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It has been discovered that active matter generates novel physical quantities such as the swim pressure. This
quantity arises from the exchange of extra momentum between active particles and the boundaries of the system.
Given its origin, this quantity can exist at different scales; hence microorganisms and larger organisms like fish
or birds generate their own swim pressure. For larger organisms or for high swimming speeds, inertia cannot
necessarily be neglected; hence in this paper, we start by calculating analytically the effect of finite translational
and rotational particles’ inertia on the diffusion of a system of noninteracting spherical active Brownian particles.
From this analysis, an enhanced diffusion coefficient due to rotational inertia is obtained, and an alternative
effective persistence length and an alternative reorientation time, both sensitive to rotational inertia, are also
identified. Afterwards, and to see the implications of finite inertia on bulk properties, the pressure of this system
is elucidated by calculating its respective swim and Reynolds pressures. It is found that their sum becomes
asymptotically sensitive to the square root of its rotational inertia. To validate our analytical results, Langevin
dynamics simulations are also performed showing an excellent agreement between our theoretical predictions
and the numerical results.
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I. INTRODUCTION

The study of active matter constituted of natural or artificial
entities able to self-propel is being widely engaged in [1–5].
For example, active systems are being considered as mini-
mal models able to provide insight on phase transitions and
self-assembly in nonequilibrium systems [6–10]. Micro- and
nanomachines capable of self-propelling inside the human
body and used to accomplish certain biomedical applications
are already being tested [11]. In addition, efforts to understand
the motion of microorganisms (which are an example of
natural self-propelled entities), their wall accumulation, the
effects of external fields on their motion, and their collective
effects are also being carried out [12].

Quite recently, it was discovered that active matter gen-
erates novel physical quantities like the swim pressure
[9,13,14]. Physically, this quantity arises from the exchange
of extra momentum (due to self-propulsion) between an active
particle and the boundaries of the system. Given its origin, this
quantity can exist at different scales; hence microorganisms
and larger organisms like fish or birds generate their own
swim pressure. The swim pressure has already been used
to explain phase separation in a system of interacting active
particles. For example, Takatori et al. [9] identified an active
pressure-volume phase diagram very similar to that of a van
der Waals fluid and found related arguments like those from
classical thermodynamics to explain phase transitions in ac-
tive matter. Moreover, using this active pressure concept, anal-
ogous expressions for thermodynamiclike constructions like
the chemical potential, Helmholtz free energy, and spinodal
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and binodal lines have been introduced and successfully used
to understand phase transitions in active matter [14].

As one can see, the majority of active matter studies
consider the overdamped approximation; that is, translational
and rotational inertia are neglected. Would inertia play a role
in active systems? What could happen if the system of interest
consists of larger individuals or higher swimming speeds
where inertia cannot be neglected? Since typical models for
active systems couple translation and rotation [15], one has
the possibility that this coupling together with inertia may
indeed affect the system’s properties, like its diffusion and
pressure. These questions are discussed in the present paper,
particularly, the effects of inertia on the diffusion and the
swim and Reynolds pressures of a system of spherical non-
interacting active Brownian particles (ABPs) are addressed.
In the literature dealing with the calculation of pressure in a
system of ABPs [6,13,16–19], only a few works have included
inertia in their studies. One example is Joyeux and Bertin [20]
who studied a dumbbell gas with only translational inertia
and found its effective pressure. Takatori and Brady [21]
considered the effect of translational inertia on the pressure
of a system of ABPs in a suspension and found that the
system’s swim pressure is sensitive to it. They also identified
a contribution to the total pressure of the system, the Reynolds
pressure, which originates from the fact that particles have
finite inertia. They concluded that although such pressures are
sensitive to translational inertia, their sum becomes indepen-
dent from translational inertia. Fily et al. [22] also considered
an underdamped dynamics (only in translation) for ABPs to
discuss the existence of an equation of state. A recent work
providing a system (active vibrobots) where one can perform
experimental studies to verify our presented theory has also
been reported [23].
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Furthermore, given the fact that the total active pressure has
been proved to explain transitions in active matter; there is a
need to extend previous works to the case of active systems
with inertia and then to use those findings to understand phase
transitions in those systems. To shed light on this, we find
analytically the diffusion, Reynolds, and swim pressures of
a suspension of noninteracting ABPs equipped with inertia
(both translational and rotational). Fluid inertia is assumed
to be negligible. From this analysis, an enhanced diffusion
coefficient due to rotational inertia is obtained. In addition,
an alternative effective persistence length and an alternative
reorientation time which are sensitive to rotational inertia are
also identified. When considering the pressure in this system,
it is found that translational and rotational inertia play a
role in the swim and Reynolds pressures. All these effects
are quantified theoretically and corroborated by performing
Langevin dynamics simulations.

This work is organized as follows: Section II describes
the employed model. Sections III and IV pose the general
equations to solve in order to determine the mean-square
displacement (MSD) and the way orientation correlations
depending on inertia are found. Sections V and VI present an-
alytical results for the system’s MSD and mean-square speed.
Section VII presents the calculation of the swim and Reynolds
stresses for spherical ABPs embedded in an isotropic environ-
ment, and consequently the system’s total pressure is revealed.
Finally, Sec. VIII validates numerically our analytical results.
Conclusions are offered in Sec. IX.

II. PHYSICAL MODEL

Let us study spherical particles of mass M and rotational
inertia I that self-propel in a two-dimensional fluctuating en-
vironment. This sphere orientation is described by the single
rotational degree of freedom θ (t ). In general, the dynam-
ics of this particle is described by its translational velocity,
v(t ), and its angular velocity, �(t ) = �(t )k, whose respective
Langevin equations are

M
dv
dt

= −RU v+RUUe + f,
dx
dt

= v, (1)

I
d�

dt
= −R�� + g,

dθ

dt
= �, (2)

where U (t ) is the (imposed) swimming speed, e(t ) =
[e1(t ), e2(t )] = [cos θ (t ), sin θ (t )] is the instantaneous unit

vector in the direction of swimming with the origin at the
center of the sphere, and RU and R� are respectively the hy-
drodynamic resistances to translation and rotation. In Eqs. (1)
and (2), f and g are the zero-mean Brownian random force
and the torque, whose correlations are given by 〈 fi(t ) f j (t ′)〉 =
2DT R2

U δi jδ(t − t ′) and 〈g(t )g(t ′)〉 = 2D�R2
�δ(t − t ′), respec-

tively. Here DT and D� are the short-time diffusion coeffi-
cients (strength of noise), δi j is the Kronecker’s delta, and 〈·〉
indicates the ensemble average [24].

From Eqs. (1) and (2), one can solve for the instantaneous
sphere position, x(t ), the angular orientation, θ (t ), and the
velocity, v(t ). Explicitly,

x(t ) = x0 + τMv0(1 − e−t/τM )

+ 1

RU

∫ t

0
[Fswim(t ′) + f (t ′)][1 − e−(t−t ′ )/τM ]dt ′, (3)

θ (t ) = θ0 + τI�0(1 − e−t/τI )

+ 1

R�

∫ t

0
[1 − e−(t−t ′ )/τI ]g(t ′)dt ′, (4)

v(t ) = v0e−t/τM

+ 1

M

∫ t

0
[Fswim(t ′) + f (t ′)]e−(t−t ′ )/τM dt ′, (5)

where we denote the translational and rotational relax-
ation times by τM = M/RU and τI = I/R�. Here Fswim(t ) =
RUU (t )e(t ) represents the swimming force, while x0, θ0, �0,
and v0 are initial conditions. In what follows and without loss
of generality, we set those initial conditions equal to zero.

III. DERIVATION OF EFFECTIVE DIFFUSION

To determine the particle’s effective diffusion in two di-
mensions (d = 2), DE , defined as

DE = lim
t→∞

〈x(t ) · x(t )〉
(2d )t

, (6)

one should find its mean-square displacement 〈x(t ) · x(t )〉. To
do so, we square Eq. (3) and apply to this result an ensemble
average. We finally get

〈x · x〉 = 1

R2
U

∫ t

0

∫ t

0
[〈Fswim(t ′′) · Fswim(t ′)〉(1 − e−(t−t ′′ )/τM − e−(t−t ′ )/τM + e−(2t−t ′−t ′′ )/τM )]dt ′dt ′′

+ 1

R2
U

∫ t

0

∫ t

0
[〈f (t ′′) · f (t ′)〉(1 − e−(t−t ′′ )/τM − e−(t−t ′ )/τM + e−(2t−t ′−t ′′ )/τM )]dt ′dt ′′, (7)

where we used the fact that random translational forces and
swimming forces are not correlated.

