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Active uniaxially ordered suspensions on disordered substrates
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Multiple experiments on active systems consider oriented active suspensions on substrates or in chambers
tightly confined along one direction. The theories of polar and apolar phases in such geometries were considered
in A. Maitra et al. [Phys. Rev. Lett. 124, 028002 (2020)] and A. Maitra et al. [Proc. Natl. Acad. Sci. USA 115,
6934 (2018)], respectively. However, the presence of quenched random disorder due to the substrate cannot be
completely eliminated in many experimental contexts possibly masking the predictions from those theories.
In this paper, I consider the effect of quenched orientational disorder on the phase behavior of both polar
and apolar suspensions on substrates. I show that polar suspensions have long-range order in two dimensions
with anomalous number fluctuations, while their apolar counterparts have only short-range order, albeit with a
correlation length that can increase with activity, and even more violent number fluctuations than active nematics
without quenched disorder. These results should be of value in interpreting experiments on active suspensions
on substrates with random disorder.
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I. INTRODUCTION

Biological systems and their artificial analogs convert
chemical energy into mechanical work at the scale of indi-
vidual constituents [1,2]. This breaking of detailed balance
at the microscopic scale results in macroscopic stresses and
currents [3–7] that have been shown to singularly modify
the phase behavior of such “active systems” relative to their
passive, equilibrium counterparts. This includes the prediction
of long-range order in two dimensions for motile XY spins on
a substrate [8–11], the generic destruction of apolar phases
in infinite, momentum-conserved systems in any dimension
[3,12,13], and the anomalous scaling of number fluctuations
in a region which, being larger than

√
N , where N is the

mean number in that region, violates the law of large numbers
[14,15]. These predictions have been confirmed in experi-
ments [3,16] and have been shown to be responsible for
various biological phenomena ranging from flocking of birds
[17] to spatiotemporally chaotic flows in bacterial fluids [18]
to crawling of cell layers [19] to spontaneous rotation of the
cellular nucleus [20].

Most experimentally relevant biological active systems
and many of their artificial counterparts should be viewed
as a suspension of active particles in a fluid medium. Fur-
thermore, many such experiments are conducted in systems
which are confined between a substrate and a cover slip.
Boundary conditions fundamentally change the behaviors of
active systems [20,21]. The theories of homogeneous active
polar and apolar suspensions on substrates or in confined
channels were considered in Refs. [22] and [23], respectively.
There it was shown that, contrary to naive expectations, polar
fluids in confined channels have long-range order due to a
singular suppression of polarization fluctuations due to the
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long-range effect of fluid incompressibility and have normal
(i.e., obeying law of large numbers) number fluctuations [22].
It was further demonstrated in Ref. [23] that the effective
elastic modulus of active apolar suspension not only need
not become negative (signalling an instability) at any activity
but could also increase with activity. An apolar suspension,
unlike its polar counterpart has only quasi-long-range order
and has giant number fluctuations. However, often in exper-
iments, the substrates and the cover slips are not perfectly
uniform but, due to imperfections, may have local, quenched
anisotropies. Such local anisotropies provide a local “easy
direction” for the orientation of the active particles. Therefore,
it is important to understand how the conclusions regarding
order and number fluctuations are modified in the presence of
such orientational quenched random-field disorder. It has been
known that systems that break a continuous symmetry in the
presence of quenched, random fields cannot have long-range
order below four dimensions in equilibrium [24]. This can be
understood by employing a classic argument due to Y. Imry
and S-K. Ma [24]: For random field disorder, the average
value of the random field vanishes, but its mean-squared
fluctuations in region of size L scales as ∼Ld , where d is
the dimension. Therefore, an ordered state gains bulk energy
O(Ld/2) by breaking up into domains. In all systems that
break a continuous symmetry, the energy required to form
a domain wall between two domains of size L scales as
∼Ld−2. Therefore, when Ld/2 � Ld−2, i.e., d � 4, the ordered
state must break up into domains of finite size, destroying
the ordered state for arbitrarily small disorder strength. Of
course, a parallel energetic argument is not available for
orientational ordering in active systems in the presence of
quenched disorder and, in particular, the conclusion that no
ordered state exists below four dimensions may be modified.
The effect of quenched random-field disorder has earlier been
examined in active motile systems, but without a suspending
fluid medium, by Refs. [25–27], where it was shown that it
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may be possible for such systems to have quasi-long-range
order even in two dimensions contrary to expectations borne
out of the Imry-Ma argument and with a distinct form of
the disorder statistics by Ref. [28] (both analytically and
experimentally) and Refs. [29,30] (numerically). The effect
of disorder has also been considered for the dynamics of
run-and-tumble particles in one dimension [31].

In this paper, I consider the experimentally relevant case
of polar and apolar suspension on substrates (or confined
in narrow channels) in the presence of random, quenched
orientational disorder. I demonstrate that, within a linearized
theory, polar suspensions on substrates have long-range order
in two dimensions due to the stabilization of orientational
fluctuations caused by the nonlocal constraint of fluid in-
compressibility. Unlike their counterparts with only annealed
noise, however [22], the number fluctuations are predicted to
be singularly larger than in passive systems and to violate
the law of large numbers. In contrast, apolar fluids, which
are not motile on average, do not even have quasi-long-range
order in two dimensions—thus, a monodomain nematic phase
is not possible even in the presence of infinitesimal random
quenched disorder beyond an active Imry-Ma length scale.
However, this length scale is itself predicted to grow with
activity, signifying that apolar suspensions that are not desta-
bilized at high activities can have large Imry-Ma scales and
therefore, at moderate disorder strengths, a monodomain ne-
matic phase may be observed in experiments. Further, I show
that number fluctuations in regions much smaller than the
Imry-Ma length, i.e., at scales where a monodomain nematic
exists, are enormous, much larger than the corresponding
system with annealed noise. I now demonstrate how I obtain
these results in detail, first considering a polar suspension with
quenched disorder and then an apolar one.

II. POLAR SUSPENSIONS ON DISORDERED SUBSTRATES

The equations of motion of a polar suspension on a
substrate in the absence of quenched disorder have been
considered in detail in Ref. [22]. I adapt these equations to
describe a situation in which the presence of impurities on
the substrate create local “easy directions” for the polarization
field of the suspension p which acts as a quenched noise for p.
The concentration of the active particles is denoted by c and
the center-of mass velocity of the fluid and the active particles
by u. The joint density of the fluid and the active particles
together is incompressible leading to the constraint ∇ · u = 0.
The dynamical equations are

∂t p + u · ∇p + λap · ∇p − ω × p

= �u − λp · U − δH
δp

+ ξQ, (1)

where U is the symmetric part of ∇u, ω = (1/2)∇ × u, λa

denotes the strength of active self-advection, and λ is the
flow-alignment parameter. The � term describes the fact that
on a substrate, polarization responds to the local velocity and
not only its gradient [2,22,32,33]. The free energy H, which
would have controlled the statics and dynamics in the absence

of activity is

H =
∫

x

[
α(c)

2
|p|2 + β

4
|p|4 + K

2
|∇p|2 + γ p · ∇c + c ln c

]
,

(2)
where the first two terms would describe the ordering transi-
tion to a polar state in a passive system, the elastic modulus
K suppresses the heterogeneities of the polarization, the γ -
term describes the tendency of the polarity to align along or
opposite to concentration gradients [34], while the last term is
characteristic of an ideal solution (setting kBT = 1). Finally,
ξQ denotes a quenched random field whose statistics I take to
be Gaussian [25–27]:

〈ξQi (x)ξQj (x
′)〉 = TQδi jδ(x − x′), (3)

where x is the spatial coordinate, TQ is the strength of the
disorder, and the angular brackets imply an average over the
quenched disorder. The equation for the velocity field on a
substrate reads


u = υp − ∇� + ζ1p · ∇p + ζ2p∇ · p

−�
δH
δp

− λ∇ ·
[

p
δH
δp

]S

− ∇ ·
[

p
δH
δp

]A

, (4)

where � enforces the incompressibility condition ∇ · u = 0
and superscripts S and A denote symmetric and antisymmetric
parts of a tensor. υp describes the active motility and ζ1

and ζ2 are active terms at the next order in gradients [23].
The remaining terms are required by Onsager symmetry to
obtain an equilibrium system in the limit υ = ζ1 = ζ2 = λa =
0. I have not considered active and passive higher order in
gradients contributions to the force-density explicitly since
they are subdominant at long wavelengths to the terms in
(4) and (1). The equation for the concentration fluctuations,
δc = c − c0, where c0 is the mean concentration of active
particles, is

∂tδc + u · ∇δc = −∇ · (vpcp − Dc∇δc), (5)

to lowest order in fields and gradients, where the term with
the coefficient υp describes an active current proportional to
the polarization and Dc is the isotropic diffusivity. I have
ignored a further active contribution to the current, allowed
in active uniaxial systems on substrates, ∝(pp · u) since it can
be shown to not qualitatively affect the fluctuation spectrum
of a stable polar phase. The impurity field is assumed to only
affect the local polarization. There are additional annealed
noises in these equations, but in this paper I will only consider
equal-time correlations whose dominant contribution arises
from the quenched component (the equal-time correlations in
the absence of quenched noise but with annealed noise was
calculated in Ref. [22]).

As shown in Ref. [22], for α̃ = α(c0) − �υ/(
 + �2) =
α − w < 0, the disordered state (with p0 = 0) is unstable
and an ordered state with p2

0 = √
α̃/β sets in. I take the

direction of ordering to be along x̂. The uniform fluid ve-
locity u0 = (w/�)p0x̂ in this state [22]. I now consider the
statistics of small fluctuations of the polarization δp = (p0 +
δp)(cos θ x̂ + sin θ ŷ) − p0x̂ and concentration δc about this
state in the presence of quenched disorder. Since it was shown
in Ref. [22] that a stable aligned phase is only possible for

012605-2



ACTIVE UNIAXIALLY ORDERED SUSPENSIONS ON … PHYSICAL REVIEW E 101, 012605 (2020)

w > 0, this is the case I will consider. Fourier transforming
in space and eliminating the incompressible velocity field and
the fast δp field, I obtain the coupled, linearized equation for
θq and δcq. Only retaining up to O(q) terms in the θq equation
(since, this will be sufficient for calculating the static structure
factor in the limit of small wave vectors), I obtain

∂tθq = −i
γ

p0
qyδc − i�aqxθ − w

q2
y

q2
θq + 1

p0
ξQ, (6)

where the expression for �a is given in the Appendix and
ξQ is the projection of ξQ transverse to p. The concentration
equation is

∂tδcq = −Dcq2δc − ivpc0 p0qyθ − i
(
vp + w

�

)
p0qxδc. (7)

The steady-state solution of (6) and (7) are simply obtained by
setting ∂tθq = ∂tδcq = 0. The disorder-averaged correlation
function for angular fluctuation can be calculated straightfor-
wardly from the solution of the steady-state equations, which
in the limit of small wave vectors is

〈|θq|2〉 = TQ

p2
0

[(
q4

y/q4
)
w2 + q2

x�
2
a

] ≈ TQq4

p2
0

(
q4

yw
2 + q6

x�
2
a

) .

(8)
This implies that 〈|θq|2〉 ∼ q0 for most directions of the wave
vector space but diverge as ∼1/q2 for q4

y � q6
x , i.e., the

fluctuations are strongest for wave vectors q4
y ∼ q6

x ⇒ qy ∼
q3/2

x . