 0.419 0.09(2) 0.049 1.21(8) 1.22 2.87(8) 2.44
0.85 0.065(1) 0.41(2) 0.428 0.05(3) 0.038 1.11(8) 1.12 2.84(7) 2.40
0.9 0.067(2) 0.42(2) 0.435 0.04(3) 0.028 1.07(6) 1.04 2.74(6) 2.38
0.95 0.067(1) 0.42(2) 0.442 0.07(2) 0.019 1.12(4) 1.00 2.76(7) 2.36
ξ = 1
0.5 0.059(2) 0.32(2) 0.361 0.17(3) 0.119 1.82(8) 2.04 3.25(9) 2.66
0.55 0.062(1) 0.34(2) 0.377 0.14(3) 0.100 1.55(8) 1.78 3.13(7) 2.60
0.6 0.062(1) 0.36(1) 0.392 0.10(2) 0.082 1.43(7) 1.57 2.99(7) 2.52
0.65 0.062(2) 0.37(2) 0.404 0.11(2) 0.067 1.35(1) 1.40 2.95(6) 2.48
0.7 0.065(1) 0.39(3) 0.415 0.07(4) 0.053 1.12(7) 1.27 2.87(6) 2.44
0.75 0.065(2) 0.41(2) 0.424 0.06(2) 0.041 1.13(5) 1.16 2.81(5) 2.42
0.8 0.066(2) 0.41(2) 0.433 0.04(3) 0.031 1.09(6) 1.08 2.81(6) 2.38
0.85 0.067(2) 0.43(3) 0.440 0.02(5) 0.022 1.05(7) 1.02 2.72(7) 2.36
0.9 0.068(2) 0.43(2) 0.446 0.05(3) 0.013 1.08(6) 1.00 2.72(8) 2.36
0.95 0.068(2) 0.45(2) 0.452 0.02(3) 0.006 1.08(7) 1.00 2.73(4) 2.34
ξ = 1.05
0.5 0.059(2) 0.36(2) 0.380 0.15(3) 0.094 1.6(1) 1.71 3.13(6) 2.58
0.55 0.061(1) 0.36(2) 0.395 0.13(3) 0.076 1.44(7) 1.51 3.01(8) 2.50
0.6 0.063(1) 0.38(2) 0.407 0.09(2) 0.061 1.25(6) 1.36 2.92(7) 2.46
0.65 0.064(1) 0.40(2) 0.418 0.07(2) 0.048 1.17(6) 1.23 2.84(6) 2.42
0.7 0.065(2) 0.41(2) 0.428 0.07(3) 0.036 1.13(6) 1.14 2.80(4) 2.40
0.75 0.067(2) 0.42(3) 0.436 0.06(2) 0.026 1.11(7) 1.07 2.76(9) 2.38
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TABLE I. (Continued.)

γ /εσ−2 

(1)
2 /σ−2 E2 L90

10/σ

ε2/ε1 x′
2/mol mol−1 MD EOS MD EOS MD EOS MD EOS

0.8 0.067(1) 0.43(2) 0.443 0.02(2) 0.017 1.08(5) 1.02 2.73(6) 2.36
0.85 0.067(1) 0.44(2) 0.449 0.03(1) 0.010 1.08(3) 1.00 2.69(4) 2.34
0.9 0.068(2) 0.45(2) 0.455 0.04(4) 0.003 1.11(9) 1.00 2.70(9) 2.32
0.95 0.069(1) 0.45(2) 0.460 −0.01(2) −0.003 1.07(4) 1.00 2.63(5) 2.32
ξ = 1.1
0.5 0.061(1) 0.37(2) 0.396 0.08(3) 0.073 1.38(7) 1.49 3.05(5) 2.50
0.55 0.063(2) 0.39(2) 0.409 0.07(2) 0.058 1.24(9) 1.34 2.93(7) 2.44
0.6 0.065(2) 0.41(2) 0.420 0.06(3) 0.044 1.12(7) 1.22 2.86(6) 2.42
0.65 0.065(2) 0.41(2) 0.430 0.04(3) 0.033 1.08(5) 1.13 2.77(8) 2.38
0.7 0.066(1) 0.42(3) 0.438 0.01(3) 0.023 1.04(5) 1.06 2.77(4) 2.36
0.75 0.067(2) 0.43(2) 0.445 0.03(3) 0.014 1.08(4) 1.02 2.73(6) 2.34
0.8 0.068(1) 0.44(2) 0.452 0.01(2) 0.007 1.07(4) 1.00 2.67(5) 2.32
0.85 0.069(1) 0.46(2) 0.457 −0.02(4) 0.000 1.04(6) 1.00 2.68(6) 2.32
0.9 0.070(1) 0.46(2) 0.462 −0.01(3) −0.006 1.07(3) 1.00 2.65(5) 2.30
0.95 0.070(2) 0.47(2) 0.466 0.01(3) −0.011 1.09(4) 1.00 2.63(7) 2.30
ξ = 1.15
0.5 0.063(2) 0.38(3) 0.409 0.07(2) 0.057 1.2(1) 1.33 2.89(3) 2.44
0.55 0.063(1) 0.40(2) 0.421 0.09(3) 0.043 1.17(6) 1.22 2.85(7) 2.40
0.6 0.065(1) 0.40(2) 0.431 0.07(2) 0.031 1.11(4) 1.13 2.82(7) 2.38
0.65 0.066(1) 0.43(2) 0.439 0.04(2) 0.021 1.08(5) 1.06 2.77(4) 2.36
0.7 0.068(2) 0.43(2) 0.447 0.00(5) 0.013 1.04(5) 1.02 2.71(7) 2.34
0.75 0.068(1) 0.45(3) 0.453 0.01(3) 0.005 1.06(5) 1.00 2.68(5) 2.32
0.8 0.069(1) 0.45(2) 0.459 0.00(3) −0.001 1.06(3) 1.00 2.64(7) 2.30
0.85 0.070(2) 0.46(1) 0.464 0.01(3) −0.007 1.09(6) 1.00 2.65(8) 2.30
0.9 0.070(1) 0.46(2) 0.468 −0.02(2) −0.012 1.05(5) 1.00 2.65(7) 2.30
0.95 0.071(1) 0.47(2) 0.472 −0.05(2) −0.017 1.04(4) 1.00 2.62(5) 2.28
ξ = 1.2
0.5 0.064(2) 0.39(2) 0.420 0.07(3) 0.043 1.13(8) 1.23 2.87(9) 2.40
0.55 0.067(2) 0.42(2) 0.431 0.02(3) 0.031 1.07(6) 1.13 2.78(5) 2.38
0.6 0.066(2) 0.43(2) 0.440 0.06(2) 0.021 1.12(5) 1.07 2.76(6) 2.34
0.65 0.067(1) 0.43(2) 0.447 0.01(2) 0.012 1.06(3) 1.02 2.71(4) 2.34
0.7 0.069(1) 0.45(2) 0.454 0.00(2) 0.004 1.05(3) 1.00 2.69(5) 2.32
0.75 0.069(1) 0.45(2) 0.460 0.01(2) −0.002 1.08(3) 1.00 2.67(4) 2.30
0.8 0.070(1) 0.47(3) 0.465 0.00(3) −0.008 1.08(4) 1.00 2.63(5) 2.30
0.85 0.070(2) 0.46(3) 0.469 −0.03(2) −0.013 1.05(4) 1.00 2.61(5) 2.28
0.9 0.070(1) 0.48(3) 0.473 −0.03(1) −0.018 1.06(3) 1.00 2.58(7) 2.28
0.95 0.070(1) 0.48(2) 0.476 −0.03(3) −0.022 1.06(3) 1.00 2.62(7) 2.28
ξ = 1.25
0.5 0.065(1) 0.41(2) 0.430 0.05(3) 0.032 1.09(4) 1.15 2.80(5) 2.36
0.55 0.067(1) 0.42(2) 0.439 0.02(2) 0.021 1.06(3) 1.08 2.79(8) 2.32
0.6 0.067(1) 0.43(2) 0.447 0.02(1) 0.012 1.06(2) 1.03 2.70(4) 2.30
0.65 0.069(1) 0.45(2) 0.454 0.00(3) 0.004 1.05(3) 1.00 2.65(7) 2.30
0.7 0.069(1) 0.45(2) 0.460 0.02(2) −0.003 1.09(4) 1.00 2.63(4) 2.28
0.75 0.070(1) 0.47(2) 0.465 0.01(3) −0.008 1.07(3) 1.00 2.61(8) 2.30
0.8 0.070(1) 0.48(2) 0.470 −0.02(1) −0.014 1.06(2) 1.00 2.61(6) 2.28
0.85 0.071(1) 0.48(2) 0.474 −0.01(2) −0.018 1.07(4) 1.00 2.62(7) 2.28
0.9 0.070(1) 0.49(2) 0.477 −0.03(2) −0.022 1.07(3) 1.00 2.59(6) 2.28
0.95 0.071(1) 0.49(2) 0.481 −0.04(1) −0.024 1.06(4) 1.00 2.58(8) 2.28

Again, the same symmetry as in the plots shown in Figs. 4
and 5 (Henry’s law constant H2,1 and density difference �ρ2)
is also found for E2(ε2/ε1, ξ ).

In corner A (high mean dispersive interactions), practically
no enrichment E2 is found, while strong enrichment is found
in corner B. Starting in corner A and going to corner B on
a straight line, the enrichment E2 remains around unity for a

while, and then increases sharply. Interestingly, there is a drop
in E2, before corner B is reached.

The position of the line of the maximal enrichment E2 in
the ξ , ε2/ε1 plane, as indicated in Fig. 7, is in very good
agreement with the zero crossing line of the difference of
the number density of component 2 �ρ2 = 0 (see Fig. 5),
i.e., it corresponds to mixtures for which the density of the
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component 2 is equal in both phases. For mixtures on that
line, any adsorption of the low-boiling component at the
interface must result in an enrichment for geometric reasons.
In contrast, for mixtures with �ρ2 �= 0 a relative adsorption
can also arise from a relative shift of ρ2(z) with respect to
ρ1(z). Even though the predicted magnitude of the enrichment
by MD and DGT differs slightly, the position of the maximum
line in the ξ , ε2/ε1 plane agrees perfectly.

