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Liquid crystal distortions revealed by an octupolar tensor
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The classical theory of liquid crystal elasticity as formulated by Oseen and Frank describes the (orientable)
optic axis of these soft materials by a director n. The ground state is attained when n is uniform in space; all other
states, which have a nonvanishing gradient ∇n, are distorted. This paper proposes an algebraic (and geometric)
way to describe the local distortion of a liquid crystal by constructing from n and ∇n a third-rank, symmetric, and
traceless tensor A (the octupolar tensor). The (nonlinear) eigenvectors of A associated with the local maxima of
its cubic form � on the unit sphere (its octupolar potential) designate the directions of distortion concentration.
The octupolar potential is illustrated geometrically and its symmetries are charted in the space of distortion
characteristics, so as to educate the eye to capture the dominating elastic modes. Special distortions are studied,
which have everywhere either the same octupolar potential or one with the same shape but differently inflated.
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I. INTRODUCTION

An octupolar tensor is a special third-rank tensor. The
main objective of this paper is to justify the use of such a
seemingly complicated tool to represent elastic distortions in
liquid crystals. Surely enough, higher-rank tensors are not
new in condensed matter physics. For example, the Landau
approach in the theory of phase transitions is based on the
identification of an order parameter that distinguishes the
states of matter in the proximity of a critical point where a
transition occurs. Although the order parameter can be either
a scalar or a vector or, more generally, a tensor of any rank, it
is common practice in the study of liquid crystals to select
a second-rank tensor to represent the state of the medium
when the constituent molecules resemble elongated rods. The
fairly recent discovery of materials presenting a tetrahedral
symmetry [1,2] suggested the use of a fully symmetric and
completely traceless third-rank tensor, which we call octupo-
lar by analogy with electrostatics, to encode the variety of
their possible phases [3–5].

However, this is not the only possible use of octupolar
tensors. Besides reflecting molecular symmetries on the meso-
scopic scale where the phase collective behavior is described,
they may as well play a role irrespective of the symmetry
of the molecular constituents. Here we illustrate a further
application of octupolar tensors in soft matter physics building
upon some earlier work [6–9], which we shall often refer to,
although our present approach will be different to some extent.

In classical liquid crystal theory, the nematic director field
n describes the average orientation of the molecules that
constitute the medium; the elastic distortions of n are locally
measured by its gradient ∇n, which may become singular
where the director exhibits defects arising from a degradation
of molecular order. The two main descriptors, n and ∇n, can
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be combined into the third-rank octupolar tensor,

A := ∇n ⊗ n, (1)

where the superimposed hat · · · makes the tensor underneath
it fully symmetric and traceless. More concisely, as explained

in Ref. [10] (see Chap. 9), · · · indicates the irreducible part
of a tensor. The number of independent components of an
irreducible tensor of rank � is, in general, 2� + 1.1

It is perhaps worth noticing that A is invariant under the
change of orientation of n, and so it duly enjoys the nematic
symmetry, which makes it a good candidate for measuring
intrinsically the local distortions of a director field.

Selinger [13], extending earlier work [14], suggested a new
interpretation of the elastic modes for nematic liquid crystals
described by the Oseen-Frank elastic free energy, which pe-
nalizes in a quadratic fashion the distortions of n away from
any uniform state. The Oseen-Frank energy-density is defined
as (see, e.g., Refs. [15, Chap. 3] and [16, Chap. 3])

F := 1
2 K11(div n)2 + 1

2 K22(n · curl n)2 + 1
2 K33|n × curl n|2

+ K24[tr(∇n)2 − (div n)2], (2)

where K11, K22, K33, and K24 are the splay, twist, bend, and
saddle-splay constants, respectively, each associated with a
corresponding elastic mode.2

The decomposition of F in independent elastic modes pro-
posed in Ref. [13] is achieved through a new decomposition
of ∇n. If we denote by P(n) and W(n) the projection onto

1We also learn from Ref. [10] (see p. 34) that the symbol · · ·, used
to indicate the irreducible part of a tensor, was first introduced by
Waldmann [11] for second-rank tensors and later extended to higher-
rank tensors [12].

2The saddle-splay term is a null Lagrangian [17] and an integration
over the bulk reduces it to a surface energy. Here, however, the
surface-like nature of K24 will not be exploited.
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the plane orthogonal to n and the skew-symmetric tensor with
axial vector n, respectively, then

∇n = −b ⊗ n + 1
2 T W(n) + 1

2 SP(n) + D, (3)

where b := −(∇n)n = n × curl n is the bend vector, T := n ·
curl n is the twist (a pseudoscalar), S := div n is the splay (a
scalar), and D is a symmetric tensor such that Dn = 0 and
tr D = 0.3 The properties of D guarantee that when D �= 0 it
can be represented as

D = q(n1 ⊗ n1 − n2 ⊗ n2), (4)

where q is the positive eigenvalue of D. Following Ref. [13],
we shall call q the biaxial splay. The choice of sign for q
identifies (to within the orientation) the eigenvectors n1 and
n2 of D orthogonal to n. Since tr D2 = 2q2, we easily obtain
from Eq. (3) that

2q2 = tr(∇n)2 + 1
2 T 2 − 1

2 S2. (5)

The Oseen-Frank elastic free-energy density in Eq. (2) can be
given the form

F = 1
2 (K11 − K24)S2 + 1

2 (K22 − K24)T 2 + 1
2 K33b2

+ K24(2q2), (6)

where all quadratic contributions are independent from one
another.

The first advantage of such an expression is that it explicitly
shows when the free energy is positive semi-definite; this is
the case when the following inequalities, due to Ericksen [18],
are satisfied,

K11 � K24 � 0, K22 � K24 � 0, K33 � 0. (7)

Whenever q > 0, the frame (n1, n2, n) is identified to within
a change of sign in either n1 or n2; requiring that n = n1 ×
n2, we reduce this ambiguity to a simultaneous change in the
orientation of n1 and n2.4 Since b · n ≡ 0, we can represent
b as b = b1n1 + b2n2. We shall call (n1, n2, n) the distortion
frame and (S, T, b1, b2, q) the distortion characteristics of the
director field n [19]. In terms of these, Eq. (3) can also be
written as

∇n =
(

S

2
+ q

)
n1 ⊗ n1 +

(
S

2
− q

)
n2 ⊗ n2

− b1n1 ⊗ n − b2n2 ⊗ n + 1

2
T (n2 ⊗ n1 − n1 ⊗ n2).

(8)

Both Eqs. (3) and (8) show an intrinsic decomposition of
∇n into four genuine bulk contributions, namely, bend, splay,
twist, and biaxial splay.

3For the only purpose of achieving a uniform notation, which does
not mix alphabets, we shall denote this tensor with D, instead of the
Greek counterpart � used in both Refs. [13,14]. The only other point
where our notation differs from that of Ref. [13] is in calling b the
bend vector, which there was B.

4In this frame, P(n) = I − n ⊗ n and W(n) = n2 ⊗ n1 − n1 ⊗ n2.

The aim of this work is to explore the properties of the
octupolar tensor in Eq. (1) and try and establish a qualitative,
even visual way of representing through it the independent
components of ∇n, hoping to educate the eye to recognize
which components, if any, are predominant in a given distor-
tion. Having symmetrized A, we have renounced to represent
T , so no sign of twist will be revealed by our construction.5

This is the only piece of information that we shall loose.
By following Refs. [7,9], in Sec. II we introduce the

octupolar potential, a real-valued function defined on the unit
sphere S2 which encodes all main properties of A and lends
itself to a geometric 3D representation. We single out the
representations where only one mode out of splay, bend, and
biaxial splay is active. In Sec. III, we study how the elastic
modes are related to the symmetry properties of the poten-
tial and to the number of its local maxima (and conjugated
minima), which will be identified with the directions of local
distortion concentration. In Sec. IV we discuss the octupolar
potential and its geometric representation for special director
distortions. These include the uniform distortions, for which
all distortion characteristics are constant in space [19], and
new types of distortions, which we shall call quasi-uniform.
In Sec. V we draw the conclusions of our work. We leave
detailed computations and proofs for the Appendix. A good
deal of our endeavor is graphical.

II. OCTUPOLAR DISTORTION POTENTIAL

The octupolar potential is the real-valued function
defined as

�(x) := A · (x ⊗ x ⊗ x) =
3∑

i, j,k=1

Ai jkxix jxk, (9)

where x = x1n1 + x2n2 + x3n is a point on the unit sphere
S2 ⊂ R3 referred to the distortion frame (n1, n2, n), and A
is the completely symmetric and traceless third-rank tensor
defined in Eq. (1). For ∇n as in Eq. (8), it is clear that A

is readily computed if we know how to compute u ⊗ u ⊗ v,
where u and v are generic vectors. In Cartesian components,

(u ⊗ u ⊗ v)i jk = uiu jvk

= 1
3 (uiu jvk + uiukv j + u jukvi )

− 1
15 [u2(δi jvk + δikv j + δ jkvi )

+ 2u · v(δi juk + δiku j + δ jkui )], (10)

where u2 = u · u and δi j denotes Kronecker’s symbol. Corre-

spondingly, the octupolar potential associated with u ⊗ u ⊗ v

5T is a measure of chirality, and so it cannot be associated with
a symmetric tensor. By forming the completely skew-symmetric
part of ∇n ⊗ n, one would obtain the tensor − 1

6 T ε, where ε is
Levi-Civita’s alternator, the most general skew-symmetric, third-
rank tensor in 3D.
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reads as

u ⊗ u ⊗ v ·(x ⊗ x ⊗ x) =
3∑

i, j,k=1

uiu jvk xix jxk

= (u · x)2(v · x)

− 1

5
x2[u2(v · x) + 2(u · v)(u · x)].

(11)

Combining Eqs. (10) and (11), we give Eq. (9) the following
form:

�(x) =
(

S

2
+ q

)
x2

1x3 +
(

S

2
− q

)
x2

2x3 − b1x1x2
3 − b2x2x2

3

+ 1

5

(
x2

1 + x2
2 + x2

3

)
(b1x1 + b2x2 − Sx3). (12)

As expected, � does not depend on the twist T , but it does
depend on the biaxial splay q, which will play a prominent
role in the following.

It will be often more convenient to represent the bend vec-
tor b (when it does not vanish) as b = b cos βn1 + b sin βn2,
with b > 0 and β ∈ [−π

2 , π
2 ]. This choice has two advantages:

first, we can write

b1 = b cos β, b2 = b sin β; (13)

second, the orientation of n2 (and so that of n1) is prescribed,
as n1 · b � 0.6 Sometimes, it is useful to stress the dependency
of � on the distortion characteristics; in these cases, we
shall use the extended notation �(x; S, b, β, q), where use of
Eq. (13) is to be understood.

When we say that the the octupolar potential � encodes the
properties of the octupolar tensor, we mean that the extremal
points of � are precisely the eigenvectors of A on the sphere
S2. Moreover, the value �(x) at an eigenvector x coincides
with its associated eigenvalue λ (see, for example, Ref. [9]).7

It is immediately seen that �(x) = −�(−x) for all x ∈
S2, so that also the set of critical points of � is centrally
symmetric, with every local maximum xM having a conjugate
local minimum xm = −xM . Each local maximum xM of �

identifies the entire line γ xM (with γ ∈ R) of eigenvectors of
A with eigenvalue λ = ±�(xM ). We interpret the direction of
xM (and xm) as a direction of distortion concentration for the
nematic field n. Thus, we are not interested in the sign of the
eigenvalue λ, but only in its magnitude.8 With this in mind, in
Sec. III, we shall focus on the symmetry properties of |�|.

It was proved in Ref. [7] that the maximum number of
nondegenerate critical points of � is 14; in particular, the

6Occasionally, to enhance the graphical symmetry of some figures,
we shall also allow β ∈ [ π

2 , 3π

2 ]. In such cases, for consistency, both
n1 and n2 should be meant as being simultaneously reversed.

7For a complete collection of definitions and results concerning the
(nonlinear) eigenvalues and eigenvectors of a third-rank tensor, we
refer the reader to the paper [20] and the textbook [21], which also
contains applications to liquid crystal theory.

8Similarly, one could argue that the octupolar potential itself is
defined to within a sign, so that the distinction between its maxima
and minima would be artificial.

number of maxima can be either 3 or 4. In both Refs. [7,9],
the octupolar potential � was studied in a frame that was
judiciously chosen. In particular, the results on the cardinality
of maxima (and minima) were obtained by orienting the
potential, which amounted to assume that one of its maxima
(which exists, provided � �= 0) falls at a prescribed point on
the unit sphere S2, say the North Pole. Since the distortion
frame (n1, n2, n) has here an intrinsic meaning, we no longer
have the luxury of orienting �. Indeed, a distinctive feature
of our approach is to describe how the octupolar potential is
oriented relative to the distortion frame, so as to attribute a
definite meaning to the directions of distortion concentration.

Here is how we shall represent graphically the octupolar
potential. Since � is centrally symmetric, in all the figures
of this paper we depict the octupolar potential as the surface
{�(x)x | x ∈ S2}: each point x on the unit sphere is rescaled
by the value of � at x. Thus, a point x− where �(x−) < 0
generates the same point on the representing graph as its an-
tipodal conjugate x+ = −x−, where �(x+) > 0. In such polar
plots, we also draw the frame (n1, n2, n), oriented so that n1 ×
n2 · n = +1. Since no intrinsic length scale is associated with
�, to improve readability, we shall extend the arrows of the
distortion frame so as to make them clearly discernible. We
shall also endeavour to have nearly the same frame (n1, n2, n)
in all figures, so as to perceive better the different relative
orientation of the different polar plots considered.

Pure modes

Here we describe the octupolar potential � in the very spe-
cial cases where one and only one elastic mode is exhibited.
In particular, we explore two different but related geometrical
properties: the symmetries enjoyed by the polar plots of �

and the number of its maxima. The following discussion shall
be made more formal and more general in the subsequent
sections.

1. Splay

When splay is the only active mode, the choice of n1 and n2

in the plane orthogonal to n is arbitrary. This fact reverberates
in the symmetries of the octupolar potential and also in its
critical points. In this case,

�(x) = 1
10 S

(
3x2

1x3 + 3x2
2x3 − 2x3

3

)
. (14)

Graphically, �(x) is depicted in Fig. 1(a); it has a big lobe
elongated around n and a perpendicular circular pedestal.
More precisely, the apex of the lobe is at x = −n (when S
is positive) and coincides with the absolute maximum of the
potential, with value 1

5 S, while the pedestal is the ring x =
x1n1 + x2n2 + 1√

5
n (with x2

1 + x2
2 = 4

5 ) of equal local maxima

with value 1
5
√

5
S. It is easy to check that such a potential is

invariant under all rotations around n and all reflections with
mirror plane containing n.

2. Biaxial splay

When both S = 0 and b = 0, but q > 0, the potential is

�(x) = q
(
x2

1 − x2
2

)
x3. (15)
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FIG. 1. Polar plots of the octupolar potential for pure elastic
modes. Dashed lines are associated with maxima (and conjugated
minima). (a) Pure splay. (b) Pure biaxial-splay. (c) Pure bend.

Figure 1(b) shows that �(x) has four identical lobes, spatially
distributed at the vertices of a regular tetrahedron. Accord-
ingly, its maxima are the four points 1√

3
(±√

2n1 + n) and
1√
3
(±√

2n2 − n), each with value 2q
3
√

3
.

3. Bend

For pure bend, we can choose n1 and n2 such that b = bn1

with b > 0. Then the potential,

�(x) = 1
5 bx1

(
x2

1 + x2
2 − 4x2

3

) = 1
5 bx1

(
1 − 5x2

3

)
, (16)

has three lobes: two larger, with equal height 16b
15

√
15

at x =
1√
15

(−2n1 ± √
11n), and one smaller at x = n1 with height

b
5 . As shown in Fig. 1(c), the polar plot of � is invariant under
both a rotation by angle π around n1 and the mirror symmetry
with respect to the plane containing (n1, n).

Despite the attractive features of the octupolar potential
when only one mode is involved, the reader should not be
misled by Fig. 1 to think that the pure geometry of the
octupolar potential would suffice to reveal the prevalence of
one mode with respect to the others in a general distortion.
Figure 2, for example, shows that the polar plot of � in case
of pure bend can be perfectly mimicked by a combination of
splay and biaxial splay.

As is easily checked, for all x ∈ S2,

�(x; b, 0,−, b/2) = − 1
5 bx3

(
1 − 5x2

1

) = �(y; 0, b, 0, 0),
(17)

FIG. 2. Polar plot of the octupolar potential for a combination
of splay and biaxial splay (S = 2q) which reproduces the pure bend
case, apart from the orientation in the distortion frame (n1, n2, n).

where y is x rotated by π
2 around n2.9 To distinguish the two

cases, it is crucial to know how � is oriented in the distortion
frame (n1, n2, n): for S = b = 2q, the π -rotation symmetry
axis is indeed n, and not b, as for the case of pure bend. This
seemingly unimportant difference has further consequences,
as we shall see in Sec. IV.

III. SYMMETRIES

To explore the significance of the octupolar potential �

and our preferred graphical representation (the polar plot) in
illustrating all distortion characteristics but T , we study here
the symmetries enjoyed by �. Actually, as anticipated,we are
interested in the symmetries of |�|. Our analysis will also
echo that in Ref. [9], but it shall also differ from that, mainly
because the distortion frame is here intrinsically prescribed.

We give a formal description of the groups representing the
symmetries enjoyed by the octupolar potential when consid-
ering suitable combinations of elastic modes. For this entire
section, e and e⊥ shall be two orthogonal unit vectors in R3.
We denote by Qδ,e the rotation by angle δ around the axis
identified by e and by Re the reflection with respect to the
plane orthogonal to e. Formally,

Qδ,e := I + sin δW(e) − (1 − cos δ)P(e),

Re := I − 2e ⊗ e, (18)

where I is the identity tensor.
We shall say that the octupolar potential is invariant under

the symmetry Qδ,e or Re if |�(Qδ,ex)| = |�(x)| or |�(Rex)| =
|�(x)|, respectively, for all x ∈ S2. Such a definition ensures
that the extrema of � are invariant under a symmetry, as are
the directions of distortion concentration (i.e., the eigenvec-
tors of A).

The following six (point) symmetry groups are relevant
here; in the Schönflies notation (see, for example, Refs. [22,
Sec. 3.10] and [23, Sec. 2.9]), they read as

(1) C2h, generated by Qπ,e and Re;
(2) D2h, generated by Qπ,e, Re and Re⊥ ;
(3) D3d , generated by Q2π/3,e, Qπ,e⊥ and Re⊥ ;
(4) D6h, generated by Qπ/3,e, Re and Re⊥ ;
(5) Oh, the symmetry group of the (regular) octahedron

(and the cube);
(6) D∞h, generated by Qδ,e for all δ ∈ [0, 2π ], Re and Re⊥ .
The schematic representation for the first five (finite)

groups is given by the stereograms in Fig. 3. Each group
contains the symmetries under which the corresponding dia-
gram, considered as an object in the three-dimensional space,
is invariant. A black dot represents a small bump protruding
from the front of the page, while an empty circle represents
an identical bump on the back of the page, so that the group
contains the reflection with respect to the plane of the page if
and only if dots and circles are paired, one inside the other.
In this case, the name of the group has an h as a subscript
to indicate the presence of a horizontal plane of reflection.
The main axis e of rotation is orthogonal to the page, while

9Here (and below) with a “−” we mean that the corresponding
argument of � can be chosen arbitrarily.
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FIG. 3. Stereograms representing the five finite point groups relevant to the octupolar potential.

the subscript numbers indicate the angle of rotation: 2 for a
twofold rotation by π , 3 for a threefold rotation by 2π

3 , and so
on. The vertical and horizontal pairs of arcs in the stereogram
for Oh are to be intended as two circles orthogonal to each
other and to the one on the plane of the page: all these three
circle are of type D4h, which is similar to D6h, but with four
sectors instead of six.

A glance at Fig. 1 suggests that each pure mode enjoys
the invariance under one of the aforementioned symmetry
group: D∞h for splay, Oh for biaxial splay, and D2h for bend.
The reader should not be misled here by the polar plots
of �, in which minima are invaginated under maxima by
construction, and keep in mind that we are interested in the
maxima of |�|. To make this point clearer, Fig. 4 shows
three examples of symmetry invariance by plotting both �

(in yellow) and −� (in pink): the union of the two surfaces
is the right object to have in mind when looking for point
symmetry groups. However, such combined polar plots are
unnecessarily intricate and hereafter we shall stick to the
choice of representing only the polar plot of �, but with the
implicit meaning expounded in Fig. 4. Accordingly, when we
shall say that � is invariant under a certain group, we shall
actually mean that the associated invariant geometric object is
the corresponding polar plot as in Fig. 4.10

In the general case, in the space of distortion characteristics
we shall detect further loci with symmetry invariance of the
octupolar potential. Before describing them (in two separate
cases, q = 0 and q �= 0), we find it useful to list a set of
properties involving octupolar potentials with different but
related elastic modes. They are very easy to check (see the

10In this respect, our analysis here sharpens that in Ref. [9]. For a
closer comparison, we should replace the tetrahedral group Td used
there with Oh.

FIG. 4. Combined polar plots of � (yellow) and −� (pink) for
three cases of symmetry invariance. (a) Oh. (b) C2h. (c) D3d .

Appendix) and explain directly the peculiar interconnection
between the trajectories with one and the same symmetry
invariance that will be presented in Fig. 7 below. In our
notation,

�(x; S, b,−β, q) = �
(
Rn2 x; S, b, β, q

)
, (19a)

�(x; −S, b, π/2 − β, q, x) = −�
(
Rn2 Q π

2 ,nx; S, b, β, q
)
,

(19b)

�(x; S, b, π + β, q, x) = −�(Rnx; S, b, β, q). (19c)

Properties (19) will also be useful in the next section,
where we discus the number of critical points of �.

A. Vanishing biaxial splay (q = 0)

We describe here the octupolar potential � when q = 0. In
this case, n1 and n2 are no longer defined intrinsically in terms
of ∇n, and so we are at liberty of taking b = bn1: any other
choice of (n1, n2, n) would simply result in a rotation of the
potential around n. Moreover, we can always rescale � and
set S = 1, thus obtaining a potential depending only on b,

�(x) = 1
2 x2

1x3 − bx1x2
3 + 1

2 x2
2x3

+ 1
5

(
x2

1 + x2
2 + x2

3

)
(bx1 − x3). (20)

Except for the extreme cases b = 0 (pure splay) and b = ∞
(pure bend), such a potential enjoys only the invariance under
the symmetry group C2h; it has three maxima and four saddle
points. The former property trivially derives from Eq. (19a),
as �(x) = �(Rn2 x), and from a direct inspection of Eq. (20),
as �(x) = −�(Qπ,n2 x).

Figure 5 shows the polar plots of Eq. (20) for increasing
b. It is manifest how a single lobe (on a roundish pedestal)
oriented along n is soon converted into a three-lobe object
protruding in a direction orthogonal to n (that of b).

We finally note that � in Eq. (20) is more precisely
�(x; 1, b, 0, 0) and this can also be seen as the limiting case
for |S| → ∞ or b → ∞ (or both) of a generic �. In other
words, the case q = 0 is essentially the special situation where
splay and bend are much larger than biaxial splay.

B. Nonvanishing biaxial splay (q = 1)

We consider now the more general and challenging case
where biaxial splay is not zero. By rescaling to q > 0 all other
distortion characteristics, we may effectively set q = 1, with
no loss of generality.

The best way to extract a number of distinctive features
possessed in this case by the octupolar potential is to go “sym-
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FIG. 5. Sequence of polar plots of � for q = 0, S = 1, and increasing values of b. For all b > 0 the potential has three maxima and is
invariant under C2h. (a) b = 0.3. (b) b = 0.7. (c) b = 1.5. (d) b = 5.0.

metry hunting.” We shall see that the landscape of distortion
characteristics (S, b, β ) showing the same symmetries of �

(thus having resemblant polar plots) is rather rich and not
without aesthetic appeal.

1. D6h

A very special situation occurs for b = 0 and S = ±10/3.
Here the octupolar potential has three equal lobes spatially
distributed as the vertices of an equilateral triangle. The sym-
metry group is D6h, with rotation axes (by angle π/3) given
by n2 (for S positive) and n1 (for S negative); see Fig. 6(d). It
is yet another manifestation of the monkey saddle defined in
Ref. [24, p. 191].11 The corresponding points in the space of
distortion characteristics (S, b, β ) are marked in red in Fig. 7.

2. D2h

On the whole S axis, � enjoys the lower D2h symmetry.
Other loci with the same symmetry are the straight lines
S = 0 and β = ±π

4 [the bisectrices b2 = ±b1 in Fig. 7(c)]
together with four extra (blue) curves passing through the
monkey-saddle points in Figs. 7(a) and 7(b). The latter lie in
pairs in the planes β = 0 [Fig. 7(a)] and β = π

2 [Fig. 7(b)],
bounded on one side by the horizontal asymptotes S

.= 4.00,
and increasing (or decreasing) at the other side as S/b2 .=
±0.22. Each curve intersects only once the plane S = 0, at

11In its original realization, the monkey saddle is a surface in 3D
with three depressions, instead of the two needed for a human rider
(the third one accommodating the monkey’s tail).

b = 5√
2
; there the polar plot of the octupolar potential has one

lobe surmounting two equal legs [Fig. 6(b)]. Figure 8 shows a
sequence of potentials along one of the D2h trajectories, while
the movie v1.mkv [25] shows more of the same trajectory.

3. D3d

More dramatic are the loci in the space (S, b, β ) where
� exhibits the D3d symmetry. These are lines, in the planes
β = 0 and β = π

2 , making a loop between the monkey saddles
and the tetrahedron of pure biaxial splay [see the green lines
in Figs. 7(a) and 7(b)]. They behave parabolically as S/b2 .=
±0.33 and intersect the plane S = 0 at b =

√
5

2 , where the
polar plot of the octupolar potential is a tripod surmonted by
a single lobe [see Fig. 6(c)]. Figure 9 shows a sequence of
potentials along one of these D3d trajectories, while now the
movie v2.mkv [25] shows more of it.

4. C2h

Finally, we consider the smallest symmetry group, C2h,
which is a subgroup of all the other groups discussed here, so
that all the points in the aforementioned trajectories are also
invariant under a single reflection. By combining Eqs. (19a)
and (19c), it is straightforward to obtain

�(x; S, b, 0, 1) = �
(
Rn2 x; S, b, 0, 1

)
and

�(x; S, b, π/2, 1, x) = �
(
Rn1 x; S, b, π/2, 1

)
; (21)

therefore, both planes b2 = 0 (β = 0) and b1 = 0 (β = π/2)
enjoy the invariance under C2h. For β �= 0 and β �= π

2 , the

FIG. 6. Examples of symmetries enjoyed by the octupolar potential for q = 1. (a) C2h symmetry, with S = 1, b = 1, and β = 0. (b) D2h

symmetry, with S = 0, b = 5/
√

2, and β = 0. (c) D3d symmetry, with S = 0, b = √
5/2, and β = 0. (d) D6h symmetry (monkey saddle), with

S = −10/3 and b = 0.
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FIG. 7. Trajectories of symmetry in the space q = 1. The blue lines are for the D2h symmetry, while the green lines are for D3d , and
the purple ones are for C2h. The monkey saddles with D6h symmetry are red squares; the Oh symmetry is enjoyed at the black dot only,
corresponding to pure biaxial splay. The blue diamonds in panel (c) are the traces left on the (b1, b2) plane by the D2h lines in both panels
(a) and (b); the green triangles in panel (c) are the traces left on the (b1, b2) plane by the D3d lines in both panels (a) and (b). All points in
both planes b2 = 0 and b1 = 0 are invariant under C2h. The marked values of β correspond to b � 0. For b � 0, all these graphs represent the
symmetric branches corresponding to β + π . Three movies illustrate how the octupolar potential changes while keeping a selected symmetry
[25]; the file v1.mkv is an animated journey along the descending D2h branch in (a), while v2.mkv and v3.mkv are similar journeys along the
D3d branch in (a) and the C2h branch in (h), respectively. (a) Plane b2 = 0 (β = 0). (b) Plane b1 = 0 (β = π/2). (c) Plane S = 0. (d) Plane
β = π/32. (e) Plane β = π/16. (f) Plane β = π/8. (g) Plane β = 7π/32. (h) Plane β = π/4. (i) Plane β = 3π/8.

C2h symmetry survives only in selected places; they are the
fancy purple lines depicted in Figs. 7(d)–7(h) for different
values of β. All these lines connect the monkey saddles
to the tetrahedron and have an asymptote that drifts from
S = 4 to S = 0 as β increases from 0 to π

4 . For β = π
4 ,

the asymptote abruptly closes down and is promoted to
the higher symmetry group D2h; the C2h symmetry branch
corresponding to this case [shown in Fig. 7(h)] is further
illustrated by the animation in the movie v3.mkv [25]. At
the other end, when β reaches 0, the closed C2h trajectory
abruptly splits up in two separate open trajectories, pro-

moted to two distinct higher symmetry groups, namely, D2h

and D3d .
Figure 7 shows that blue, green, and purple lines are all

symmetric with respect to the S axis and, in addition, the
blue and green lines flip on opposite sides of the S axis in
swapping the planes b2 = 0 and b1 = 0. These features are
clear consequences of properties in Eqs. (19), which also
explain why the most representative C2h trajectories in Fig. 7
are those for β ∈ [0, π

4 ]: all other trajectories are obtained by
rotations and reflections of these. For example, the trajectory
for β = π

8 is the same as that for β = −π
8 , and the trajectories
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FIG. 8. Following a blue trajectory in Fig. 7(a): sequence of octupolar potentials with D2h symmetry for β = 0. Starting from an almost
pure bend (a), the trajectory touches the monkey saddle (c) and then tends to the pure splay with D∞h symmetry as b → +∞ (and S → −∞).
The animation in the movie v1.mkv [25] shows more of this trajectory. (a) S = 3.97 and b = −7.68. (b) S = 3.78 and b = −1.98. (c) S = 10/3
and b = 0. (d) S = 1.67 and b = 2.31. (e) S = −1.39 and b = 4.31. (f) S = −15.37 and b = 9.02.

for β = π
8 and β = 3π

8 differ from one another by a reflection
with respect to the b axis.

C. Separatrix

Besides symmetry, a key feature that distinguishes one
octupolar potential from the other for the pure modes in Fig. 1
is the number of their maxima. Except for the very special
case of pure splay, such a number can be either 3 or 4 [7,9].
The critical points of the octupolar potential are the roots

x ∈ S2 of ∇�(x) = 3λx; there, λ = �(x). In our study, the
problem of finding these points is equivalent to solve the
system

(3S + 10q)x1x3+ 2b2x1x2+ 3b1x2
1 + b1x2

2 − 4b1x2
3 = 15λx1,

(3S − 10q)x2x3+ 2b1x1x2+ b2x2
1 + 3b2x2

2 − 4b2x2
3 = 15λx2,

(3S+ 10q)x2
1 + (3S− 10q)x2

2 − 16b1x1x3− 16b2x2x3− 6Sx2
3

= 30λx3, (22)

FIG. 9. Following the green trajectory in Fig. 7(a): sequence of octupolar potentials with D3d symmetry for β = 0. Starting from the
monkey saddle (a), the trajectory touches the tetrahedron (c) and then tends to the pure splay with D∞h symmetry as b increases. The animation
in the movie v2.mkv [25] shows more of this trajectory. (a) S = −10/3 and b = 0. (b) S = −1.68 and b = −0.72. (c) S = 0 and b = 0.
(d) S = 0.07 and b = 0.97. (e) S = −1.32 and b = 2.37. (f) S = −7.22 and b = 4.85.
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FIG. 10. Sequence of octupolar potentials for q = 1 and b = 0, as S � 0 decreases. (a) S = −2/3. (b) S = −5/3. (c) S = −15/3. (d) S =
−50/3.

over the constraint x2
1 + x2

2 + x2
3 = 1. As already noticed, here

we cannot freely orient the potential in the frame (n1, n2, n),
as was done in Refs. [7,9]. There, a special surface in param-
eter space was identified, called the separatrix, as it separates
a region with 3 maxima of � from a region with 4 maxima.
That analysis does not apply verbatim to the present setting
(and neither does the explicit, algebraic characterization of
the separatrix in Ref. [8]). In the present context, the search
for the separatrix must start afresh. And fresh is its flavor:
on the separatix a new direction of distortion concentration
either arises or dies away, depending on which side we
look at.

The case q = 0, where the biaxial splay vanishes, is fairly
simple. The potential has always three maxima and four
saddle points, except for the very special case of pure splay,
where the absolute maximum is surrounded by a ring of
identical local maxima.

The generic case, where q = 1, is more interesting. By a di-
rect inspection of Eq. (22), we can provide a full description of
the critical points when b = 0 (see Appendix): two of the four
maxima of the tetrahedron at S = 0 merge as |S| increases,
until |S| = 5

3 , where they completely coalesce (together with
the saddle point between them) in a single maximum. This
latter is smaller than the other two maxima at the beginning,
but becomes equal to them at |S| = 10

3 , as a monkey saddle
is reached. As |S| increases further, the so far distinct equal
maxima start bridging up, approaching the circular pedestal
of the pure splay case, when S → ±∞; a representation of
this sequence is shown in Fig. 10.

It is clear from this example that the very special points
|S| = 5

3 , where two maxima and one saddle of � coalesce
into a single maximum, belong to the separatrix. These points
also separate on the S axis an inner interval (|S| < 5

3 ), where
the potential resembles a pure biaxial splay, from two outer
intervals (|S| > 5

3 ), where the octupolar potential resembles a
pure splay. Thus, the octupolar potential reveals the presence
of biaxial splay in a generic distortion: when � has four
maxima, the biaxial splay is, in general, predominant with
respect to the other modes, whereas when � has three maxima
there is little or no biaxial splay. More details are offered by
the profiles of the separatrix depicted in Fig. 11; they were
obtained by numerical continuation of the new maximum
arising at |S| = 5

3 . The region with four maxima encloses the
origin (where the pure biaxial splay sits), whereas the region
with three maxima spreads away from the origin. Only for

β = 0, the four-maxima region is not bounded and extends to
territories with large |S| and b, but in these cases the presence
of an almost circular pedestal in the potential witnesses a
net dominance of the splay mode. As shown in Fig. 11, the
four-maxima region enclosed by the separatrix is not convex.
This causes a sort of “re-entrant” effect illustrated in Fig. 12.
For a given (appropriately chosen) S, upon increasing b from
naught, the octupolar potential starts by having exceptionally
3 maxima; they soon become 4, which is the expected number,
and then, for yet larger values of b, they get back to the
normal 3.

In studying the separatrix we also benefited from the
symmetry properties in Eqs. (19): they again ensure that the
sector β ∈ [0, π

4 ] in the space (S, b, β ) suffices to describe
completely the behavior of the separatrix; all remaining sec-
tors can be obtained by rotations and reflections.

IV. QUASIUNIFORM DISTORTIONS

Building upon the decomposition of ∇n in Eq. (3), it is
natural to define a uniform nematic distortion as one for which
all distortion characteristics (S, T, b1, b2, q) are constant in
space [19]. Inside a uniform distortion, it is as if, sitting in a
place in space, one sees the same orientation landscape against
the local distortion frame (n1, n2, n) (which is intrinsically
defined), irrespective of the place. It was shown in Ref. [19]
that the family of all uniform distortions is characterized by
having S = 0 and T = ±2q with, correspondingly, b1 = ±b2.
Moreover, this twofold family is exhausted by the heliconical
director fields first envisioned by Meyer [26] and which have
recently been identified experimentally with the ground state
of twist-bend nematic phases [27].12

Our “octupolar eye” does not see T and, as already re-
marked, it is also insensitive to rescaling (by a constant) all
distortion characteristics.13 The octupolar potential (and its
graphical representation) is thus especially suited to describe
uniform distortions. In the notation used in this paper, the

12A vast literature has lately grown on twist-bend phases and their
still intriguing germination out of the traditional nematic phase. On
the theoretical side, a fair representation of the variety of available
contributions is offered by the papers [28–39]. On the experimental
side, the following papers are among the most relevant [40–47].

13This is why above we could take q = 1 with no loss of generality.
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FIG. 11. Profiles of the separatrix for different β ∈ [0, π

4 ] and the conjugated values β + π , represented by b � 0, as in Fig. 7. The regions
with four maxima are in orange; all include the origin. The gray lines are the same symmetry trajectories from Fig. 7. (a) β = 0. (b) β = π/16.
(c) β = π/8. (d) β = 3π/16. (e) β = π/4.

latter correspond to q = 1 (and T = ±2), S = 0, β = ±π
4 ,

and arbitrary b � 0. As shown in Fig. 7(c), for b > 0 the
octupolar potential of uniform distortions enjoys the D2h

symmetry (see Fig. 13).
It is precisely this way of representing uniform distortions

to suggest the definition of a larger class of distortions: those
with (spatially) uniform (rescaled) octupolar potentials. This
is the case whenever the (nonvanishing) distortion character-
istics are not necessarily constant themselves, but are in a
constant ratio to one another, thus ensuring that the octupolar
potential (with its directions of distortion concentration) has
the same appearance everywhere in space. We shall call
these distortions quasiuniform. They are formally defined
in terms of the distortion characteristics as follows: either
(S, T, b1, b2, q) are all zero but one, or those that do not vanish

are all proportional through constants to a certain nonvan-
ishing function of position. Whenever possible, as above, we
shall conventionally rescale all distortion characteristics to q.
In words, a quasiuniform distortion is a uniform distortion
rescaled differently in different positions in space.

Examples

Quasiuniform distortions have not yet been fully character-
ized. For illustrative purposes, we have worked out a number
of simple examples, which are briefly summarized below.
Here we shall employ a given Cartesian frame (ex, ey, ez )
with origin o in which the position vector of a generic point
p is p − o = xex + yey + zez. The nematic director field n
will be described by its components in the frame (ex, ey, ez )

FIG. 12. Sequence of octupolar potentials for q = 1, S = −2 and β = 0, for increasing values of b. At the beginning the maxima are 3;
after the first crossing of the separatrix they become 4 and then, after the second crossing, they are 3 again. (a) b = 0.1. (b) b = 0.7. (c) b = 3.
(d) b = 5.
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FIG. 13. Sequence of octupolar potentials for q = 1, S = 0, and β = π/4, with increasing b � 0. These pictures are in accord with
Fig. 11(e); the separatrix is crossed at b

.= 3.02. (a) b = 0.2. (b) b = 0.8. (c) b = 2.5. (d) b = 5.0.

expressed as functions of the coordinates (x, y, z). The integral
lines of the examples presented in this section are shown in
Fig. 14. The corresponding octupolar potentials have polar
plots shown in Fig. 15.

1. Hedgehog

The first example we consider is the hedgehog,

n = 1√
x2 + y2 + z2

(xex + yey + zez ), (23)

which results in a pure splay with

S = 2√
x2 + y2 + z2

, T = b = q = 0. (24)

Scaling the distortion characteristics to S, as in Sec. III A, we
obtain the octupolar potential �(x; 1, 0,−, 0), which enjoys
the D∞h symmetry [see Fig. 15(a)].

2. Pure bend

A pure bend is represented by the director field

n = 1√
x2 + y2

(−yex + xey), (25)

whose integral lines are concentric circles in the planes with
constant z. In this case,

S = T = q = 0, b = 1

x2 + y2
(xex + yey). (26)

Scaled to b, the octupolar potential becomes �(x; 0, 1, 0, 0),
which enjoys the D2h symmetry [see Fig. 15(b)].

3. Planar splay

A pure splay in two space dimensions is described by the
field

n = 1√
x2 + y2

(xex + yey), (27)

which we call a planar splay. In this case,

S = 1√
x2 + y2

, T = b = 0, q = 1

2
√

x2 + y2
. (28)

Scaled to q, the corresponding octupolar potential becomes
�(x; 2, 0,−, 1) [see Fig. 15(c)]; as already seen in Sec. II A,
it differs from the potential of pure bend only in its spatial
orientation with respect to n.

4. Spirals

A somewhat intermediate distortion between pure bend
and planar splay is given by

n = 1√
x2 + y2

[(x cos α − y sin α)ex + (x sin α + y cos α)ey],

0 < α <
π

2
. (29)

For α = 0, this field is the pure bend in Eq. (26), whereas for
α = π

2 it is the planar splay in Eq. (28). For 0 < α < π
2 , the

FIG. 14. Integral lines for examples of quasi-uniform distortions. (a) Hedgehog. (b) Pure bend. (c) Planar splay. (d) Spirals (α = π/4). (e)
Spirals (α = −π/4).
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FIG. 15. Octupolar potentials for the quasiuniform distortions in Fig. 14. (a) Hedgehog. (b) Pure bend. (c) Planar splay. (d) Spirals (α =
π/4). (e) Spirals (α = −π/4).

integral lines of Eq. (29) are spirals in the planes with constant
z [see Figs. 14(d) and 14(e)]. Scaled to q, the octupolar po-
tential associated with Eq. (29) becomes �(x; 2, 2 tan α, 0, 1)
[see Figs. 15(d) and 15(e)]. In this case,

S = cos α√
x2 + y2

, T = 0,

b = sin α√
x2 + y2

n1, q = cos α

2
√

x2 + y2
, (30)

where

n1 = 1√
x2 + y2

[(x sin α + y cos α)ex

− (x cos α − y sin α)ey] and n2 = −ez. (31)

V. CONCLUSIONS

Describing the distortion in space of a nematic director
field n is easier said than done. Motivated by a fresh look [13]
into the classical topic of nematic elasticity, which originated
with the works of Oseen [48] and Frank [49], we devised
a mathematical construct that can easily identify various in-
dependent elastic modes, especially the biaxial splay, which
is contending the role traditionally played in liquid crystal
science by saddle-splay elasticity [13].

Our construct is an octupolar tensor A, that is, a third-rank,
fully symmetric, and traceless tensor built from n and ∇n.
More precisely, the octupolar potential � associated with
A and its graphical representation over the unit sphere S2

(the polar plot) were particularly expedient in representing

the directions of local distortion concentration, which were
identified with the directions along which � attains a local
maximum. We charted the symmetries enjoyed by � (and its
polar graph) in an intrinsic distortion frame (which includes
n), as some distortion characteristics of the nematic field are
varied in a three-dimensional parameter space.

Different distortion landscapes correspond to different oc-
tupolar potentials, differently oriented relative to n. It is our
hope that the symmetries charted in Fig. 7 could guide the
educated eye to recognize which elastic mode is prevailing
in a generic distortion. The least we did was to establish
a rule of thumb. In general, the octupolar potential � at a
point in space may have either 4 or 3 directions of distor-
tion concentration; the former spatial arrangement signals the
predominance of biaxial splay, whereas the latter signals its
depression.

In general, � changes from point to point. In one case, it
is everywhere the same, that is, when all distortion charac-
teristics are constant in space, as is the case for the uniform
distortions, which have been characterized in Ref. [19]. If one
allows � to be differently inflated at different places in space,
while keeping everywhere the same shape, one defines a new
class of quasiuniform distortions. This class has not yet been
characterized, but it has been illustrated here by example.
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APPENDIX: MATHEMATICAL DETAILS

For the interested reader, we collect in this Appendix the mathematical details of our development and the (simple) proofs
that would have hampered our presentation.

1. Critical points of � in a special case

In Table I we list the critical points x ∈ S2 and the critical values �(x) of the octupolar potential (i.e., the eigenvalues λ of
the octupolar tensor A) in the special case considered in Sec. III C, namely, for b = 0 and q = 1.
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TABLE I. Maxima and saddle points of the octupolar potential for q = 1, b = 0, and S � 0. The minima are antipodal to the maxima in S2

and have opposite eigenvalues. The case with S � 0 is similar and can be readily derived from the case S � 0 by use of Eq. (19). For S > −5/3
the critical points are 14: 4 maxima, 6 saddles, and 4 minima. For S < −5/3 the critical points are 10: 3 maxima, 4 saddles, and 3 minima,
with the only exception of the monkey saddle at S = −10/3, where the saddles are only 2 (for a total of 8 critical points).

Maxima Saddle points

0 � S > − 5
3 λ =

√
(10−3S)3

15
√

15(2−S)
, x = ±2

√
5−3Sn2−√

10−3Sn√
15(2−S)

λ = − S
5 , x = n

λ =
√

(10+3S)3

15
√

15(2+S)
, x = ±2

√
5+3Sn1+√

10+3Sn√
15(2+S)

λ = 0, x = ±√
10−3Sn1±√

10+3Sn2
2
√

5

λ = S
5 , x = −n

− 5
3 � S > − 10

3 , λ = − S
5 , x = n λ = 0, x = ±√

10−3Sn1±√
10+3Sn2

2
√

5

λ =
√

(10−3S)3

15
√

15(2−S)
, x = ±2

√
5−3Sn2−√

10−3Sn√
15(2−S)

− 10
3 > S λ = − S

5 , x = n λ =
√

−(10+3S)3

15
√−15(2+S)

, x = ±2
√−5−3Sn1−√−10−3Sn√−15(2+S)

λ =
√

(10−3S)3

15
√

15(2−S)
, x = ±2

√
5−3Sn2−√

10−3Sn√
15(2−S)

λ = −
√

−(10+3S)3

15
√−15(2+S)

, x = ±2
√−5−3Sn1+√−10−3Sn√−15(2+S)

2. Symmetry properties

Equations (19) are easily checked, once the actions of a number of relevant symmetries and rotations on x := x1n1 + x2n2 +
x3n are duly recorded,

Rn1 x = −x1n1 + x2n2 + x3n, Rn2 x = x1n1 − x2n2 + x3n, Rnx = x1n1 + x2n2 − x3n,

Q π
2 ,nx = −x2n1 + x1n2 + x3n, Rn2 Q π

2 ,nx = −x2n1 − x1n2 + x3n. (A1)

Then, by direct inspection, we see that

�(x; S, b,−β, q) =
(

S

2
+ q

)
x2

1x3 − b cos βx1x2
3 + b sin βx2x2

3 +
(

S

2
− q

)
x2

2x3

+ 1

5

(
x2

1 + x2
2 + x2

3

)
(b cos βx1 − b sin βx2 − Sx3) = �

(
Rn2 x; S, b, β, q

)
, (A2)

�(x; −S, b, π/2 − β, q) =
(

−S

2
+ q

)
x2

1x3 − b sin βx1x2
3 − b cos βx2x2

3 +
(

−S

2
− q

)
x2

2x3

+ 1

5

(
x2

1 + x2
2 + x2

3

)
(b sin βx1 + b cos βx2 + Sx3) = −�

(
Rn2 Q π

2 ,nx; S, b, β, q
)
, (A3)

�(x; S, b, π + β, q) =
(

S

2
+ q

)
x2

1x3 + b cos βx1x2
3 + b sin βx2x2

3 +
(

S

2
− q

)
x2

2x3

+ 1

5

(
x2

1 + x2
2 + x2

3

)
(−b cos βx1 − b sin βx2 − Sx3) = −�(Rnx; S, b, β, q). (A4)

Similarly, we prove Eq. (21). That �(x; S, b, 0, 1) = �(Rn2 x; S, b, 0, 1) is a trivial consequence of Eq. (19a). Then, by
Eqs. (19c) and (19a), and the identity Rn2 Rnx = x1n1 − x2n2 − x3n = −Rn1 x, we arrive at

�(x; S, b, π/2, 1) = �(x; S, b, π − π/2, 1) = −�(Rnx; S, b,−π/2, 1) = −�
(
Rn2 Rnx; S, b, π/2, 1

)
= −�

( − Rn1 x; S, b, π/2, 1
) = �

(
Rn1 x; S, b, π/2, 1

)
. (A5)
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