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Exploring the connection between the density-scaling exponent and the intermolecular potential
for liquids on the basis of computer simulations of quasireal model systems
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In this paper, based on the molecular dynamics simulations of quasireal model systems, we propose a method
for determination of the effective intermolecular potential for real materials. We show that in contrast to the
simple liquids, the effective intermolecular potential for the studied systems depends on the thermodynamic
conditions. Nevertheless, the previously established relationship for simple liquids between the exponent of
the inverse power law approximation of intermolecular potential and the density-scaling exponent is still
preserved when small enough intermolecular distances are considered. However, our studies show that molecules
approach each other at these very short distances relatively rarely. Consequently, only sparse interactions between
extremely close molecules determine the value of the scaling exponent and then strongly influence the connection
between dynamics and thermodynamics of the whole system.
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I. INTRODUCTION

The complex nature of fluids has been a subject of scientific
interest since the latter half of the past century. One of the
main reasons for the unceasing fascination with the liquid
state is the appearance of a new and breakthrough method for
its investigation: computer simulations of the molecular dy-
namics [1–3]. The most significant advantage of this compu-
tational technique is that it provides information unavailable
until that time about the exact positions and velocities of every
atom in the system as well as about interactions occurring
between them. Consequently, the entirely new possibility of
investigations of the liquid state has appeared. However, the
initial limitation of computing power has been that most com-
putational experiments were devoted to the so-called simple
liquids, i.e., systems composed of many particles interacting
via a radially symmetric pair potential. Interestingly, these
simulated systems exhibit many properties similar to those of
real liquids. Nevertheless, the simplicity of their molecular ar-
chitecture, as well as the assumed intermolecular interactions,
ensures that the natural and fundamental question of how well
these model systems can capture the intricate thermodynamic
and dynamic properties of real liquids is still a real one. One
of the methods to answer this problem is to understand how
the results obtained for simple liquids could be applied to the
real systems.

Since the latter part of the last century, numerous com-
putational studies of various systems have been performed.
Among them, the most prevalent are those in which the
Lennard-Jones (LJ) potential (or its approximation valid for
short distances by the soft-sphere potential) describes inter-
molecular interactions. The reason for the scientific interest
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in those systems is the theoretical explanation of the origins
of the repulsive and attractive parts of the LJ potential [4],
making use of the fact that the LJ or soft-sphere poten-
tials enable analytical modeling of the physical interactions
between molecules of real van der Waals liquids. Among
many obtained results, performed investigations revealed one
exceedingly fascinating feature of examined systems, which
is quasiuniversality of their properties [5–10]. The uniqueness
of quasiuniversality of the simple liquids comes from the fact
that it connects the micro- and macroproperties of the system.
According to it, all (macroscopic) structural, dynamic, and
transport properties at equilibrium are a function of the only
single variable, TV m/3, where T is the temperature, V is the
volume of the system, and m is a (microscopic) parameter
describing intermolecular interactions [11–14]. Theoretical
analysis delivers the exact explanation of the origin of the
m parameter. According to it, for the soft-sphere systems, an
effective intermolecular potential could be dominated by the
inverse power law (IPL),

UIPL(r) = ε(σ/r)m + A, (1)

where m is the exponent of repulsive term of intermolecular
potential, A is a constant representing the attractive back-
ground, and ε and σ are potential parameters [15–19]. Ad-
ditionally, the form of the scaling argument, TV m/3, implies
that the microscopic information about character of inter-
molecular interactions can be obtained from the analysis of
only macroscopic properties, which is a remarkable result
in the context of real materials for which knowledge of the
intermolecular potential or its parameters is unknown from
the real experiments. Interestingly, despite the fact that the
discussed scaling is valid only for soft-sphere systems, it was
shown that it works for LJ systems at low temperatures and
hence at high densities [20–24] and also even for real van der
Waals liquids. The latter was initially demonstrated by Tölle
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at the turn of century [25,26], who analyzed the quasielastic
neutron scattering data for canonical van der Walls liquid
ortho-terphenyl (OTP). Tölle pointed out that the observed
dynamic crossover could be characterized by an effective
constant value T υ4 (υ denotes the specific volume). The
exponent 4 was immediately related via m/3 to the exponent
12 of the LJ repulsive core. This first experimental observation
of quasiuniversality in real liquids not only maintained the
fascination of researchers with this subject but also made it
one of the most frequently studied issues of condensed matter
physics over the last 20 years [27–31].