2. Relative adsorption

Figure 8 shows the relative adsorption 

(1)
2 of the low-

boiling component at the vapor-liquid interface, as defined by
Eq. (11), as a function of the binary interaction parameter ξ

and the ratio of the dispersion energies ε2/ε1. Again results
from both MD and DGT are shown. The predictions from the
computer experiment and the theory are found to be in good
agreement for all investigated mixtures. The MD results show
some scattering due to fluctuations in the simulations, while
results from the theory are smooth. The symmetry that was
observed in the previous plots of this type is also observed
here. In contrast to the enrichment E2, the relative adsorption
increases steadily when going from corner A to corner B. The
relative adsorption of the low-boiling component 2 is negative
close to the corner A, i.e., high mean attractive interactions,
and positive elsewhere. The zero crossing line of the relative
adsorption (black line in Fig. 8) is roughly identical with the
line that separates mixtures with high-boiling azeotropes from
zeotropic mixtures (see Fig. 3). Hence, the relative adsorption



(1)
2 is negative for mixtures with high-boiling azeotropes,

while it is positive for other mixtures, which reinforces find-
ings for the surface excess in [5,39,101–103].

Furthermore, the relative adsorption dependency on ξ and
ε2/ε1 can be split into two characteristic regions: one region
exhibiting a nonlinear regime and one region exhibiting a
linear regime. Going from corner A to corner B, the relative
adsorption exhibits first a convex increase, whereas approach-
ing corner B 


(1)
2 increases linearly. This can only be seen

in the results obtained from DGT, since the MD results are
superimposed by significant scattering. The breakup between
the linear and nonlinear regime of 


(1)
2 corresponds well with

the region where the enrichment of the low-boiling component
is close to unity and the region of significant enrichment.
This indicates again [1,5] that the enrichment and the relative
adsorption contain different information and it is emphasized
that both should be discussed. Relative adsorption may occur
even if there is no enrichment, but an enrichment will in
general result in an adsorption.

3. Surface tension

Figure 9 shows the surface tension as a function of the
binary interaction parameter ξ and the ratio of dispersion
energies ε2/ε1. The results from both MD and DGT are
shown. The predictions from the computer experiments and
the theory agree remarkably well for all investigated mixtures,
i.e., the DGT results mostly lie within the MD error bars (see
Table I). Only slight systematic deviations are found in corner
B, where the DGT results overestimate those from computer
experiments. The same type of symmetry as for the properties

discussed above (see Figs. 4, 5, 7, and 8) is also observed for
γ (ε2/ε1, ξ ).

Going from corner A to corner B, the surface tension
decreases steadily. It is found that the line, for which the
surface tension of the mixture equals the surface tension of
the pure component 1 (see Fig. 9), is in good agreement with
the line for which the relative adsorption is zero (see Fig. 8).
This is related to the Gibbs adsorption equation which relates
the surface excess to the concentration dependence of the
surface tension. Adding component 2 to the pure component 1
in corner A, i.e., the region of mixtures with the highest mean
dispersive interactions, leads to an increase of the surface
tension. This is a typical finding for mixtures with a high-
boiling azeotrope [5,39,104]. For mixtures with a low-boiling
azeotrope, on the other hand, adding component 2 usually
results in a decreased surface tension [5,39,104], which is also
found in our data.

4. Interfacial thickness

Figure 10 shows the interfacial thickness L90
10 as defined by

Eq. (13) as a function of the binary interaction parameter ξ and
the ratio of dispersion energies ε2/ε1 for both MD and DGT.
The predictions from the computer experiments and the theory
agree qualitatively very well, but are shifted significantly. The
interfacial thickness from DGT is systematically lower than
that from the computer experiments. This could be caused by
fluctuations that are present in MD but not in DGT [1,5,63],
but it could also be caused by differences between the PeTS
EOS and the LJTS force field. The latter hypothesis is sup-
ported by the fact that in a recent study no such differences
were observed for the LJ fluid [30].

On the average the DGT underestimates the MD interfacial
thickness by approximately −15%, which is in line with
results reported earlier for the corresponding pure substances
[63] as well as for selected LJTS mixtures in the entire
composition range [5].

Again, a symmetric behavior is found for L90
10 (ε2/ε1, ξ ).

Going from corner A to corner B, the interfacial thickness
increases steadily. This is in line with the decay of the surface
tension, since broader and smoother density profiles result in
a lower surface tension. The interfacial thickness is almost
twice as high in corner B as in corner A.

The comparison of Figs. 4,6–10 shows that all investigated
bulk and interfacial properties exhibit a regular behavior when
plotted as a function of ε2/ε1 and ξ . For all properties, a
symmetry is found. It is shown in the Supplemental Material
[112] that this symmetry is likewise observed for the vapor
pressure and vapor phase composition at constant temperature
and liquid phase composition. The symmetry is also found
in the matrix diagram of the density profiles in Fig. 6. This
interesting regularity can be explained by a conformal solution
theory, as shown in the following section.

IV. CONFORMAL SOLUTION THEORY AT FLUID
INTERFACES

A. Modeling the regularity of VLE and interfacial properties

The regularity of the properties of the studied binary
LJTS mixtures (see previous section) can be explained with
a CST of the liquid phase. The regularity is thereby put into
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direct relation with the underlying molecular interactions. The
employed CST is adopted from the literature and therefore
only outlined here. For brevity, a mixture n is defined by its
coordinates in the ξ , ε2/ε1 plane as

an = (ξn, (ε2/ε1)n). (14)

Our starting hypothesis is that the observed regularity is
due to the mean dispersive interactions in the liquid phase.
To validate this assumption, the configurational contribution
of the internal energy u′

config of the saturated liquid phase is
studied, where the total internal energy u′ is the sum of the
kinetic energy contribution u′

kin and the configurational contri-
bution u′

config. For a pairwise additive intermolecular potential
v, the configurational internal energy for a given point in
the configurational space r is u′

config(r) = ∑N
k=1

∑N
k>l v(rkl ),

where N is the number of particles and rkl is the distance
between two particles k and l . The configurational internal
energy u′

config of a the binary mixture can be calculated from
rigorous statistical mechanics from the pair potential v and the
radial distribution function (RDF) g(r) [50,87,105]:

u′
config = U ′

config

N

= 1

2
ρ ′

2∑
i=1

2∑
j=1

x′
ix

′
j

∫ ∞

0
gi j (r)vi j (r)r24π dr, (15)

where ρ ′ is the total number density and x′
i is the mole fraction

of component i, N is the total number of particles, gi j is
the radial distribution function between two components i
and j, and vi j is the pair potential energy. To compute and
evaluate u′

config for a given mixture an at given T = 0.77 εk−1
B

and x′
2 = 0.05 mol mol−1, the CST of Leland and coworkers

[52,53,106] is applied here, which goes back to the original
work of van der Waals (see [50,107]) and Longuet-Higgins
[51]. The CST of Leland and coworkers was developed to
provide a statistical-mechanical framework to compute excess
thermodynamic functions of mixing from the intermolecular
potentials and the radial distribution functions of the pure
components (see [51,52,108]). The properties of the studied
mixture are thereby approximated by those of a hypothetical
pure fluid, indicated with the index 00.

Using the assumptions of the conformal solution theory
[52,87] as summarized in Appendix A, Eq. (15) simplifies to

u′
config = u′

config,00 = 1

2
ρ ′

2∑
i=1

2∑
j=1

x′
ix

′
j εi j σ

3
i j

×
∫ ∞

0
g00(r̃) v00(r̃) r̃24π dr̃. (16)

By identifying

2∑
i=1

2∑
j=1

x′
ix

′
j εi j σ

3
i j = ε00 σ 3

00, (17)

Eq. (16) can then be written as

u′
config,00 = ε00 σ 3

00 · 1

2
ρ ′

∫ ∞

0
g00(r̃) v00(r̃) r̃24π dr̃. (18)

Equation (17) is the well-known first mixing rule of the van
der Waals one-fluid theory, which is also used for modeling
LJTS mixtures with the PeTS EOS [5]. Since σi j = σ1 = 1
holds for the entire present paper, a second mixing rule is
obsolete here. The LJTS potential of the reference component
1 is used in Eq. (18), i.e., v00 = vLJTS.

As the dependency of ρ ′ on ξ or ε2/ε1 can be neglected
here in a good approximation, only the first term ε00 σ 3

00 in
Eq. (18) depends on the mixture an. The resulting configu-
rational internal energy u′

config depends evidently directly on
the chosen combination rule. In accordance with the MD,
EOS, and DGT calculations, the modified Lorentz-Berthelot
combination rule [see Eq. (3)] was also employed for the CST.

A correlation for the radial distribution function of the
Lennard-Jones fluid g00 = gLJ was adopted from Morsali
et al. [109]. They propose an empirical correlation of the
Lennard-Jones RDF as a function of the temperature and the
density gLJ = gLJ(r̃, T, ρ). Morsali et al. developed an RDF
correlation for the full Lennard-Jones fluid [109], whereas the
present paper investigates the Lennard-Jones truncated and
shifted fluid. This is incorporated by employing a correspond-
ing state principle, i.e., the Lennard-Jones RDF from Morsali
et al. [109] was calculated at the same reduced temperature
and density with respect to its critical quantity, i.e., Tred =
T LJ/T LJ

c = T LJTS/T LJTS
c and ρred = ρLJ/ρLJ

c = ρLJTS/ρLJTS
c .

The critical parameters were adopted from Vrabec et al. [110]
and Lotfi et al. [66] for the LJTS and LJ fluid, respectively.
The influence of the potential truncation on the RDF is
therefore neglected. Morsali et al. [109] compared results
from their RDF with a large number of computer experiment
data and found excellent agreement. A comparison of u′

config
obtained from the PeTS EOS and the outlined CST is given
in the Supplemental Material [112]. They agree well; the
absolute average deviation is 2%.