IV. ORIENTATION CORRELATION FUNCTIONS

From Eq. (7), one notices that in order to evaluate 〈x · x〉,
we have to explicitly determine the correlations in swimmer

orientations. One way to achieve this is to recall that Eq. (2)
represents an Ornstein-Uhlenbeck process whose respec-
tive probability density function (PDF) obeys the so-called
Kramers equation [25], ∂P/∂t = −�∂P/∂θ + τ−1

I ∂P/∂� +
D�/τ 2

I ∂P2/∂�2, and whose solution, P(θ,�, t |θ ′,�′, t ′),
may be integrated to find the needed marginal PDFs and
finally to calculate integrals of the form 〈cos θ cos θ ′〉 =
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∫∫
dθdθ ′ cos θ cos θ ′P(θ, t |θ ′, t ′)P(θ, t ). Alternatively, and

using the fact that Eq. (2) is a Gaussian process, it is possible
to show that [26]

〈cos θ (t2) cos θ (t1)〉
= 1

2 Re
[
ei〈�θ〉− 1

2 [〈�θ2〉−〈�θ〉2]
]

+ 1
2 Re

[
ei〈�θ+2θ (t1 )〉− 1

2 [〈[�θ+2θ (t1 )]2〉−〈�θ+2θ (t1 )〉2]
]
, (8)

where �θ = θ (t2) − θ (t1) and Re(·) stands for the real part.
Thus by solving the indicated averages in Eq. (8) and using
that θ (t ) is a centered Gaussian and stationary process, to-
gether with the orientational symmetry in this problem, the
swimming direction correlations are finally obtained as

〈e(t ) · e(t1)〉 = e−SR[ 1
τI

(t−t1 )−1+e
− 1

τI
(t−t1 )

]
, (9)

where the rotational Stokes number SR = τI/τR (τR =
1/D�) has been introduced. As one can see, by setting
τI → 0 (I → 0) in the latter correlations, we recover the
classical Brownian exponential decay in two dimensions,
〈e(t ) · e(t1)〉 = e−(t−t1 )/τR [24]. Further simulations on the ef-
fect of inertia on the orientation correlations are presented in
Appendix A.

V. MEAN-SQUARE DISPLACEMENT

Let us now evaluate Eq. (2) for the simplest case of a self-
propelled particle swimming at constant speed, U (t ) = U =
constant, along e(t ). Hence, we substitute Eq. (9) into Eq. (2).
After certain algebraic steps, we finally obtain the general
formula for the long-time MSD, namely,

〈x · x〉 = 2U 2

D�

eSR S1−SR
R �(SR, 0, SR)t + 4DT t, (10)

where the generalized incomplete Gamma function
�(a, b, c) = ∫ c

b qa−1e−qdq has been introduced. Classical
linear diffusion in time is once again observed. The
contribution from self-propulsion is quadratic in its speed but
with an extra coefficient, C = eSR S1−SR

R �(SR, 0, SR) � 1 [see
Fig. 3(b)], which depends on the rotational Stokes number.
Notice that the long-time MSD grows as rotational inertia
increases. Setting U = 0 in Eq. (10) gives us the MSD result
for passive particles. To validate Eq. (10), Langevin dynamics
simulations were performed and the results are discussed
in Sec. VIII. Finally, by taking the limit SR → 0, Eq. (10)
reduces to the well-known long-time MSD expression of
overdamped ABPs, namely, 〈x · x〉 = (2U 2/D�)t + 4DT t .

Effective diffusivity

Let us now find the effective diffusivity (DE ) for the
case of a self-propelled particle swimming at constant speed,
U (t ) =U , along e(t ). Using Eq. (6) together with Eq. (10)
leads to

DE = U 2

2D�

eSR S1−SR
R �(SR, 0, SR) + DT . (11)

As it can be seen, there is another mechanism for enhanc-
ing ABPs’ effective diffusion. By adding rotational inertia
(SR �= 0) to active particles, one finds an increment in the

A

BτR

tre

O
FIG. 1. Paths a swimmer can take depending on its rotational

inertia. Path OB: A swimmer with no rotational inertia will change
its direction in time τR. Path OA: Due to rotational inertia, the particle
is turning slower; hence it will displace further than path OB.

swimmers’ diffusion. This contribution was not previously
observed since an overdamped model was frequently pro-
posed. To explain this enhanced diffusion, one should notice
that when keeping inertia, the time an ABP takes to rotate
due to external random perturbations (reorientation time,
〈tre〉) will increase (compared to τR) due to inertia, and as
a consequence, its persistence length (LE = U 〈tre〉) will also
grow (see Fig. 1). Furthermore, using the following definition
of reorientation time, 〈t re〉 = ∫ ∞

0 〈e(t ) · e(t1)〉dτ , where τ =
t − t1, together with Eq. (9), we find an expression for this
effective reorientation time, namely,

〈tre〉 = eSR

D�

S1−SR
R �(SR, 0, SR), (12)

which behaves asymptotically, for SR large, as 〈tre 〉 ∼ τR
√

SR.

Notice that for zero rotational inertia (SR = 0), Eq. (12)
reduces to the classical reorientation time 〈tre〉 = τR. Given
Eq. (12), one can also find an effective persistence length,
which for this case is

LE = UeSR

D�

S1−SR
R �(SR, 0, SR). (13)

Using these generalized effective length and time scales,
one can write (assuming DT is small with respect to activ-
ity) Eq. (11) as DE = L2

E/2〈tre〉, which for the overdamped
case becomes DE = l2/2τR, where LE > l = UτR and 〈tre〉 >

τR. Note that by taking the limit SR → 0 to Eq. (11), one
recovers the classical effective diffusion coefficient DE =
U 2/2D� + DT .

VI. MEAN-SQUARE SPEED

A very important quantity in statistical mechanics is the
particles’ average translational kinetic energy 〈K〉. Let us
calculate 〈K〉 for the case of active Brownian particles with
both translational and rotational inertia. By using Eq. (1), it is
possible to show that

v = v0e−t/τM + 1

M

∫ t

0
[Fswim(t ′) + f (t ′)]e−(t−t ′ )/τM dt ′; (14)
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hence using a procedure similar to Eq. (2), together with the
orientational correlation Eq. (9), and after certain algebraic
steps, one finally gets the following for long times:

〈v · v〉 = U 2eSR

ST

(
1

SR

) SR
ST

+SR−1

�

(
SR

ST
+ SR, 0, SR

)
,

+ 2DT RU

M
, (15)

where the translational Stokes number, ST = τM/τR (τR =
1/D�), has been introduced. In this case, the mean-square
speed depends on both rotational (SR) and translational (ST )
inertia. Note that the mean-square speed of passive particles
only depends on translational inertia. Additionally, if we
consider an active system with only translational inertia, we
can take the limit SR → 0 to the latter equation to obtain

〈v · v〉 = U 2

1 + ST
+ 2DT RU

M
. (16)

Using Eq. (16) and by defining an average kinetic energy
〈K〉 = (M/2)〈v · v〉, one finds that the kinetic energy for the
latter system is 〈K〉 = MU 2/[2(1 + ST ] + DT RU , which this
time depends on the mass of the particle. This does not occur
for a passive Brownian particle with translational inertia.
For this passive system and in two dimensions, Eq. (16)
indicates that 〈K〉 = DT RU . This result points to the following
observation: Inertial effects in the kinetic energy are present
only when activity is considered (activity couples translation
and rotation). This is in accordance with the results of Takatori
and Brady [21], where inertial effects appear in the Reynolds
stress only when there is activity in the system. In fact, by
using Eq. (16) and the definition of the Reynolds stress, we
recover Eq. (25) (a term purely from inertial effects) from the
following section.

To validate Eqs. (15) and (16), Langevin dynamics sim-
ulations were performed and the results are discussed in
Sec. VIII.

VII. SWIM AND REYNOLDS PRESSURE

Let us find the effect of inertia on the bulk properties of our
system by calculating its swim and Reynolds pressures.

A. Swim pressure

The swim stress, σswim, is defined as [9]

σswim = −n〈x(t )Fswim(t )〉, (17)

where n is the number of particles per unit area. Using Eq. (3)
(with x0 = 0 and v0 = 0), together with the definition of the
swimming force, and after applying ensemble average, we
obtain

σswim = − n

RU

∫ t

0

〈
Fswim(t )Fswim(t ′)

〉
× (1 − e−(t−t ′ )/τM )dt ′, (18)

where the fact that random translational forces and swimming
forces are not correlated has been used.

Let us now evaluate Eq. (18) for the simplest case of a self-
propelled particle swimming at constant speed, U (t ) = U =

constant, along e(t ), and immersed in an isotropic environ-
ment. We then substitute Eq. (9) into Eq. (18), and after certain
algebraic steps, we finally obtain the general formula for the
long-time swim stress, namely,

σswim

nksTs
= −eSR S1−SR

R �(SR, 0, SR)I

+eSR

(
1

SR

) SR
ST

+SR−1

�

(
SR

ST
+ SR, 0, SR

)
I, (19)

where ST = τM/τR (τR = 1/D�) is the translational Stokes
number, �(a, b, c) = ∫ c

b qa−1e−qdq represents the general-
ized incomplete Gamma function, and ksTs = RUU 2/2D�. By
taking the limit SR → 0, one can reduce Eq. (19) to

σswim = − nksTs

1 + ST
I. (20)

Equation (20) indicates that as translational inertia increases,
the swim stress decreases. From Fig. 3, one can observe that
Eq. (19) shows a dependence on ST similar to that of Eq. (20).

Note that Eq. (20) is exactly the same as in Ref. [21], with
only a constant difference due to the dimensionality consid-
ered. To validate Eq. (19), Langevin dynamics simulations
were performed and the results are discussed in Sec. VIII.

Finally, by using Eq. (19) together with the definition
	swim = −tr(σswim )/2 (here tr represents the trace), one ob-
tains the analytical expression for the swim pressure in the
system, namely,

	swim

nksTs
= eSR S1−SR

R �(SR, 0, SR)

− eSR

(
1

SR

) SR
ST

+SR−1

�

(
SR

ST
+ SR, 0, SR

)
. (21)

From the behavior of the right-hand side of Eq. (21) (see
Fig. 3), we conclude that another mechanism for enhanc-
ing the ABPs’ swim pressure has been shown. By adding
rotational inertia (SR �= 0) to active particles, one finds an
increment in the swimmers’ swim pressure. This contribution
was not previously observed since an overdamped model
was frequently proposed. Thus for the case of self-propelled
particles, rotational inertia plays an important role because
activity now couples rotation and translation. In other words,
as one adds rotational inertia, the particles’ persistence length
will increase, thus enhancing their momentum and hence the
pressure in the system. The behavior of the swim pressure
is shown in Sec. VIII. It is interesting to mention that using
Eq. (21), and taking the limit SR → 0, one recovers the swim
pressure of a system with only translational inertia [21] as

	swim

nksTs
= 1

1 + ST
. (22)

It can be seen that as translational inertia increases, the swim
pressure in the system decreases. This can be explained by
observing that as one increases the mass of an active particle,
its inertia originates that the particle translates in a different
direction with respect to the direction of its swimming force.
This diminishes the correlation between x and Fswim (the
definition of the swim stress), hence the magnitude of the
swim pressure.
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B. Reynolds pressure

Another important quantity is the Reynolds stress defined
as [21] σRey = −nM〈v(t )v(t )〉. Using Eq. (5), it is possible to
show that

σRey = − n

M

∫ t

0

∫ t

0
〈Fswim(t ′′)F swim(t ′)〉

× e−(2t−t ′′−t ′ )/τM dt ′′dt ′

− n

M

∫ t

0

∫ t

0
〈f (t ′′)f (t ′)〉

× e−(2t−t ′′−t ′ )/τM dt ′′dt ′. (23)

Note that the latter expression is valid for any swimming
kinematics. In particular, let us find the Reynolds stress for the
present system which considers U (t ) = U = constant. Using
Eq. (23) together with Eq. (9), and after certain algebraic
steps, we obtain

σRey = −nksTse
SR

(
1

SR

) SR
ST

+SR−1

�

(
SR

ST
+ SR, 0, SR

)
I

−nDT RU I. (24)

We see that the Reynolds stress for ABPs depends on both
rotational (SR) and translational (ST ) inertia. Additionally, in
the limit SR → 0, the latter equation becomes

σRey = − nksTs

1 + 1/ST
I − nDT RU I, (25)

which is exactly the same as in Ref. [21] but with a con-
stant difference due to the dimensionality considered. Us-
ing Eq. (24) and by defining the Reynolds pressure 	Rey =
−tr(σRey)/2, one finds that the Reynolds pressure is

	Rey = nksTse
SR

(
1

SR

) SR
ST

+SR−1

�

(
SR

ST
+ SR, 0, SR

)
+ nDT RU , (26)

which this time depends on both translational and rotational
inertia. In addition, for SR → 0, the latter equation reduces to

	Rey = nksTs

1 + 1/ST
+ nDT RU , (27)

indicating that as the translational Stokes number increases,
the Reynolds pressure in the system also increases [21]. In
this case, as inertia grows, the mean-square speed (MSS)
in the system decreases [〈v · v〉 = U 2/(1 + ST )]. However,
the kinetic energy depends on both the MSS and the mass.
The product between the MSS and the mass results in an
enhancement of the kinetic energy of the system, hence an
increment in the Reynolds pressure. From Fig. 3, one can
observe that Eq. (26) shows a dependence on ST similar to
that of Eq. (27).

C. Total pressure

By adding Eqs. (21) and (26), the total pressure in the
system is

	swim + 	Rey = nksTse
SR S1−SR

R �(SR, 0, SR) + nDT RU .

(28)

The latter result indicates that the total pressure is independent
from the translational Stokes number. One can also see that by
setting the swimming speed equal to zero, the classic osmotic
pressure is recovered. Note that in the limit SR → 0, Eq. (28)
simplifies to

	swim + 	Rey = nksTs + nDT RU , (29)

which is a previously reported result [21]. Note that in order
to validate Eqs. (21), (26), and (28), Langevin dynamics
simulations were performed and the results are discussed in
the following section. Before closing this section, consider
Eq. (1), multiply it by x, and perform an ensemble average.
After these few steps, we get

M
d〈vx〉

dt
− M〈vv〉 − 〈xFswim〉 = −RU 〈vx〉+〈xf〉. (30)

Using that for an isotropic medium (d/dt )〈xx〉 = 2〈vx〉, and
the fact that 〈xf〉 = 0, the latter equation simplifies to

−M〈vv〉 − 〈xFswim 〉 = −RU

2

d

dt
〈xx〉. (31)

Finally, by multiplying the latter expression by the number
density, and recalling the definition of the swim and Reynolds
stresses, one gets

σRey + σswim = −nRU D, (32)

where D = limt→∞ 〈xx〉/2t represents the diffusion tensor.
Expression (32) gives us an important result, that is, the
possibility of measuring the total pressure in the system by
only obtaining its mean-square displacement. The measure-
ment of the MSD is surely easier than explicitly calculating
the pressure. Therefore, Eq. (32) may facilitate experimental
work. In addition, this equation indicates that although both
stresses depend on the translational and rotational inertia, their
sum will only be affected by the rotational Stokes number
since diffusion, as indicated by Eq. (11), does so. Notice that
Eq. (32) can be confirmed by our previous results. For ex-
ample, adding the swim and Reynolds stresses [Eqs. (19) and
(24)], we immediately obtain the right-hand side of Eq. (32).
This equation will further lead to a general expression for the
total pressure in a two-dimensional system, 	tot = 	swim +
	Rey, namely,

	tot = nRU

2
tr(D). (33)

In the following section, Eq. (28) is also validated numeri-
cally.

VIII. LANGEVIN DYNAMICS SIMULATIONS

In order to verify our analytical results, we compare them
with Langevin dynamics simulations (see Appendix B for
further information). We thus introduce the dimensionless
variables x̃ = x/l , t̃ = t/τR, and ṽ = v/U . In this way, the
system can be characterized by the Peclet number Pe =
U 2τR/DT , which compares advection (due to activity) and
diffusion. For the case of the diffusion analysis, we fix ST =
0.82 and Pe = 690 (similar to typical experiments dealing
with catalytic particles [15,27,28]), whereas for the case of
the swim and Reynolds pressure simulations, the transla-
tional Stokes number varies in the range ST = [0.082, 100]
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FIG. 2. Comparison between theoretical results (black dashed lines) and Langevin dynamics simulations (circles) of a system of
noninteracting ABPs with inertia. Here, Pe = U 2τR/DT = 690 and ST = 0.82. (a) Theoretical and numerical results for the mean-square
displacement of a system with different rotational Stokes numbers, namely, SR = {0, 0.8, 2.5, 32}. Note the asymptotic behavior (MSD
∼√

SRt̃) for large SR. This figure shows that the overall diffusivity increases as the rotational inertia increases. In the inset, using a proper
scaling, all the MSDs collapse to one curve. (b) Theoretical and numerical results for the mean-square speed of a system with four different
rotational Stokes numbers, namely, SR = {0, 0.8, 1.7, 2.5}. This figure shows that the overall mean-square speed increases as rotational inertia
increases.

while keeping the same Peclet number. The present system
is equipped with five different rotational Stokes numbers,
namely, SR = {0, 0.8, 1.7, 2.5, 32}. To perform the ensemble
averages, between 20 000 to 50 000 realizations were con-
sidered. The mean-square displacement and speed results are
illustrated in Fig. 2, where the mean-square displacement
(shown as solid lines) for four different rotational Stokes
numbers, together with the theoretical result given by Eq. (10)
(shown as dashed lines) are plotted in Fig. 2(a). This figure
shows that the overall diffusion coefficient is enhanced as the
rotational inertia increases in the system. For reference, the
classical (inertia neglected) enhanced diffusion constant, D =
DT + U 2/2D�, is shown as the black dashed line with SR =
0. The other asymptotic limit for large SR (SR = 32 in our

simulations) is also illustrated as a dashed-dotted black line.
Figure 2(a) also shows an excellent quantitative agreement
between the numerical results and our analytical predictions.
Note that one can also render the system’s variables adi-
mensional as x̃ = x/LE , t̃ = t/〈tre〉. By doing so, the Peclet
number would be Pe = U 2〈tre〉/DT , which is now affected
by the rotational Stokes number; therefore for the present
experiment one has five different Peclet’s numbers, namely:
Pe(SR = 0) = 690, Pe(SR = 0.8) = 1117, Pe(SR = 1.7) =
1409, Pe(SR = 2.5) = 1645, and Pe(SR = 32) = 6428. This
indicates that as SR increases, advection in the system also
grows. Using the latter scaling, all the MSDs collapse to the
function MSD = 2̃t as indicated in the inset of Fig. 2(a). Un-
der the same conditions as Fig. 2(a), we calculate numerically

ST

Πswim + ΠRey

Πswim

ΠRey

Numerics
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FIG. 3. Pressure of a system of noninteracting ABPs with inertia equipped with Pe = U 2τR/DT = 690 and ST = [0.082, 100]. (a) Compar-
ison between theoretical results (solid and black dashed lines) and Langevin dynamics simulations (circles and squares) of the dimensionless
swim and Reynolds pressures. This figure shows the way both swim and Reynolds pressures depend on translational (ST ) and rotational (SR)
inertia. (b) Dimensionless total pressure in the system as a function of the rotational Stokes number. The full expression [Eq. (28)] is plotted
as a black solid line. For large SR, its asymptotic value is 	̃swim + 	̃Rey 
 √

πSR/2 (blue dashed line). Langevin dynamics simulation data
appear as red circles.
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the mean-square speed of the system and compare it to our
theoretical expressions given by Eqs. (15) and (16). This is
shown in Fig. 2(b), where Langevin simulation data are shown
as red circles, while the theoretical expressions [Eqs. (15) and
(16)] are shown as dashed black lines. Once again an excellent
agreement between theory and simulations is observed. For
the swim and Reynolds pressures, Langevin simulation results
are illustrated in Fig. 3(a). In this figure, the dimensionless
swim pressure (	̃swim = 	swim/nksTs), the Reynolds pressure
(	̃Rey = 	Rey/nksTs), and the sum of both (	̃swim + 	̃Rey)
are plotted as a function of the translational Stokes number.
The theoretical results given by Eqs. (21) and (26) are shown
as solid lines with their respective symbols, whereas Eq. (28)
is shown as black dashed lines. Langevin dynamics simulation
results are shown as black circles and red squares. One can
see an excellent agreement between theory and simulations
which validates our theoretical predictions. Surprisingly, both
swim and Reynolds stresses are sensitive to translational and
rotational inertia; however, their sum (	̃swim + 	̃Rey) does
not depend on translational inertia. This result confirms our
previous theoretical prediction given by Eq. (32). In addition,
Fig. 3(b) shows the behavior of 	̃swim + 	̃Rey [according to
Eq. (28) and shown as a black solid line] as a function of the
rotational Stokes number.

It is worth mentioning that for large SR, one can find
an asymptotic behavior to Eq. (28), which gives in a more
explicit way its dependence on SR. After certain steps, we get

	̃swim + 	̃Rey 

√

πSR/2. (34)

This asymptotic result is plotted as a blue dashed line in
Fig. 3(b). Langevin simulation results appear as red circles.