Next, Dreyfus successfully scaled rotational relaxation
times, obtained from light-scattering data for different
isotherms of OTP, onto a single master curve as a function
of T υ4 [32]. However, other, numerous attempts to scale
dynamic properties of various glass formers revealed that the
exponent of 4 could not be treated as a universal value for all
systems [33–36]. Nevertheless, it was reported that the use of
the scaling exponent, which usually varies between 2 and 7,
enables density scaling of more than 100 glass formers [37].
Consequently, the general form of the density scaling has been
established [33–36,38–41],

X = F (T υγ ), (2)

where X is the dynamic quantity, e.g., the structural relaxation
time, τ , viscosity, η, or diffusion constant, D, and the density-
scaling exponent, γ , is a material constant. The deviation
between γ and its expected value of 4 (a result of the LJ
potential) has been rationalized by theoretical studies which
showed that the IPL potential with m = 12 is much softer
than the repulsive core of the LJ potential. In fact, the re-
pulsive core of the LJ potential is similar to IPL potential
with m = 18 [42]. It is due to the fact that the LJ potential
is a combination of repulsive and attractive terms. Hence,
even at short distances, the repulsive core of the LJ potential
is modified by the attractive term, which leads to m > 12.
Additionally, repulsive and attractive terms are expected to
be different for different materials, and therefore one cannot
expect that γ is identical for all materials. Nevertheless, the
material dependence of γ does not influence its fundamental
relation with the intermolecular potential,

γ = m/3, (3)

which is still preserved. Hence, this relationship can be freely
used to conclude on the intermolecular interactions occurring
between molecules.

However, in the case of real liquids, any consideration
of the relationship between γ and the exponent of the IPL
approximation of the intermolecular potential, m, has to begin
with the answer to the fundamental question about the origin
of the effective intermolecular interaction potential (EIIP),
which could be described by IPL. The most evident crucial
aspect is the shape anisotropy of real materials, which results
in intermolecular interactions generated by the one molecule
not having a spherical character. Therefore, this paper aims
to add to knowledge about the problem of the definition of
EIIP for real systems. We propose a method for estimating the
discussed potential and show that the determined exponent of
the approximation of EIIP by the IPL is close to the density-
scaling exponent (for two model systems). As a consequence,

the applied method for the determination of the EIIP helps
in understanding the origin of the effective intermolecular
interactions. Thus our findings contribute significantly to dis-
cussion of the quasiuniversality of the real systems.

II. METHOD

The most evident difference between simple liquids and
the real liquids is the shape of the molecules, which for the
majority of real liquids drastically departs from the sphere.
Therefore, over the last few decades, many approaches to
the problem of the influence of the molecular anisotropy on
the thermodynamics and dynamics of the system have been
proposed. The proposed model systems can be divided into
two main groups. The first group treats molecules as hard
objects with a given shape, in which anisotropy results from
short-range repulsive forces resulting from impenetrability of
hard cores [43]. Performed studies show that the molecular
shape may be crucial in determining the phase behavior
as a function of the density. One of the examples is hard
dumbbells, i.e., two hard spheres connected by the rigid-
bond, phase diagram, which strongly depends on the bond
length [44–47]. At low elongations, the liquid freezes into a
closely packed plastic crystal where the centers of mass of
the molecules form an ordered lattice, but they can rotate.
The FCC plastic crystal is stable at low elongations, although
it becomes metastable concerning the HCP when elongation
(and pressure) increases [47,48]. The transformation of the
plastic crystal to the orientationally ordered solid is observed
when one further increases the bond length. Another example
is hard rods, which exhibit five different phases depending on
the density and the shape anisotropy estimate by the ratio of
length and width [49]. Summarizing, the complexity of the
phase diagram of the hard molecules strongly depends on
the molecular shape. However, it must be stressed that for
this type of the systems the density is a crucial factor in-
fluencing the phase behavior, whereas the temperature enters
the thermodynamics in only a trivial way [50]. In contrast to
hard molecules, the second group of model systems considers
the molecular anisotropy by modeling intermolecular inter-
actions occurring between nonspherical molecules. The most
popular are systems governing by the Kihara potential [51],
the Gaussian overlap model [52], and the Gay-Bern potential
[53]. This approach enables one to include a short-range
repulsion as well as a long-range attraction as a function of
the distance between molecules and their mutual orientations.
Consequently, the temperature is also an important thermo-
dynamic variable affecting the physical properties of the
system.

However, from the experimental point of view, the most
natural is a phenomenological description of the intermolec-
ular interaction, which includes all atom-atom interactions,
i.e., the atom-atom (or site-site) model potential. In that way,
the structure of real molecules is reflected, and then closer
agreement with the experiments may be expected. Extensive
studies of those types of molecules proved that they provide a
fairly good description of dynamical [54–58] and structural
[59–62] properties of slightly nonspherical molecules [63].
Moreover, this way to model interactions between the real
molecules possesses a huge advantage, which is the possibility
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of applying the charge distribution and then creating an elec-
tric dipole (or quadrupole) moments—the inherent feature of
real molecules, whose impact on the density-scaling exponent
has been recently demonstrated [64].

Taking the above into account, we decided to apply the
atom-atom model to reflect the interactions between systems
studied herein. In that way the potential resulting from a single
molecule at the given point within the space is a sum of the
interactions induced by all atoms which form that molecule.
Hence, not only the distance from the molecule but also the
orientation of the molecule plays a role in the estimation of the
EIIP. At this point, we would like to recall our recent paper,
where EIIP was determined [65] (see discussion there). In
the mentioned studies, the three main directions in respect to
the molecular shape have been taken into account. Estimated
along these lines, EIIPs had been averaged and described with
very good accuracy by the IPL, with the exponent equal to
3γ . A natural generalization of this approach, which makes it
become independent of the molecular shape, is consideration
of all spherical angles for determination of the average EIIP.
However, we have to mention some limitations of this method.
First, for systems exhibiting some molecular ordering, i.e.,
liquid crystals for which dependence on the scaling exponent
on the phase has been reported [66], not all spherical angles
would be equally relevant. As a consequence, one should
predict which spherical angles should be neglected for es-
timation of EIIP for different phases. Second, the discussed
approach leads to a striking conclusion. The two hypothetical
molecules, which differ only in the flexibility of the bonds and
angles between them (but not in their value at equilibrium),
possess the same EIIP. Consequently, two different systems
would be characterized by the same physical properties, which
seems to be contestable. Naturally, the presence of the other
molecules in the system implies bending of the bonds as well
as change of their length. It yields to a temporary modification
of molecular shape and influence on EIIP, which is more
prominent for more flexible molecules. Variations in EIIP
result in the different physical properties of two hypothetical
systems, as may be expected. The solution is the calculation of
the EIIP based on the temporary shape of the molecule within
the system. However, the shape of the molecule changes with
time because it depends on the positions and orientations of
the neighboring molecules, which are constantly in motion.
It constitutes a challenging problem for an analytical solu-
tion, which should consider modifications of molecular shape
resulting from possible mutual orientations of molecules.
However, as we previously mentioned, not all of the latter
are relevant. Therefore, an analytical solution of the discussed
issue faces the problem of eliminating the mutual arrangement
(positions and orientations) of molecules, which does not
(frequently) occur within a real system. Nevertheless, the
use of the computer simulations of the molecular dynamics
enables elimination of this problem. This method provides
the exact positions of all atoms during the time evolution
of the system. Hence, in the natural way irrelevant mutual
orientations and positions of molecules, which do not occur,
are not registered. Consequently, in the most general way,
the EIIP could be estimated by calculation of the interaction
taking place between all atoms of both interacting molecules
considering their temporary positions and presenting this as a

function of the distance between the centers of the molecules’
masses or geometries.

To analyze the behavior of the EIIP at various thermo-
dynamic conditions calculated according to the method de-
scribed in the previous paragraph as well as its correspon-
dence to the density-scaling exponent, we examined two
model systems. The first is conceptually based on simple
liquids, whose interaction potential depends solely on the
intermolecular distance. Since, as we already mentioned,
the spherical potential cannot be ideally imitated by the
real molecules, we employed the structure of the methane
molecule to create the model molecule of the tetrahedron
shape; see the scheme in Fig. 1(a). The advantage of that
choice is not only the fact that the tetrahedronlike molecule
(TLM) has representatives within real liquids, but also the
fact that it approximates the sphere, and simultaneously it
comprises a tiny number of atoms, which facilitates compu-
tational studies. To eliminate influences of different factors
we simplify the molecule as much as possible. We set all its
atoms to be identical; i.e., they are characterized by the same
masses and the intermolecular potential parameters, which are
defined for the carbon atoms of the benzene ring by an OPLS
all-atom force field [67]. Consequently, the bonds lengths
and their stiffness as well as the stiffness of the angles they
create are set to correspond to those of the benzene ring. The
second examined model of a quasireal molecule has been
recently introduced by us [65]. Its molecules are made up
of four identical atoms (of carbon atom mass) arranged in
a rhombus shape; see the scheme in Fig. 1(b). The shape of
the rhombuslike molecules (RLMs) implies that they possess
short and long molecular axis, whereas bonds lengths are
constant. We set the bond lengths to be equal to 0.14982 nm
(0.14 nm is the length of a bond for carbon atoms in a
benzene ring and then in TLMs), whereas angles between
bonds are established to make one diagonal two times longer
than the other. Similarly, to the first model system the stiffness
of bonds, angles, and dihedrals, as well as the nonbonded
interaction between atoms of different molecules, have been
defined by OPLS all-atom force field parameters provided for
carbon atoms of the benzene ring.

The experimental procedure was similar for two systems.
After construction of the perfect FCC lattice crystal, in which
the 2048 RLM or TLM was inserted in place of atoms, we
heated the systems from a starting temperature equal to 10 K
(at isobaric conditions of 40 MPa for TLMs and 100 MPa for
RLMs) to determine the melting of the crystal structure and
then the conditions corresponding to the liquid phase. The
molecular dynamics simulations have been performed using
GROMACS software [68–71] at conditions controlled by
a Nose-Hoover thermostat and Martyna-Tuckerman-Tobias-
Klein barostat. Each simulation run lasts for a relatively long
time, 1 billion time steps (dt = 0.001 ps), whereas the change
of the temperature is equal to 5 K (�T = 5 K). The cutoff
of the intermolecular interaction occurs at a distance equal
to 1.065 nm, which is three times larger than the distance of
the minimum of the LJ potential describing the nonbonded
interaction between atoms. After appropriate melting of the
structure, which has been done at a temperature 50 K higher
than the temperature of the observed sudden increase in
volume, we cooled the systems at isobaric conditions to the
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FIG. 1. Density scaling for two model systems, TLM and RLM, in panels (a) and (b), respectively. The schemes of the molecular structures
are presented as well as the values of the density-scaling exponent, γ . The arrows denote the two boundary thermodynamic conditions
corresponding to the highest and lowest values of diffusion constant.