In summary, Eq. (18) enables the computation of the con-
figurational internal energy of binary LJTS mixtures u′

config(a)
from CST, using only the RDF of the pure LJTS fluid
gLJTS(r̃, T, ρ) and the potential function vLJTS(r̃). u′

config(a) is
used here to characterize the mean interactions in the saturated
liquid phase and subsequently put these in relation to the
regularity of interfacial properties.

B. Evaluation of the CST model

The configurational internal energy u′
config at T =

0.77 εk−1
B and x′

2 = 0.05 mol mol−1, computed by Eq. (18), is
shown in Fig. 11 as a function of ξ and ε2/ε1 for all 90 investi-
gated LJTS mixtures. Starting in corner A, the absolute value
of the configurational internal energy |u′

config|, and thereby also
the magnitude of the mean dispersive interactions, steadily
decreases with decreasing ξ and decreasing ε2/ε1 towards
corner B, which is a direct result of the molecular interactions.
The internal energy of the liquid phase u′

config(ε2/ε1, ξ ) obeys
the same regular behavior as the bulk and interfacial properties
(see Figs. 4, 5, and 7–10), i.e., radially shaped traces for
u′

config = const. are found in the ε2/ε1, ξ plane.
According to the discussion of Eq. (18), the configurational

internal energy of a binary mixture u′
config at a given temper-

ature and composition depends on the mixture type only via
the term ε00 σ 3

00, that is defined by Eq. (17). Both the integral
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FIG. 11. Configurational internal energy of the saturated liquid
phase u′

config calculated from the conformal solution theory Eq. (18)
as a function of the binary interaction parameter ξ and the ratio
of the dispersion energies ε2/ε1 at x′

2 = 0.05 mol mol−1 and T =
0.77 εk−1

B . The surface is a linear interpolation of the data points.
The color of the surface is coded by its height position.

and the factor 1
2ρ ′ in Eq. (18) can be merged to a constant

I at a given temperature and composition. Introducing ζ =
ε2/ε1, and employing the modified Berthelot combination
rule, Eq. (18) can be written as

u′
config

I
=

2∑
i=1

2∑
j=1

x′
ix

′
j εi j σ

3
i j

= x′
1

2
ε1 + 2 x′

1x′
2 ε1 ξ

√
ζ + x′

2
2
ε1 ζ . (19)

The functional form of u′
config(ξ, ζ ) described by Eq. (19)

yields the regularity with the approximatively radial traces of
u′

config = const. in the ε2/ε1, ξ plane, as depicted in Fig. 11.
Equation (19) indicates that the regular traces that were ob-
served in Figs. 4, 5, and 7–10 are not strictly radial but obey a
more complicated law.

In our case, x′
1, x′

2, and ε1 are constant and the last term
in Eq. (19) is small, as x′

2 is small. Hence, the traces depicted
in Fig. 11 as well as Figs. 4, 5, and 7–10 are basically curves
in which ξ

√
ζ are constant. They only appear to be approx-

imately radial in the plots used here, due to the investigated
ε2/ε1, ξ range.

The regular behavior found in u′
config(ε2/ε1, ξ ) is the same

regular behavior as obtained for the bulk and interfacial
properties (see Figs. 4–10). Hence, the observed regularity
(for both bulk and interfacial properties) is a consequence of
the employed mixing and combination rule in DGT + EOS
and the combination rule in MD. However, the regularity and
the shape of the traces evidently depend on the composition
[see Eq. (19)]. The results from this paper indicate that
the van der Waals one-fluid theory mixing rule used in the
PeTS EOS [5,48] yields an excellent description of molec-
ular simulation results for both bulk and interfacial mixture
properties. The fact that the bulk and interfacial properties in
the VLE are dominated by the liquid phase interactions and
can be described by the CST can be exploited to find simple
correlations of all studied properties. The hypothesis is here

FIG. 12. Results for the conformal solution theory applied to the
VLE properties (Henry’s law constant H2,1, vapor pressure ps, and
vapor phase composition x′′

2 ): The respective VLE properties com-
puted by MD (blue) and the EOS (orange) are shown as a function
of the configurational internal energy of the saturated liquid phase
u′

config as computed by Eq. (18). The black lines indicate the fitted
functions (B1)–(B3) (fitted to the DGT results). All results are at
x′

2 = 0.05 mol mol−1 and T = 0.77 εk−1
B . The dashed line indicates

u′
config of the high-boiling pure component 1 computed by Eq. (18).

The black symbol indicates the vapor pressure of the pure component
1 obtained from the EOS.

that they can be described as simple functions of the internal
energy of the liquid phase.

Figures 12 and 13 show that this hypothesis is confirmed by
the data from the present paper: bulk and interfacial properties
of the 90 LJTS mixtures are plotted, as a function of the
corresponding liquid phase configurational internal energy
u′

config. All properties are at constant temperature and liquid
phase composition. The results from both MD and DGT are
shown. The investigated VLE bulk properties (Fig. 12) and
interfacial properties (Fig. 13) from both MD and DGT are
found to be a simple function of each mixture’s liquid phase
configurational internal energy, which strongly indicates that
there is a direct link between them. For all studied properties,
a simple relation is found, for both the results obtained from
MD and those from EOS + DGT.

