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Clusterization of self-propelled particles in a two-component system
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We consider a mixture of active solute molecules in a suspension of passive solvent particles comprising a
thermal bath. The solute molecules are considered to be extended objects with two chemically distinct heads,
one head of which having chemical affinity towards the solvent particles. The coupled Langevin equations for the
solvent particles along with the equations governing the dynamics of active molecules are numerically simulated
to show how the active molecules self-assemble to form clusters which remain in dynamic equilibrium with
the free solute molecules. We observe an interesting crossover at an intermediate time in the variation of the
order parameter with time when the temperature of the bath is changed signifying the differential behavior of
clusterization below and above the crossover time associated with a transition between a thermodynamic and a
quasithermodynamic regime. Enthalpy-entropy compensation in the formation of clusters below the crossover is
demonstrated.
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I. INTRODUCTION

An assembly of particles which draw energy at the indi-
vidual level from the surroundings to execute self-propelled
coordinated motion constitutes what is referred to as active
matter [1–11]. The subject encompasses a variety of systems,
e.g., bird flocks [12], fish schools [13], insect swarms [14],
migrating bacteria [15], molds [16], and pedestrians [17].
Over the years both discrete [1,7,18] as well as contin-
uum models based on hydrodynamics [3–5,8,19] have been
proposed to investigate the universal features of collective
behavior [8], new phase transitions [1,2], structure-forming
cytoskeletons of cells [20], controlling liquid crystals swirling
on spherical vesicles [21], modeling of tissues and tumors as
flowing cells self-organizing through cell-to-cell short range
interaction [22,23], homochirality in chemical systems [24],
and pattern formation in activator-inhibitor systems [25] to
name a few.

A key feature of the self-propelled coordinated motion of
particles in active matter is that it concerns systems under far-
from-equilibrium condition. More specifically, the symmetry-
breaking transition between a disordered and an ordered state
is affected by external noise on the particles the motion
of which is governed by a mean speed and an alignment
determined by that of their neighboring particles within a
sphere of interaction assisted by small fluctuations [1,7]. As
the motion of the particles in discrete time steps follows
simple local interaction rules without any specific form of
potential, the statistical approach captures many realistic fea-
tures in flocking behavior, which has been complemented by
the detailed consideration of hydrodynamic approaches. The
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focus of the present paper is to explore the collective behavior
of active systems undergoing clusterization, in a thermal bath
of solvent particles. The active systems are considered to
be molecules or extended objects with two heads, one head
having chemical affinity towards the solvent particles. Our
model of a two-component system is mainly motivated by
the experimental and theoretical work on active colloidal
suspensions [26–29] pioneered by Wu and Libchaber [30].
Theurkauff et al. [31] have experimentally investigated the
collective behavior of a dense active suspension of gold
colloids half covered with platinum which are spherical Janus
particles [32–38] undergoing self-phoretic motion on con-
sumption of hydrogen peroxide to exhibit a novel cluster
phase at high densities. At low densities, as observed by
Howse et al. [39], colloidal particles use chemical reaction
catalyzed on their own surface to achieve directed motion. The
nonequilibrium steady state of an active colloidal suspension
under gravity has been investigated by Palacci et al. [40] to
introduce the concept of an effective temperature of the active
system in the light of the fluctuation-dissipation relation-
ship. Active hydrodynamics has also been studied by Miño
et al. [41] to understand enhanced diffusion at a solid surface.
The common feature of all these colloidal suspensions is that
they are, in general, two-component systems, composed of
an active system and a passive solvent. The activity leading
to self-propulsion is affected by chemical or other means.
Based on these considerations we introduce a two-component
system with an active solute and a passive solvent modeled
as a thermal bath. This naturally concerns Brownian noise of
the thermal bath and furthermore we consider solvent-induced
interaction due to the affinities between one head of the
solute molecules towards solvent particles. The dynamics of
solvent particles is treated by Langevin equations while the
motion of the solute molecules is guided by a scaled mean
speed as determined by the Brownian motion. The activity
of the solute molecules in this model originates from their
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tendency to align themselves in the close vicinity of the
solvent particles within an interaction region. In other words,
while the magnitude of the self-propelled velocities of the
solute molecules originates from thermal motion of the bath,
their directions are self-regulated due to their chemical affinity
towards solvent particles. The approach is thus a synthesis of
Brownian dynamics controlled by internal noise obeying the
fluctuation-dissipation relation and active dynamics governed
by external noise without taking into consideration explicit in-
teraction potentials as considered by several authors [42–44].
We show that starting from a homogeneous, symmetric state
the time evolution of the dynamics leads to a symmetry-
broken state, i.e., a state of clusters which remains in dynamic
equilibrium with free solute molecules. To characterize the
transition between the homogeneous and the clustered state
we introduce an order parameter in terms of the number of
active solute molecules inside the interaction region. A key
observation is the crossover of the order parameter at an
intermediate time when the temperature of the bath is varied
signifying the differential behavior of clusterization below and
above the crossover. We also examine the aspects of dynamic
clustering in the context of variation of interaction range and
density. Finally the temperature dependence of clusterization
is used to estimate the enthalpy and entropy of the formation
of self-assembly below the crossover to demonstrate the ap-
proximate linearity of the enthalpy-entropy plot, signifying
that the entropy effect due to repulsive interaction within
the interaction region roughly balances the enthalpy effect
originating from the attractive interaction due to the affinity of
the solvent particles towards one head of the solute molecules.

Before leaving this section it is pertinent to discuss the sim-
ilarity of the strategy employed here with that of multiparticle
collision dynamics (MPCD) [45–48], which has been widely
used in the context of dynamics of vesicles in shear flow [45],
polymer dynamics [48], and hydrodynamic flow in presence
of colloidal particles [46]. The MPCD simulation technique
is primarily based on two steps. In the first streaming step
the particles are allowed to move ballistically with a velocity
which is used to update the position of the particle in time.
In the collision step one considers stochastic rotation of the
relative velocity of each particle located inside the cell. In
order to include the effect of colloidal suspensions one has to
introduce excluded volume interaction in the dynamics [46].
For fluid vesicles in a shear flow [45] one has to combine
MPCD with the dynamically triangulated membrane model.
While the MPCD bears some similarity with the present
scheme since in both of them the position of the particle is
updated by a ballistic step, the basic difference lies in the
updating of velocity in two cases. In MPCD one uses external
noise whereas in the present scheme internal noise is used so
that the passive particles are thermally equilibrated and the
speed used for updating position is thermal in nature. The
speed of a solute molecule which executes active motion is
determined by scaled thermal motion of the solvent particles.
Its position is governed by relative fluctuation of population
of solvent particles in its neighborhood whereas its orientation
is determined by an external noise in the spirit of the Vicsek
model. Unlike the present case the treatment of interaction
with colloidal particles, polymer, or vesicle with MPCD de-
pends on the specific situation.

The plan of the paper is as follows. In the next section
we introduce the model with discrete dynamics for the two-
component system and an order parameter to characterize
the symmetry-breaking transition. The results of numerical
simulations are discussed in Sec. III. The enthalpy-entropy
compensation is examined in Sec. IV. The paper is concluded
in Sec. V.

II. A DISCRETE MODEL FOR CLUSTERIZATION IN
TWO DIMENSIONS

To study the clusterization of self-propelled molecules
we consider a model two-component solute-solvent system.
The solvent particles comprising a bath at a characteristic
temperature T undergo Brownian movement due to thermal
fluctuations. The solute molecules on the other hand are
assumed to be extended objects each with a head which
has some characteristic affinity towards the solvent particles
when they come close to each other. These locally interacting
solute molecules with an intrinsic driving force in the close
vicinity of solvent particles are characterized by velocities the
magnitude of which is governed by a scaled mean speed of
the solvent particles while their directions are self-regulated
due to the local interaction as well as weak external noise. The
model therefore essentially portrays the combined motion of
Brownian dynamics of solvent particles and the self-propelled
active motion of solute molecules as the conspicuous feature
of clusterization.

A. The scheme

We consider a solvent-solute model consisting of NC

number of solvent particles (C) and NA−B number of solute
molecules (A − B) moving in a two-dimensional square box
with sides L and under periodic boundary condition. The
solvent particles are characterized by their location �rC (i)
[with Cartesian components xC (i) and yC (i)] and velocity
�vC (i) [with Cartesian components vx

C (i) and v
y
C (i)]. Since the

molecule A − B is an extended object with a head A and the
remaining extension with its head as B, for a given position
of A, the head B can be located on a circle. We therefore
denote �rA(i) [with Cartesian components xA(i) and yA(i)] for
the position vector of the head A and �rB(i) [with Cartesian
components xB(i) and yB(i)] for the position vector of the head
B for the remaining part of the molecule A − B.

We now begin with the dynamics of solvent particles C.
They undergo Brownian motion described by a Langevin
equation for each particle. The location of the ith particle can
be updated componentwise at each time step as

xC (i, t + �t ) = xC (i, t ) + vx
C (i, t + �t )�t, (2.1)

yC (i, t + �t ) = yC (i, t ) + v
y
C (i, t + �t )�t (2.2)

where the velocity components vx
C (i, t + �t ) and v

y
C (i, t +

�t ) are given by

vx
C (i, t + �t ) = vx

C (i, t ) + [−γ vx
C (i, t )�t + ξx(i, t )

√
�t

]
,

(2.3)

v
y
C (i, t + �t ) = v

y
C (i, t ) + [−γ v

y
C (i, t )�t + ξy(i, t )

√
�t

]
.

(2.4)
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FIG. 1. The circular space of radius rint around the head A of a
single solute molecule, where the numbers denote the indices of the
quadrants.

Here γ refers to the linear damping coefficient. �ξ (i, t )
with components ξx(i, t ) and ξy(i, t ) is the Gaussian white
noise with zero mean and variance 〈ξm(i, t )ξn(i, t ′)〉 = δ(t −
t ′)δmn. ξx(i, t ) and ξy(i, t ) are appropriately normalized by
the strength of noise σ = γ kBT , where kB and T denote the
Boltzmann constant and temperature, respectively. For the
sake of brevity we have considered the mass of the solvent
molecules to be unity. As described the solvent particles
constitute a thermal bath at a given temperature.

The solute molecules A − B, on the other hand, exe-
cute self-propelled motion. This self-propelled nature of the
molecules can be characterized by keeping the magnitude
of mean speed vA−B

0 at some fixed value. In our model, we
consider vA−B

0 to be proportional to the root mean square
velocity of the solvent particles (vC

rms), where vA−B
0 is given

by vA−B
0 = vC

rms
κ

, where κ is the ratio of the square root of the
solute mass to solvent mass. The value of ratio κ is taken to
be 20 throughout the simulations. For simplicity, we consider
the dynamics of head A and the constrained dynamics of the
remaining part with a head B separately. The solute molecules
and solvent particles interact through a local rule as follows.
We first locate the A head of A − B for the jth molecule and
draw a circle of radius rint around it as the radius of interaction
with A at its center. We then divide the circle into several (say,
eight) equal quadrants as shown in Fig. 1. The number of
solvent particles (C) in each quadrant is estimated. At each
time step the A head of the jth molecule A − B moves to the
quadrant with maximum number of solvent particles C. This
is described by the equation of motion for the jth molecule as

xA( j, t + �t ) = xA( j, t ) + vA−B
0 cos

{
(2νmax − 1)

π

8

}
�t,

(2.5)

yA( j, t + �t ) = yA( j, t ) + vA−B
0 sin

{
(2νmax − 1)

π

8

}
�t .

(2.6)

Here νmax is the index of the quadrant with maximum number
of C particles. Thus, in our model the dynamics of the solute
molecules is guided by the self-propulsion of the solute heads
A, and consequent placing of the B head on any random point
on the circumference of a circle centring around head A with
a radius rA−B for the corresponding time step. The location of
the B head of the solute molecule A − B is given by

xB( j, t + �t ) = xA( j, t + �t ) + rA−B cos {2πRB( j, t + �t )},
(2.7)

yB( j, t + �t ) = yA( j, t + �t ) + rA−B sin {2πRB( j, t + �t )}
(2.8)

where RB denotes a real-valued random number uniformly
distributed between 0 and 1. Because of the finite size of
the A − B solute molecules it is further necessary to put a
restriction on the number of molecules (Nthreshold) forming
a cluster within the interaction radius rint. If the number of
A − B molecules is higher than Nthreshold, the additional one
will have to be relocated randomly outside the circle.

In order to carry out numerical simulation of the dynamics
of solute-solvent interaction, it is necessary to specify the
initial conditions. Since they span the L × L square box
uniformly we assign the initial distribution of A − B and C
as follows. For solvent particles (C)

xC (i) = Rx
C (i)L, yC (i) = Ry

C (i)L. (2.9)

For solute molecules (A − B)

xA( j) = Rx
A( j)L, yA( j) = Ry

A( j)L, (2.10)

xB( j) = xA( j) + rA−B cos[2πRB( j)],
(2.11)

yB( j) = yA( j) + rA−B sin[2πRB( j)].

Here Rx
C (i), Ry

C (i), Rx
A( j) and Ry

A( j) are independent real
valued random numbers uniformly distributed between 0 and
1. The index i runs for solvent particles (C) from 1 to NC

and j runs for solute molecules (A − B) from 1 to NA−B.
NC and NA−B are total number of solvent particles and solute
molecules, respectively. rA−B stands for the “length” of the
solute molecule A − B.

Keeping in view these considerations a remark on the time
scales of solute molecules and solvent particles is in order. We
emphasize that since the stochastic motion of passive solvent
particles is due to the thermal bath kept at a constant tempera-
ture, the Langevin noise [Eqs. (2.1)–(2.4)] being internal, the
time scale is determined by translational diffusion. The solute
molecule which is assumed to have a physical extension is
characterized by a mass much larger than that of a solvent
particle. For translational motion or mean motion of solute
molecules we therefore use a constant speed appropriately
scaled by the ratio of the square root of solute to solvent mass.
Its position is updated by this speed and density of solvent
particles in the neighborhood. The orientation of the solute
molecule is, however, governed by an external noise. Thus
the rotational time scale of solute molecules is determined
by the active noise [Eqs. (2.7) and (2.8)], which is external
in origin and thus bears a close kinship with the Vicsek model
of self-propelled dynamics in active media. Finally, a caveat to

012611-3



PAUL, BHATTACHARYYA, AND RAY PHYSICAL REVIEW E 101, 012611 (2020)

0 2 4 6 8 10
0

2

4

6

8

10
Y

X

(a)

0 2 4 6 8 10

0

2

4

6

8

10

Y

X

(b)

0 2 4 6 8 10
0

2

4

6

8

10

Y

X

(c)

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

ψ

t

(d)

FIG. 2. The spatiotemporal profile of the solute molecules (solvent particles not shown) simulated with the following parameter values:
rint = 2.0, rA−B = 0.3, L = 10.0, γ = 0.5, kB = 1.0, T = 1.0, NA−B = 100, NC = 1000, Nthreshold = 20, �t = 0.005 at (a) t = 0, (b) t = 1000,
and (c) t = 2000 time units, respectively. (d) Variation of the order parameter of the system with respect to time for the same simulation (units
arbitrary).

note is that the Vicsek model is nonthermal while our model is
quasithermal in character since we are concerned with active
solutes in passive Brownian solvent.

In summary, the dynamics of the solute-solvent interac-
tion is such that solvent particles forming a thermal bath
are responsible for imparting an average speed to the solute
particles which execute self-coordinated motion by aligning
their heads towards the solvent particles. In what follows we
show that the evolution of dynamics leads to the emergence of
a cluster phase.

B. The order parameter

The dynamics of solute-solvent interaction is governed
by an interplay of the Brownian motion of solvent particles
constituting a thermal bath at a temperature T and the self-
propelled or active motion of solute molecules. The interac-
tion proceeds in such a way that the specific heads of the solute
molecules undergo flocking around the solvent molecules
within a range of interaction leading to clusterization of finite
size. This clusterization is controlled by local interaction and
an intrinsic driving force causing symmetry breaking in the
system.

For the statistical characterization of the associated sym-
metry breaking and clusterization, we now introduce an order
parameter ψ as follows:

ψ = 〈Nrint (t )〉 − 〈Nrint (0)〉
Nthreshold − 〈Nrint (0)〉 , (2.12)

〈Nrint (t )〉 =
NA−B∑
j=1

Nrint ( j, t )

NA−B
. (2.13)

Nrint is the number of solute molecules (A − B) present in a
circle of radius rint for the jth molecule and Nthreshold is the
maximum number of molecules allowed inside it. In order to
extract out the dynamical contribution to the order parameter
we subtract 〈Nrint (0)〉, from both numerator and denominator.
A low nonzero value of ψ indicates that the number of solute
molecules forming the cluster within a circle of radius rint

on average is much smaller compared to Nthreshold, a situation
which conforms more to uniform distribution. On the other
hand when ψ is large and close to unity the solute molecules
tend to accommodate themselves within the radius of interac-
tion and to attain a value close to Nthreshold on average. Thus an
order parameter close to unity corresponds to the dominance
of the clustered state or a state of broken symmetry.
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FIG. 3. Plot of the order parameter of the system averaged over
50 mutually independent trajectories vs time for different radii of
interaction (rint) simulated with the following parameter values:
rA−B = 0.3, L = 10.0, γ = 0.5, kB = 1.0, T = 1.0, NA−B = 100,
NC = 1000, Nthreshold = 20, �t = 0.005 (units arbitrary).

III. NUMERICAL SIMULATIONS: SYMMETRY
BREAKING AND CLUSTERIZATION

The model of the two component solvent-solute system
described in the last section is subjected to numerical simula-
tions. The dynamics is followed by monitoring the Brownian
motion of solvent particles and self-propelled active motion
of solute molecules by generating Gaussian white noise using
the Box-Muller algorithm as well as noise with uniform
distribution between zero and unity. The time evolution is
followed in discrete time steps for the following parameter set
for the system with NC = 1000, NA−B = 100, Nthreshold = 20,
L = 10.0, γ = 0.5, rA−B = 0.3, �t = 0.005. The Boltzmann
constant is set equal to unity. Equilibration of the bath is
ensured by monitoring 〈v2〉 until it reaches the value of the
temperature T . The typical configurations of the position of
the self-propelled solute molecules are displayed for rint = 1.0
and T = 1.0 as snapshots at times t = 0, 1000, and 2000 in
Figs. 2(a), 2(b), and 2(c), respectively. It is evident that as time
progresses the heads of the solute molecules tend to cluster
around solvent particles due to the affinity between them. This
leads to the emergence of some order in the system resulting
in symmetry breaking and clusterization.

As a measure of the overall bias of the system towards
a symmetry-broken state of clusterization we have shown
the variation of order parameter ψ as a function of time in
Fig. 2(d) for the same parameter set and for a single scan over
time. The variation exhibits a noisy growth of ψ from a low
value to a relatively high value.

The radius of interaction rint plays a crucial role in deter-
mining the bias of the system towards the dominance of the
clusterized state. As a single scan over time is characteristi-
cally noisy, we have plotted the average of the order parameter
〈ψ〉 against time over 50 mutually independent scans for
several values of rint but for the same parameter set in Fig. 3.
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t

NA-B=50
NA-B=100
NA-B=150

FIG. 4. Plot of the order parameter of the system averaged over
50 mutually independent trajectories vs time for three different
numbers of solute molecules simulated with the following parameter
values: rint = 2.0, rA−B = 0.3, L = 10.0, γ = 0.5, kB = 1.0, NA−B =
100, NC = 1000, Nthreshold = 20, �t = 0.005 (units arbitrary).

For low values of rint the local interaction is not sufficient
enough to induce any significant bias towards the formation
of clusters even in the long time limit. However, when rint is
increased, one observes a clear dominance of clusters rather
than homogeneity as 〈ψ〉 converges to a higher value over a
time scale t = 2000.

The phase behavior of active suspension of active systems,
particularly of colloids, has often been found to depend on
densities [30,31]. Keeping in view these experimental studies
we have explored the time evolution of phase behavior in
terms of order parameter at several densities. The results
are displayed in Fig. 4. It has been observed that for a
given Nthreshold and interaction radius rint density facilitates
the growth of clusters and the approach to stationarity in the
long time limit. This can be rationalized in view of the fact
that at higher density of solute molecules the probability of
finding another molecule gets enhanced within a given radius
of interaction.

An important control parameter for the study of coordi-
nated motion in active media such as bird flocks, fish schools,
or bacterial swarms is the strength of external noise [1]. In the
present investigation we are concerned with an equilibrium
bath of solvent particles kept at a constant temperature. The
underlying noise is internal, which satisfies the fluctuation-
dissipation relationship. It would seem therefore that tem-
perature may serve as a control parameter for our case. To
this end we have performed the simulations at five different
temperatures for the same set of parameter values. The results
are shown in Fig. 5(a), which depicts the variation of the order
parameter averaged over 50 mutually independent scans as
a function of time. At a very low temperature the average
order parameter grows almost linearly up to a time beyond
which it reaches a large saturation level. As the temperature
is increased the saturation takes place more quickly, the
saturation value in the long time limit being lower for higher
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FIG. 5. Plot of the order parameter of the system averaged over 50 mutually independent trajectories vs time for five different temperatures
(T ) using five different Nthreshold values (a) Nthreshold = 20, (b) Nthreshold = 22, (c) Nthreshold = 24, (d) Nthreshold = 36, and (e) Nthreshold = 40
simulated with the following parameter values: rint = 2.0, rA−B = 0.3, L = 10.0, γ = 0.5, kB = 1.0, NA−B = 100, NC = 1000, �t = 0.005
(units arbitrary).

temperature. The effect of temperature is also pronounced
through the larger fluctuation in the order parameter curves
appearing for higher and higher temperatures. The variation
of average order parameter in time for several values of
temperature exhibits a crossover at some intermediate time.
Below this time temperature enhances clusterization, whereas
lowering of temperature favors clusterization in the long time
limit. It is also important to note that for a fixed Nthreshold which
is not large 〈ψ〉 never reaches unity. This implies that there
always exists a finite number of free solute molecules which
are in dynamic equilibrium with the cluster phase.

To understand the role of Nthreshold on the crossover time we
have performed numerical simulations for different Nthreshold

values and the results are plotted in Fig. 5. The Nthreshold

value is gradually increased from Fig. 5(a) to Fig. 5(e). It is
evident that the crossover time is indeed dependent on the
Nthreshold value. With increase in Nthreshold value, the crossover
time increases steadily, and finally for a very high value of
Nthreshold the crossover phenomenon completely disappears. To
explain this absence of crossover at high Nthreshold value we
proceed as follows: we first find out the maximum possible
value of Nthreshold (Nmax

threshold). A simple estimate of Nmax
threshold in
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trajectories vs time for four different temperatures (T ) simulated with
the following parameter values: rint = 2.0, rA−B = 0.3, L = 10.0,
γ = 0.5, kB = 1.0, NA−B = 100, NC = 1000, Nthreshold = 20, �t =
0.005 (units arbitrary).

two dimensions can be defined as

Nmax
threshold = 4πr2

int

4πr2
A−B

=
(

rint

rA−B

)2

. (3.1)

Now for the parameter values used in our calculation, i.e.,
rint = 2.0 and rA−B = 0.3, the Nmax

threshold is roughly equal to
44. As the value of Nthreshold approaches the Nmax

threshold value the
crossover tends to disappear because the number of free solute
molecules present in the system is inversely proportional to
the Nthreshold value; at the higher limit there remain a very
few solute molecules which can be further accommodated
in the already formed clusters to further enhance the order
parameter, and as a result the order parameter saturates to a
constant value with small temporal fluctuations. The value of
Nmax

threshold is dependent on radius of interaction (rint) and radius
of solute molecules (rA−B) whereas the Nthreshold value is in-
dependent of such parameters. To stress the physical meaning
of Nmax

threshold and Nthreshold we may treat Nthreshold as a quantity
analogous to the coordination number (φ) of a chemical
system. For chemical systems the coordination number is the
number of ligands that surround a central metal atom to form
a coordination complex, and this number explicitly depends
on the chemical property of both the metal and ligand; fur-
thermore the coordination number cannot exceed φmax, which
is dependent on the size of the metal and ligand. In our model
we have considered the solvent particles and solute molecules
on a general footing without being concerned about the details
of their chemical property. This leads us to choose the value
of Nthreshold such that it does not exceed Nmax

threshold, which is
determined by the parameters of the system. The assistance of
clusterization by temperature below the crossover time can be
understood further from a quasithermodynamic consideration.
To highlight this issue we have calculated the number of
free solvent particles present (N free

C ) at any time out of total
solvent particles (NC ) and plotted in Fig. 6 the variation of the

4.20 4.21 4.22

-1.0

-0.5

0.0

T=80
T=70

T=60T=50

T=40
T=30

T=20

ΔS

ΔH

Linear Fit

FIG. 7. Plot of �H vs �S for the parameter set mentioned in the
text (units arbitrary).

ratio N free
C
NC

against time, averaged over 50 independent scans
for the parameter set used in Fig. 5. Here the free solvent
particle is defined as the solvent particle for which there is no
solute molecule present within the radius of interaction rint.
Since the free solvent particles essentially guide the entropy
of the system, the plots show that for higher temperature
the change in entropy is more positive. Furthermore, the
clusterization is exothermic in nature. Therefore for positive
entropy change and negative enthalpy change increase in
temperature assists the thermodynamically favorable process
of clusterization below the crossover time. We shall return to
an enthalpy-entropy relation in a more quantitative way in
the next section. Finally we note that beyond the crossover
time the quasithermodynamic nature of the system through
self-propulsion dominates the scenario, where the lowering
of temperature assists clusterization, giving rise to higher
saturation value of the order parameter. Thus although in
general the system is quasithermodynamic in character, below
the crossover time temperature helps in fast thermalization
and clusterization.

IV. CLUSTERIZATION: ENTHALPY-ENTROPY
COMPENSATION

As the process of flocking leading to self-assembly of
solute molecules A − B around solvent particles C is governed
by both attractive and repulsive interactions within a given
domain, it is imperative that enthalpic and entropic changes
play significant roles in clusterization. It is particularly inter-
esting to enquire how the balance of the two interactions influ-
ences clusterization so that the self-assemblies remain robust
against perturbation. This phenomenon of enthalpy-entropy
compensation is widely invoked in thermodynamic analysis
of proteins, ligands, and nucleic acids. It has been suggested
that this compensation is an intrinsic property of complex,
fluctuating systems undergoing associative processes. The
enthalpy-entropy compensation phenomenon has been studied
theoretically as well as experimentally [49–51] in several
contexts.
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In general, the compensation between the standard en-
thalpy change �H and the standard entropy change �S in the
various associative processes can be described as follows:

�H = α + β�S. (4.1)

In the spirit of the phase separation and the mass action mod-
els [52,53], the standard Gibbs free energy of clusterization
�G can be expressed as

�G = RT ln X. (4.2)

For the clusterization model described here X stands for the
ratio of average number of solute molecules A − B per cluster
to the total number of solute molecules and solvent particles
present in the system, i.e.,

X = 〈Nrint〉
NA−B + NC

. (4.3)

Here, 〈Nrint〉 represents the time average over the ensemble
average of 〈Nrint〉 for 50 independent trajectories, within the
time interval 400 to 500 time units.

To evaluate the enthalpy and entropy of clusterization, ln X
is correlated by a polynomial equation of the form

ln X = a + bT + cT 2. (4.4)

Here, a, b, and c are the unknown constants to be deter-
mined. Making use of the Gibbs-Helmholtz equation, en-
thalpy change �H

�H = −T 2 ∂ (�G/T )

∂T
= −RT 2 ∂ (ln X )

∂T
(4.5)

and the entropy change of clusterization

�S = 1

T
(�H − �G) (4.6)

are determined. We now numerically estimate the variation
of ln X as a function of temperature over the range from
T = 20 to 80 for the parameter set rint = 2.0, rA−B = 0.3,
L = 10.0, γ = 0.5, NA−B = 100, NC = 1000, Nthreshold = 20,
�t = 0.005 with kB set equal to unity. From the variation
of ln X as a function of temperature the parameter values
as determined by the polynomial fit are a = −4.23094, b =
1.6063 × 10−4, and c = −1.87837 × 10−7.

The use of the expression for ln X in Eqs. (4.5) and (4.6)
yields �H and �S:

�H = −RT 2(b + 2cT ), (4.7)

�S = −R(a + 2bT + 3cT 2). (4.8)

The value of R is set to be unity throughout our calculation.
In Fig. 7 we have plotted the �H with respect to �S using
the aforementioned fitting parameters and the temperature
range. The �H − �S plot exhibits approximate linearity, i.e.,
enthalpy-entropy compensation in our clusterization model.
The deviation from strict linearity may be explained as fol-
lows: The argument on enthalpy-entropy compensation stems
from thermodynamic consideration. The two-component sys-
tem composed of active solute molecules in passive solvent
particles comprising a thermal bath is not strictly thermo-
dynamic because of the orientational fluctuations of active

molecules (of external origin). This is expected particularly
for Nthreshold < Nmax

threshold. The deviation therefore signifies a
quasithermodynamic character of the mixture. A linear fit
through the data points results in α = −215.04146 and com-
pensation temperature β = 50.9234. The approximate lin-
earity of the compensation plot signifies that the repulsive
interaction between solute molecules forming clusters within
rint balances the attractive interaction between the solvent
particles and the solute molecules. As the repulsion is due
to confinement it contributes to free energy of clusterization
as the entropy component while the attractive interaction
contributes to the enthalpic component. The existence of a
compensation temperature is reminiscent of Boyle temper-
ature in a nonideal gas where the attractive and repulsive
interactions exactly balance each other.

V. CONCLUSION

In this paper we have investigated a solvent-solute two-
component system to examine the active dynamics of solute
molecules suspended in a thermal bath of solvent particles.
The activity originates from the chemical affinity of one of the
heads of the solute molecules towards solvent particles. The
time evolution of the dynamics is essentially controlled by two
factors: first, the interaction between solute heads and solvent
particles within a specified range, and second, temperature of
the thermal bath since it governs the mean speed of the active
solute molecules. No specific form of interaction potential
is chosen for the purpose and in this sense the spirit of the
approach conforms to that of the Vicsek model. We have ob-
served that for an optimal range of interaction radius the active
solute molecules undergo formation of a clustered phase in
dynamic equilibrium with free solute molecules. The role of
temperature is twofold. First, temperature assists clustering up
to a crossover time, an observation consistent with thermody-
namics of entropy increase of free solvent particles. In other
words, clusterization is favored by fast thermalization due to
high temperature as observed below the crossover time, while
active motion is facilitated at lower temperature beyond the
crossover where the quasithermodynamic regime dominates.
Second, the temperature dependence of clusterization used to
calculate the enthalpy and entropy changes shows a rough
balance between the attractive interaction between the two
components due to their affinity, and the repulsive interaction
due to confinement of one of the components forming the
clusters within an interaction regime, which is manifested
through enthalpy-entropy compensation. The deviation from
strict linearity of the compensation plot is indicative of the
fact that the statistical behavior of mixing active molecules
in a thermal suspension of solute particles is quasithermo-
dynamic rather than thermal in character. We believe that
the present numerical exploration can be useful for under-
standing formation of chemotactic aggregates in bacterial
populations [54,55].
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