starting temperature. This procedure was performed for TLMs
at pressures equal to 10, 40, 80, 120, and 160 MPa, and
at 40, 80, 100, and 200 MPa for RLMs. The temperature
dependences of volume per molecule, υm, have been described
with a very good accuracy by the quadratic equation. Addi-
tionally, at each thermodynamic condition, using GROMACS
software, we determined the diffusion constants, where the
temperature dependences have been approximated with the
well-known Vogel-Fulcher-Tammann equation. Next we de-
termined the scaling exponent using Eq. (2), according to
which log T |D=const is a linear function of log υm|D=const with
the slope equal to γ . At this point, it should be recalled that
this equation is valid only for soft-sphere systems. Conse-
quently, this form of the scaling function for real systems is a
hypothesis. Nevertheless, it works perfectly for numerous ma-
terials and therefore from the experimental point of view can
be used for further analysis. Employing the Vogel-Fulcher-
Tammann equation for each isobar we calculated the tempera-
ture corresponding to the given value of the diffusion constant
[log([nm2/s]/D) = −9 for TLMs and log([nm2/s]/D) =
−8 for RLMs]. Subsequently, exploiting the aforementioned
cubic approximation of the dependence of υm on T we got
the appropriate for a given temperature value of the molecular
volume. Fitting established dependences of log T |D=const on
log υm|D=const we easily estimated the γ value. As is presented
in Figs. 1(a) and 1(b) for TLMs and RLMs, respectively, the
obtained values of γ lead to the satisfying density scaling of
diffusion constants. We refer interested readers to our recent
article [65], where the discussed procedure is described in
great detail for the RLM system.

III. RESULTS

At the beginning of our results we would like
to consider the two boundary dynamic conditions,
(T = 200 K, p = 100 MPa) and (T = 80 K, p = 120 MPa)

for TLMs and (T = 150 K, p = 200 MPa) and
(T = 45 K, p = 40 MPa) for RLMs, which are characterized
by the highest and the smallest values of D, respectively.
Given the aforementioned discussion of EIIP, we examined
the final configuration obtained from the molecular dynamics
simulations. For each pair of molecules we determined the
distance between their centers of masses, rCM . Subsequently
for every atom of one molecule we calculated the potential
energy resulting from all atoms of the other molecule. The
sum of these potential energies, UE , was assigned to rCM .
Additionally, to obtain better statistics at short distances
the periodic boundary conditions have been applied. The
estimation of the base of one configuration UE (rCM ) for all
molecular pairs is presented in Fig. 2 (filled circles). We
can see that thermodynamic conditions corresponding to
the lower value of the diffusion constant exhibit smaller
distribution of UE . It is a result of the insufficient values of
the kinetic energies of the molecules, which make impossible
exploration of the less energetically optimal orientations of
molecules. Observed for the state of fast dynamics, high
values of UE correspond to the pairs of molecules whose
potential energy significantly exceeds the energy needed for
its separation. As a consequence, those molecules probably
change their environments, contributing to quickening the
diffusion process. Interestingly, we can also observe that for
both studied thermodynamic conditions the lowest calculated
values of UE lie in one curve exhibiting a typical shape of the
LJ potential cure. It suggests that the liquid systems could be
described by some boundary potential. Since the minimum
of the boundary potential is characterized by the smallest
value, the discussed potential described the interactions
between the molecules, whose mutual orientations make
separation of those molecules as difficult as is possible. This
ensures that analysis of the boundary potential would be an
interesting topic for further studies. Nevertheless, in this paper
we focus on an EIIP, which describes mean (not extreme)
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FIG. 2. The effective intermolecular potential as a function of
the distance between centers of molecule mass is presented for
two dynamic boundary conditions (filled symbols consider only one
configuration without any averaging). The open symbols represent
the average at each intermolecular distance for all collected configu-
rations at given thermodynamic conditions. The straight lines denote
the approximation by the IPL with the constant value of exponent m
equal to 3γ .

intermolecular interactions. Hence the natural way to estimate
EIIP is averaging of determined UE (rCM ). To provide better
statistics we take into account all configurations registered
during each simulation run (1001 data sets). Results are
presented in Fig. 2 (open symbols). Here we can clearly notice
that at both dynamic conditions the average UE is arranged
in a manner which is similar to the shape of the LJ potential.
One can also observe that the average UE determined at
conditions of slower dynamics reaches lower values and that
its minimum is registered at shorter intermolecular distances.
The shift of the potential minimum to the smaller distances is
probably connected with the lowering of the temperature [see
also Fig. 3(a). Thermal motions lead to UE differing from
the aforementioned boundary potential, i.e., the potential
which describes the most energetically optimal angular
positions and their mutual orientations. At given rCM one
molecule can surround another, but some angular positions

and orientations are more energetically preferable. The higher
the temperature, the more (and more frequently) energetically
nonoptimal configurations are achieved. As a consequence,
the minimum of UE moves farther from the minimum of the
boundary potential. Interestingly, the lowering of UE observed
in Fig. 2 suggests indirectly some ordering of the structure.
Lower values of UE at given rCM implies that the average
energy which must be overcome to separate two molecules of
system becomes higher. Since we consider a constant value
of rCM it is a result of mutual positions and orientation of
molecules. The latter are less diverse and more similar to the
most energetically optimal ones at a condition of a smaller
value of D. Additionally, we would like to call readers’
attention to the fact that the smaller values of rCM are detected
for the system characterized by the higher value of D. It can
be a result of the higher kinetic energy of the molecules,
which facilitates overcoming the repulsive intermolecular
interactions and makes molecules be temporarily closer to
each other.

Since UE (rCM ) determined in the proposed way changes
when the thermodynamic conditions differ, a natural conse-
quence of performed research is a detailed examination of UE

variations. We choose the condition of constant temperature,
volume, and diffusivity, since these quantities occur in Eq. (2).
The results are presented in Fig. 3 for the TLM system.
Interestingly, we can observe that at isothermal conditions
[Fig. 3(a)] the position of the UE minimum remains un-
changed and that variation of UE , when pressure (and thereby
volume) changes, is much less than in the case of constant
volume and diffusion; see Figs. 3(b) and 3(c), respectively.
This fact supports our previous claim that the shift of the
EIIP minimum is mainly due to the temperature changes.
Interestingly, the almost identical shapes of UE means that
changes occurring within the system are similar to those
observed in simple liquids, for which mutual orientations and
angular positions of molecules do not play any role in the
shape of EIIP (according to the definition of EIIP introduced
herein). Hence, we can suspect two possible scenarios. The
molecules exclusively move closer to each other, keeping their
mutual orientations and angular positions unchanged, or the
(average) orientation and angular positions of molecules are
directly connected with the distance between them; i.e., when
one molecule is approaching another (rCM decreases), their
mutual orientations and angular positions change but not in
the unrestricted way. The constant temperature results in that

FIG. 3. The evolutions on the EIIP when conditions of constant temperature (a), volume (b), and diffusion (c) are maintained.
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at given rCM , independent of the system density, the same
mutual orientations and angular positions can be achieved by
molecules. In other words, the kinetic energy of molecules
is too small to enable the arrangement of molecules in more
nonenergetically efficient configurations. It results in the same
(or very similar) shapes of the EIIP at isothermal conditions,
and we believe that this scenario is more probable than the
first one.

The highest variation of UE is observed for isochoric con-
ditions; see Fig. 3(b). Moreover, one can note that the position
of the UE minimum shifts toward the longer intermolecular
distances when temperature increases. In this case the aver-
age distances between molecules are maintained. Hence the
changes in UE are caused by the different orientations and
angular positions between molecules. At low temperatures
kinetic energies of molecules do not enable one to obtain
configurations that are not energetically optimal. Hence, the
energy needed for separation of the two molecules is high,
and the potential curve exhibits a pronounced minimum. An
increase in the temperature guarantees that configurations that
are not energetically optimal are registered more frequently,
which causes a gain in UE . Hence, simplifying, different
potential curves obtained for various temperatures at isochoric
conditions correspond to EIIP curves determined for different
mutual orientations and angular positions of molecules.

The fulfillment of the last studied conditions, D = const,
requires a modification of both temperature and volume.
However, the discussed thermodynamic quantities influence
similarly the diffusion process (an increase in T and υm

implies a gain in the diffusion constant). Therefore, to keep the
conditions of constant diffusion, one of them must decrease
when the other increases. Consequently, in Fig. 3(c) we can
see that an increase in the temperature makes UE varies,
which is similar to results presented in Fig. 3(b). However,
its alternations are less prominent because the variation of the
temperature is smaller [this is presented in Fig. 3(b)], whereas
a decrease in volume slightly influences the UE [see Fig. 3(a)].

Concluding, on the basis of the results presented in Fig. 3
we can state that the temperature plays the most important
role in the evolution of the EIIP. Discussed changes are due
to the changes in mutual orientations and angular positions
of molecules, which lead to the ordering of the structure. In
this context, we would like to call readers’ attention to the
conclusion noticed from Fig. 3(a). The decrease in the volume
at isothermal conditions results in the increase of the EIIP,
which means that the structure becomes easier to perturb.
Consequently, at higher densities, one can expect that the
system is less ordered. To confirm this finding we calculated
the global bond-orientational order parameters [72], Q6. The
local structure around atom i could be quantified by a set of
numbers q̄lm(i) ≡ 1

N (i)

∑N (i)
j=1 ϒlm(r̂i j ), where l = 6 for q6, r̂i j

is a unit vector in the direction between atom i and atom j,
N (i) is a total number of considered i atoms, and ϒlm(r̂i j )
is a spherical harmonics. Then the average of q̄lm over all
particles gives Q̄lm, and the rotational invariant takes the
form Ql ≡ ( 4π

2l+1

∑l
m=−1 |Q̄lm|2)1/2. The latter is recognized

as a global order parameter (Q6 for l = 6). In Fig. 4 we
present evolution of Q6 (calculated for atoms separated by
a distance smaller than 0.6 nm) when the pressure increases

FIG. 4. The global bond-orientational order parameters calcu-
lated at thermodynamic conditions considered in Fig. 3.

(along the three thermodynamic paths considered in Fig. 3).
Consistent with the result presented in Fig. 3(a), a decrease
in the density at isothermal conditions results in the ordering
of the structure and Q6 decreases. The same behaviors are
observed for thermodynamic conditions of constant volume
and diffusivity, which correspond to the shift of EIIP curves
towards higher values; see Figs. 3(b) and 3(c), respectively.
Hence, the structural ordering concluded from Fig. 3 finds
confirmation in the changes of Q6. However, despite that
a good qualitative agreement between results presented in
Figs. 3 and 4 is achieved, the quantitative changes registered
at the discussed schemes are not consistent. The evolution
of EIIP at isothermal conditions is tiny, whereas respective
changes in Q6 are highest. Similarly, differences in Q6 are
smallest for isochoric conditions, while EIIP significantly
varies when the volume is constant. The lack of quantitative
agreement could be a result of the way used to the parame-
terization of the structural order. In this context, establishing
the general connection between EIIP and the structure seems
to be an interesting topic for further studies. Nevertheless,
based on the presented analysis of Q6 we can state that the
EIIP can be used for qualitative examination of the structure
evolution.

Our studies clearly show that an effective intermolecular
potential depends on the thermodynamic conditions. It is
due to structural anisotropy of the molecules because the
discussed effect is not observed in the case of isotropic simple
liquids. For the latter EIIP is identical to the intermolecular
potential describing interactions between two molecules in-
dependently of the thermodynamic conditions. As a conse-
quence, the dependence of the shape of UE on thermodynamic
conditions suggests that single IPL with constant value of the
parameters cannot describe all UE for anisotropic molecules,
even when constant dynamics of the system is maintained.
Thus, we should expect different m values, which leads to
the conclusion that the density-scaling exponent depends on
the thermodynamic conditions. Interestingly, this scenario is
consistent with the few reports on van der Waals liquids
[73,74] and metals [74,75]. They show that γ depends on the
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FIG. 5. The EIIP average for all studied thermodynamic conditions is represented by the open symbols for TLM and RLM systems in
panels (a) and (b), respectively. Lines are the EIIP approximation by the IPL, Eq. (1), for two considered ranges of intermolecular distances. The
vertical arrows indicate the first range of rCM , which is limited by the minimum of EIIP, whereas horizontal arrows point to the intermolecular
distance corresponding to the middle of the EIIP repulsive slope (second range of distances). We also present the obtained values of the IPL
exponent, m, and their comparison to the value of the scaling exponent γ . In the inset of panel (a) the accuracy of the IPL fit at shortest rCM is
shown.

temperature and/or density, which at present is a subject of
extremally hot debate [76–79].

IV. DISCUSSION

At the beginning of this section, we would like to note two
technical issues related to the relationship between UE and m.
Intuitively, a steeper slope of UE should be characterized by a
higher value of m. However, the shape of the IPL potential,
and then its steepness, does not depend exclusively on m
values but also on the values of other parameters, i.e., ε and
σ [Eq. (1)]. Hence, to study changes of the m parameter
at different thermodynamic conditions, we cannot base our
work only on visual examination of potential curves but
also on the detailed description of UE by IPL. It immedi-
ately leads to a second problem. The approximation of UE

by IPL is valid only at short distances; i.e., the maximum
value of rCM considered should not exceed the distance at
which UE reaches a minimum. Consequently, to compare a
different parameter of IPL, a precise definition of considered
rCM range is required. The most natural way is to use the
maximal accessible range of intermolecular distances, i.e.,
the range between shortest registered rCM and rCM corre-
sponding to the minimum of UE . In Fig. 2 UE (rCM ) are
described by an IPL with a constant value of m = 3γ for
two boundary dynamic conditions. The accuracy of the fit
parameterized with the R2 parameter equals 0.94 and 0.97 for
(T = 200 K, p = 10 MPa) and (T = 80 K, p = 120 MPa),
respectively. We observe in Fig. 2 that fairly good agreement
is reached at short rCM , while during the approach of rCM

corresponding to the minimum of UE , fit curves underesti-
mate the curvature of UE (rCM ). Nevertheless, we can state
that for both extreme dynamic conditions the constant value
of m = 3γ yields a satisfactory description of EIIP by IPL
at short distances. It possesses important consequences for
estimating UE at all thermodynamic conditions. If N differ-

ent potentials are described by IPL with the same m value,
their average is s U avg

IPL = 1
N

∑N
i=1[εi(

σi
r )m + Ai]. This can be

rewritten in the form 1
N

∑N
i=1[εi(

σi
σeff

)m( σeff
r )m + Ai], in which

( σeff
r )m does not depend on N . Hence, we get the formula

U avg
IPL = ( σeff

r )m
∑N

i=1
εi
N ( σi

σeff
)m + ∑N

i=1
Ai
N , which immediately

leads to the final expression

U avg
IPL = εeff

(σeff

r

)m
+ Aeff . (4)

It is worth noting that the last formula fulfills IPL as
well (the exponent m is preserved, whereas εeff , σeff , and Aeff

are “effective” parameters). Taking this fact into account, we
calculated EIIP for all performed simulations considering all
registered configurations. Then we determined the average for
all thermodynamic conditions UE and approximated it by the
IPL, but this time we treated m as a free fit parameter. Results
are presented in Fig. 5. The dashed lines represent the fit of all
rCM shorter than the distance at which UE exhibits a minimum.
Since in this case m is a free fit parameter„ the shape of UE

close to minimum is much better reflected than is observed
in Fig. 2. As a consequence the obtained m values are higher
than 3γ . However, it simultaneously results in deviations of
the fit from UE at the shortest distances, which is presented in
the inset of Fig. 4.

The possible explanation of m > 3γ could be offered by
the recent paper by Fragiadakis and Roland [80], where on
the basis of molecular dynamics simulations of molecular
liquid having rigid bonds and using the same intermolecular
potential, a general form of the relationship between γ and m
has been proposed, γ = m/δ, where δ relates the intermolec-
ular distance to the density along an isomorph (the line of
approximately constant dynamics and structure). The authors
pointed out that δ depends only on the structure of molecules
and not on the intermolecular potential, and therefore δ plays
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the role of the dimensionality. The latter can be understood
as the aspect ratio of the molecules; i.e., during compression
of the system comprising long, rigid, rodlike molecules (si-
multaneously maintaining the same structure) each molecule
compresses mainly in the two latter distances, δ � 2. Since
the model molecules exploited in our studies do not have rigid
bonds and they can be compressed alongside all dimensions,
one can suspect that δ should be higher than 3. Using values of
m obtained from the free fit in the range to the minimum of UE ,
we immediately get δTLM = 4.65 and δTLM = 4.42. On the
other hand, we would like to note that the studied molecules
vary significantly in their structure, whereas the difference in
δ values is slight. Nevetheless, the complete understanding
of the connection between δ and the molecular architecture
seems to be interesting topic for subsequent studies.

The alternative approach to solving the problem of incon-
sistency between m and 3γ is the limitation of the rCM range,
which naturally improves the fit accuracy. The narrower the
range of rCM the better the agreement achieved. A similar situ-
ation has been reported for single-component LJ systems; see
Fig. 3 in Ref. [23], where the repulsive part of the intermolec-
ular potential is approximated by IPL. Likewise, in Ref. [24]
it has been pointed out that for a binary mixture of molecules
interacting via LJ potentials the approximation of “effective”
LJ potential by IPL is valid only at distances shorter than the
position of potential minimum. Interestingly, as the authors
pointed out, the range of intermolecular distances used for the
approximation of potential by IPL corresponds to typical dis-
tances registered between closest particles. Summarizing, for
LJ systems the intermolecular distances shorter than the min-
imum of the intermolecular potential are essential in the co-
ntext of estimating m value. Hence, we can suspect that the
range of rCM applied in Figs. 2 and 5 is also too high, and
the inconsistency between IPL fit curve and UE value, which
takes place close to the minimum of UE , can be neglected.

Consequently, we performed another analysis during
which we limited the rCM to the value which corresponds to
the half of the repulsive slope of UE , i.e., to rCM at which UE =
max(UE ) − [max(UE ) − min(UE )]/2. The fit is denoted by
the solid lines; see Fig. 5. In this case estimated m values
are in an excellent agreement with 3γ . This finding leads to
the conclusion that for analyzed systems the value of the IPL
exponent is sensitive to the range of rCM . In order to conform
our system to the result obtained for standard model systems,
we approximate the standard LJ potential (expressed in the
typical reduced units of simulation) by the IPL. The used
ranges of intermolecular distances are identical to that applied
for the TLMs in Fig. 5. For the fit in the range limited by
the minimum of the LJ potential we obtain m = 21.63 ± 0.23.
Given that the maximal intermolecular distance, which is con-
sidered, corresponds to the middle of repulsive slope we get
m = 17.24 ± 0.04. Our analysis is consistent with Ref. [42].
Hence, even for a standard model system the variance of the
IPL exponent in respect to intermolecular distances is notice-
able. This situation (probably) takes place for any system in
which the intermolecular potential consists of repulsive and
attractive terms, which fulfill IPL with different exponents.

The consistency between m and 3γ when only short inter-
molecular distances are considered puts our main attention on
the interactions occurring between very close molecules. As

we previously mentioned, Coslovich and Roland [24] argue
that that these very short intermolecular distances correspond
to typical distances registered between closest particles for
simple liquids studied by them. It is confirmed by the shape of
the radial distribution function (RDF), which reaches half of
its maximum at considered distances. This situation is natural
for simple liquids for which the center of molecule mass is
a source of isotropic intermolecular interactions. However,
in our studies we consider (quasireal) molecules comprising
many atoms. For this type of system distribution of distances
between centers of molecule mass results from interactions
between particular atoms. Consequently, we cannot expect
that the similarity observed for simple liquids between the
distance at which the RDF for centers of molecules masses
possesses a maximum and a distance corresponding to the
UE minimum holds for these systems. In Fig. 6 we present
UE (rCM ) and the RDFs calculated for the centers of molecules
masses as well as for atoms (at two extreme dynamic condi-
tions). One can observe that the minimum of UE occurs at
distances notably shorter than the maximum of the RDF for
the centers of molecules masses. This is clearly apparent for
RLMs, for which values of the RDF at rCM corresponding
to the UE minimums are much smaller than unity. Unity
of the RDF denotes that the local density is equal to the
average density estimated for the whole system. Hence, the
UE minimum occurs at distances corresponding to the length
between nearest atoms. Indeed, as we can see in Fig. 6(b), for
RLMs, characterized by the flat structure, the minimum of UE

is much closer to the first maximum of the RDF for atoms
than for centers of molecules mass. It means that for this
system the nearest atoms of the adjacent molecule are placed
in the area of UE minimum. In contrast to RLMs, for TLMs
the UE minimum is practically in the middle of the region,
which corresponds to the atoms of neighboring molecule. It
is a reasonable result since TLMs are projected to mimic
the sphere and are characterized by the minimal structural
anisotropy. Consequently, this system exhibits behavior more
similar to simple liquids. We would like to call attention to
the fact that the structure ordering, which was previously
suggested by us, is also reflected in the behavior of the RDF
functions. At thermodynamic conditions, which correspond
to the small diffusivity, RDFs exhibit higher and narrower
peaks. Additionally, at discussed conditions, RDFs for the
centers of molecule masses start to separate, which indicates
some organization of the molecules rather than the situation
in which they can freely occupy a position within some range
of mutual distances. The latter is described by the single
and wide peak of the RDF, like as can be seen for the RDF
calculated for the condition of high diffusivity.

At the end of this discussion of the relationship between the
rCM range and exponent of IPL we would like to call readers’
attention to a very interesting observation. The vertical dashed
line in Fig. 6 represents the rCM corresponding to the distances
at which the repulsive slope of UE possesses a middle value.
We recall that the approximation of this range by IPL leads to
m = 3γ . As we can see, at discussed value of rCM the RDF
for centers of molecules masses starts to grow. This scenario
is independent of the systems as well as of the thermody-
namic conditions. The obtained result is extremally intriguing
because UE is a function of rCM . Since the RDF for centers
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FIG. 6. The results for two boundary dynamic conditions are shown. Lines present the radial distribution functions calculated for centers
of molecules’ masses (solid line) and for atoms (dotted line) for TLMs and RLMs, respectively, in panels (a) and (b). rAA is the distance
between atoms. Open points indicate the EIIP as a function of the distance between centers of molecule mass. The red vertical lines denote the
intermolecular distances at which repulsive slope of EIIP reach a middle value.

of molecules masses exhibits very low values the very small
number of molecules are separated by the considered distance.
As a consequence, the rare interactions between extremely
close molecules determine the slope of UE and then the value
of γ . It implies that the connection between thermodynamics
and dynamics of the whole system is governed by the sparse
“molecular events.”

V. CONCLUSIONS

In this paper, we propose a method for estimating the
effective intermolecular potential for quasireal systems. The
suggested approach is a natural consequence of our recent
work because besides the molecular structure it considers
the mutual orientations and positions of molecules within
the system as well as temporary deformations of molec-
ular shape caused by other molecules. Consequently, both
intra- as well as intermolecular interactions contribute to the
effective intermolecular interactions. Based on our analysis,
we demonstrate that EIIP depends on the thermodynamic
conditions, whereas the smallest changes are observed under
isothermal conditions. The observed dependence of EIIP on
the thermodynamic conditions is caused by the molecular
anisotropy, which makes spatial orientation of the neighboring
molecule play an essential role in the mutual interactions
between molecules. Consequently, UE = UE (T,V ) puts into
doubt the established relationship in the literature between

the exponent of the intermolecular potential approximation
by the IPL and the density-scaling exponent. However, we
pointed out two crucial facts. First, the shape of EIIP is not
determined solely by m, and therefore, identical values of m
could be used to describe different potentials. Second, for the
approximation of EIIP with the IPL, only the distances shorter
than the position of the EIIP minimum are relevant. Taking the
above into account as well as the fact that arithmetic average
of IPL potential also fulfills IPL, Eq. (4), we calculate the
average for all thermodynamic conditions UE and describe it
with the IPL. Obtained in that way, values of m are in very
good agreement with the 3γ for studied quasireal systems.
However, very short intermolecular distances must be con-
sidered. Interestingly, molecules extremally rarely approach
each other at these distances. This finding implies that spare
mutual positions of molecules have a significant influence on
the value of the density-scaling exponent and then on the link
between thermodynamics and dynamics of liquids.
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