Instead of the internal energy from CST also the internal
energy from the EOS or the force field could have been
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FIG. 13. Results for the conformal solution theory applied to
the interfacial properties (enrichment E2, relative adsorption 


(1)
2 ,

surface tension γ , and interfacial thickness L90
10): The respective

interfacial properties computed by MD (blue) and DGT (orange) are
shown as a function of the configurational internal energy of the
saturated liquid phase u′

config as computed by Eq. (18). The black
lines indicate the fitted functions (B1) and (B2) (fitted to the DGT
results). All results are at x′

2 = 0.05 mol mol−1 and T = 0.77 εk−1
B .

The dashed line indicates u′
config of the high-boiling pure component

1 computed by Eq. (18). Black symbols indicate the values for the
pure component 1 obtained from the EOS + DGT.

used for establishing plots like the ones shown in Figs. 12
and 13. The basic findings would have been the same, as
the internal energies of the liquid phase determined by the
three methods agree very well (see the Supplemental Material
[112]). However, using the CST gives further insight on the
underlying mechanism, i.e., the fact that the choice of the
combination rule is responsible for the regularity behavior
[see Eq. (19)].

TABLE II. Parameters for the correlations (B1)–(B3).

Ŷ a1 a2 a3 AAD

cH2,1 2.32E + 48 25.87506 9.5%
a ps 0.00993 1.05E+49 −0.03718 1.8%
bx′′

2 0.00823 0.77992 −4.28011 0.08256 3.5%
bE2 1 1.61673 −4.32865 0.03954 3.9%
a


(1)
2 −0.03928 3.19E+20 −0.08891 12.8%

aγ 0.49078 −2.03E+19 −0.09371 0.6%
aL90

10 2.26152 8.42E+30 −0.06044 0.7%

auses Eq. (B1).
buses Eq. (B2).
cuses Eq. (B3).

A fit function Y = Y (u′
config) was parametrized to the DGT

and EOS results for each bulk and interfacial property Y =
〈H2,1, ps, x′′

2 , E2, 

(1)
2 , γ , L90

10〉. The mathematical forms and
the parameters of the fitted functions are reported in Ap-
pendix B. The differences between the DGT and the MD
results in Figs. 12 and 13 are due to differences in the data
from these methods and not related to the CST (see Figs. 4, 5,
and 7–10).

Figure 12 shows the results for the Henry’s law constant
H2,1, the vapor pressure ps, and the gas phase mole frac-
tion x′′

2 for the conditions studied in the present paper as
a function of the corresponding liquid phase configurational
internal energy. The three properties increase with decreasing
mean dispersive interactions in the liquid phase, i.e., with
decreasing absolute value of u′

config. Figure 13 shows that the

same holds for the relative adsorption 

(1)
2 and interfacial

thickness L90
10. The enrichment of the low-boiling component

E2 also generally increases with decreasing mean dispersive
interactions, with the exception of the region near corner B.
This exception is due to the difference in the number density
(see Fig. 5). Only the surface tension γ shows the inverse
trend: it decreases with decreasing mean dispersive interac-
tions. In all cases, simple functional relations between the
studied properties and u′

config are found, which are, however, of
different types. The fitted functions for all seven investigated
properties agree excellently with the underlying DGT results.
Similar fits were obtained for the MD results, but are not
shown in Figs. 12 and 13 for clarity. The DGT and EOS
results for all properties exhibit only low scattering around
the respective fitted curves, i.e., the investigated bulk and
interfacial properties are highly correlated with the liquid
phase mean interactions. The scattering of the MD results
is larger than that of the DGT and EOS results due to the
fluctuations from the sampling during the simulation. The
absolute average deviation (AAD) from the DGT and EOS
results from the corresponding fitted curves were calculated
for each property and are reported in Table II.

The scattering of the DGT and EOS results for the vapor
pressure ps and the vapor phase composition x′′

2 around the
respective fitted curve is fairly constant in the entire range of
u′

config, i.e., the range of investigated mixtures. In contrast to
this, the scattering of the results for the interfacial properties
around the respective fitted curves varies with varying u′

config.
The scattering is significantly lower for mixtures with large
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mean dispersive interactions than for those with low mean
dispersive interactions (see results for 


(1)
2 , γ , and L90

10 in
Fig. 13). Furthermore, the scattering is lower for the surface
tension and the interfacial thickness than for the relative
adsorption and the enrichment, which indicates that the latter
are less dominated by the liquid phase interactions but also
influenced by the vapor phase interactions and the anisotropic
interactions at the interface. This is supported by the corre-
sponding AADs given in Table II.

High absolute values of u′
config are found for mixtures

with strong mean liquid phase interactions. Equation (19)
shows that for the conditions that were studied in the present
paper the variation of the mean liquid phase interaction stems
mainly from the variation of the unlike dispersive interactions
between component 1 and 2. The higher the absolute value
of u′

config is (left side in the diagrams in Figs. 12 and 13), the
stronger is the attraction between the components 1 and 2.
This explains why high absolute values of u′

config lead to low
Henry’s law constants H2,1 (high solubilities of component 2
in component 1), low vapor pressures, and low concentrations
of the component 2 in the gas phase (see Fig. 12). On the
other hand, low absolute values of u′

config (weak 1-2 attraction)
lead to high Henry’s law constants H2,1 (low solubilities of
2 in 1), high vapor pressures, and high concentrations of the
component 2 in the gas phase (see Fig. 12).

For mixtures with large mean dispersive interactions, a
variation of u′

config (which goes in hand with a variation of
ε2/ε1 and ξ ) has only little influence on the bulk and inter-
facial properties. Note that H2,1 is plotted on a ln scale. Fur-
thermore, the magnitude of the interfacial properties is small
for these mixtures, e.g., small adsorption and enrichment of
the low-boiling component.

Equation (19) shows that the unlike dispersive interactions
increase both with ξ (which controls the dispersion energy
ε12) and with ζ = ε2/ε1 (which controls the relative volatil-
ity). The unlike dispersive interactions are therefore high in
corner A and decrease going to corner B (see Figs. 4, 5, and
7–10). This also explains the observed phase behavior (see
Fig. 3).

For high mean dispersive interactions (left side in the
plot shown in Fig. 13), the interfacial thickness L90

10 is low.
For weaker interactions L90

10 increases, as it might have been
expected. Also the dependence of the surface tension γ on
the mean dispersive interactions is expected: it decreases with
decreasing mean dispersive interactions.

Furthermore, Figs. 12 and 13 show that the developed CST
also works in the limit of the pure component. The vapor
pressure, surface tension, and interfacial thickness of the pure
component 1 computed from DGT + EOS at T = 0.77 εk−1

B
are shown as black symbols. Its liquid phase configurational
internal energy u′

config was computed by Eq. (19). The pure
component values agree excellently with mixture values at
the same u′

config. Hence, the vapor pressure, surface tension,
and interfacial thickness of the pure component have the same
values as those of mixtures with the same liquid phase mean
interactions. Using these observables, a pure component could
not be distinguished from these mixtures at the investigated
temperature. Also, those mixtures have zero relative adsorp-
tion 


(1)
2 = 0 (see Fig. 13). This strongly supports the picture

of the one-fluid theory and the CST applied in this paper.

Interestingly, the dependency of the interfacial properties
on the liquid phase mean interactions is not symmetric; i.e.,
starting at the mixtures with 


(1)
2 = 0, an increase and de-

crease of u′
config has qualitatively different effects.

The surface tension that is reported here is the number
for x′

2 = 0.05 mol mol−1. As the surface tension of the pure
component 1 is the same in all cases, a decrease in the
reported surface tension goes along with an increase of the
gradient of the surface tension with varying x′

2. It therefore
follows from the Gibbs adsorption equation that the relative
adsorption 


(1)
2 must increase, which is in line with the results

shown in Fig. 13. High numbers for the relative adsorption
of component 2 also go along with an enrichment of that
component at the interface E2 [see Fig. 13].

The increase of 

(1)
2 and E2 with decreasing u′

config can also
be understood based on Eq. (19). A decrease in u′

config stems
either from a decrease in ξ or from a decrease in ε2/ε1. The
picture we invoke in the following is that of a dynamic equi-
librium. Assume that a particle of component 2 is on the way
of entering the liquid phase coming from the gas phase. The
liquid phase contains basically only component 1. The chance
that the particle 2 will successfully enter the liquid phase de-
creases with decreasing mixed unlike dispersive interactions
1-2 in the liquid phase, i.e., with decreasing ξ and ε2/ε1.
Furthermore, low values of ε2/ε1 lead to high concentrations
of component 2 in the gas phase (see Fig. 12), such that there
are many particles of component 2 near the interface, which
could in principle enter but face difficulties in doing so. This
leads to the enrichment E2 and the positive relative adsorption



(1)
2 . In a more colorful picture, the situation resembles that

at the door of a disco: there are many people (particles 2)
roaming outside and they are attracted by the disco’s neon
lights (the interface), but there are only few places available
in the disco (in the liquid phase). Hence, there will be a crowd
at the entrance (enrichment and adsorption).

V. CONCLUSIONS

The vapor-liquid equilibrium and interfacial properties of
binary Lennard-Jones mixtures (Henry’s law constant, vapor
pressure, composition, surface tension, adsorption, interfa-
cial thickness, and enrichment) were determined for a broad
range of mixtures of different types (zeotropic, low-boiling
azeotrope, high-boiling azeotrope; subcritical, supercritical)
by MD and EOS + DGT. The study was carried out at
constant temperature and liquid phase composition. The re-
sults from MD and EOS + DGT were found to be in good
agreement. The relation of both the VLE bulk properties
and the interfacial properties with the underlying molecular
interactions was investigated.

All considered bulk and interfacial properties exhibit a
regular behavior when they are considered as a function
of the variables ε2/ε1 and ξ , which describe the molecular
interactions. A theory was developed which explains this be-
havior based on a conformal solution theory of the molecular
interactions. It is based on the assumption that the behavior
of the studied systems is dominated by the liquid phase mean
interactions and that the liquid phase can be described with
a one-fluid theory. The gas phase has only a minor influence.
The basic finding is a monovariate relationship between the
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studied VLE properties and the mean liquid phase interac-
tions, i.e., the configurational internal energy. This resembles
the physical theory of the so-called entropy scaling, which
uses a monovariate relationship between transport coefficients
and the entropy [111]. For the interfacial and bulk VLE
properties, different combinations of ε2/ε1 and ξ may lead to
different types of phase behavior, but when the internal energy
of the liquid phase is the same the value of the studied proper-
ties is the same. The theory also works in the limit of the pure
component, such that mixtures with the same liquid phase
mean interactions as a pure component have the same vapor
pressure, surface tension, and interfacial thickness as that pure
component—and zero relative adsorption. The theory also
enables predictions outside the range of the parameters ε2/ε1

and ξ that was studied in the present paper.
The interfacial enrichment, which is assumed to have an

important influence on the mass transfer through interfaces,
is found to be particularly high for Lennard-Jones mixtures
that have low numbers for ε2/ε1 and for ξ . Furthermore, the
enrichment exhibits a maximum for mixtures with �ρ2 =
ρ ′

2 − ρ ′′
2 = 0, which forces all adsorption at the interface into

an enrichment. Both large enrichment and large relative ad-
sorption of the low-boiling component are found for mixtures
with relatively low mean interactions in the liquid phase,
which also goes in hand with low solubilities, i.e., wide-
boiling mixtures that tend to form low-boiling azeotropes.
Such mixtures also tend to show liquid-liquid phase splits.
Systems with liquid-liquid equilibria were, however, not in-
vestigated here as this would have overloaded the study. It
would be interesting to extend the study to such systems in
future work.

As only data for constant temperature and liquid phase
composition were taken in the present work, it would be
interesting to extend the study to other temperatures and com-
positions and test if the monovariate relationship established
in this work also holds for those dimensions.
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APPENDIX A: ASSUMPTIONS MADE IN THE
CONFORMAL SOLUTION THEORY

The main assumptions of the employed conformal solution
theory [see Eqs. (15)–(18)] are summarized in the following.
In Eq. (15) 4πρ ′g(r) dr = n′(r) dr can be identified [105] as

the mean number of particles n′ in a range between r and
r + dr. The configurational internal energy u′

config is obtained
by integrating n′(r)v(r) over all r ranges and weighted by
the respective mole fraction; the factor 1/2 ensures that each
pair interaction is only counted once. In general the three
radial distribution functions g11, g12, and g22 are functions
of the type of both components (ε, σ ), the composition, the
temperature, the density, and the distance r between two
particles [50,113–115], i.e., gi j = gi j (εi j, σi j, x, T, ρ, r). It
is known that the RDF is only weekly depending on the
composition and the dispersion energies of the components
[113,114].

For the one-fluid CST, the properties of a mixture are
approximated by those of a hypothetical pure fluid. The
molecular interactions of that hypothetical fluid are to be
conformal to those of the pure components that constitute
the mixture, i.e., their pair potentials vi j must be described
[87] by the same mathematical function vi j = εi j v(r/σi j ).
The hypothetical pure fluid—in our case a spherical Lennard-
Jones pair potential—is then characterized by the two inter-
action parameters σ00 and ε00 and a single radial distribution
function g00 = g00(r̃, T, ρ) [50,52]. The central assumption in
the “one-fluid” CST is that the radial distribution functions
gi j (r) scale with the respective size parameter σi j , i.e.,

gi j (r/σi j ) = g00(r̃/σ00), (A1)

which includes a coordinate transformation [87] r → r̃.
Thereby, the internal energy of the liquid phase of a binary
mixture can be written as Eq. (16).

APPENDIX B: FITTED FUNCTIONS FOR BULK
AND INTERFACIAL PROPERTIES IN CST

For each of the seven considered properties Y =
〈H2,1, ps, x′′

2 , E2, 

(1)
2 , γ , L90

10〉, a simple correlation function
was parametrized to describe Y = Y (u′

config). The DGT results
were used for this fit since they do not exhibit stochastic
scattering as the MD results do. Three function types were
used:

Y/[Y ] = Ŷ + a1 exp

(
u′

config/ε − a2

a3

)
, (B1)

Y [Y ] = Ŷ + a1 exp

⎡
⎣−0.5

(
u′

config/ε − a2

a3

)2
⎤
⎦, (B2)

Y/[Y ] = Ŷ exp(a3u′
config/ε), (B3)

where Ŷ and ai are fitting parameters. [Y ] indicates
the corresponding units of Y as [Y ] = 〈εσ−3, εσ−3,
mol mol−1, 1, σ−2, εσ−2, σ 〉. The obtained numeric values
for Ŷ and ai are summarized in Table II. Equation (B1) was
used for correlating ps, 


(1)
2 , γ , L90

10, Eq. (B2) for x′′
2 , E2, and

Eq. (B3) for correlating H2,1. The AADs between the fitted
curves and the DGT results are also given in Table II.
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