IX. CONCLUDING REMARKS

In this work we found theoretically the effect of trans-
lational and rotational inertia on the diffusion, swim, and
Reynolds pressures of a system of spherical noninteracting
ABPs, thus generalizing previous overdamped models. Tak-
ing into account the inertia contribution in the orientation
correlations enabled us to obtain analytical expressions for
the system’s effective diffusion coefficient, as well as for its
mean-square speed. These expressions revealed that rotational
inertia leads in general to an enhancement of both diffusion
and mean-square speed. To explain this enhancement, one
should notice that rotational inertia increases the reorientation
time of active particles (thus allowing the particles to travel
longer distances before changing direction). This fact led us
to define an alternative effective reorientation time as well as
an alternative persistence length. Afterwards, and to see the
effect of inertia on bulk properties, the calculation of the total
pressure for this system was carried out. This showed that the
presence of inertia also leads to an enhancement (asymptoti-
cally proportional to the square root of the rotational inertia)
of both the swim and Reynolds pressures. These results are
also expected to be relevant when explaining phase transitions
in a system of inertial ABPs.

All the theoretical findings reported here were corroborated
by performing Langevin dynamics simulations showing an ex-
cellent agreement between theory and numerical experiments.

SR = 0.8
SR = 1.7
SR = 2.5

SR = 0

e
·e

77 80 83 86

(t
)

(t
1
)

73
t

FIG. 4. Effect of inertia on the orientation correlation. The figure
shows a comparison between the theoretical results given by Eq. (9)
(black dashed lines) and Langevin dynamics simulations (solid
lines). Here t1 = 80. The classical result for SR = 0, 〈e(t ) · e(t1)〉 =
e−(t−t1 )/τR , can be seen as the yellow solid line.

ACKNOWLEDGMENT

M.S. thanks Consejo Nacional de Ciencia y Tecnologia,
CONACyT, for support under Grant No. CB 2014/237848.

APPENDIX A: ORIENTATION CORRELATIONS

To explicitly illustrate the effect of rotational inertia (SR)
on the behavior of 〈e(t ) · e(t1)〉, we plot in Fig. 4, for SR =
{0, 0.8, 1.7.2.5} and t̃1 = 80, the theoretical expression (black
dashed lines) given by Eq. (9),

〈e(t ) · e(t1)〉 = e−SR[ 1
τI

(t−t1 )−1+e
− 1

τI
(t−t1 )

]
,

as a function of time. We then superpose our Langevin dynam-
ics simulations (solid lines) for the orientation correlation to
show an excellent agreement between theory and simulations.
As one can see, by setting SR → 0 (I → 0) in Fig. 4, we
recover the classical exponential decay in two dimensions,
〈e(t ) · e(t1)〉 = e−(t−t1 )/τR . Its numerical simulation appears as
the yellow solid line.

APPENDIX B: VERLET-TYPE ALGORITHM FOR
LANGEVIN DYNAMICS

To specify the numerical method we used, consider the
following definitions: r={x, y, θ}, v={vx, vy,�}, m={M, I},
β={ fx, fy, g}, α={RT , R�}, and f (r, t ) as an external force or
torque. Therefore, we can express the components of Eqs. (1)
and (2) as

m
dv

dt
= f (r, t ) − αv(t ) + β(t ),

dr

dt
= v, (B1)

Following Ref. [29] and by introducing the discrete time tn =
n�t , it is possible to build a second-order accuracy method
in the time step �t for Eq. (B1). The discretization of system
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(B1) according to Ref. [29] is

r(tn + �t ) = r(tn) + bv(tn)�t + f (tn)
b�t2

2m

+β(tn + �t )
b�t

2m
, (B2)

v(tn + �t ) = av(tn) + [a f (tn) + f (tn + �t )]
�t

2m

+β(tn + �t )
b

m
, (B3)

where

a = 1 − α�t/2m

1 + α�t/2m
, b = 1

1 + α�t/2m
, (B4)

the Gaussian random number β(tn + �t ) satisfies 〈β(tn)〉 =
0, and 〈β(tn)β(tm)〉 = 2DkR2

k�tδnm. Here k={T,�} is an

index representing either translational (T ) or rotational (�)
motion. Note that setting {α, β} = 0 in Eqs. (B2) and (B3)
leads to

r(tn + �t ) = r(tn) + v(tn)�t + f (tn)
b�t2

2m
, (B5)

v(tn + �t ) = av(tn) + [ f (tn) + f (tn + �t )]
�t

2m
, (B6)

which is the classical velocity Verlet scheme. Equations (B2)
and (B3) were employed to perform the Langevin dynam-
ics simulations in this work. For our simulations, we chose
the time step �̃t = 0.01 and we performed between 20 000
to 50 000 realizations to calculate the respective ensemble
averages.
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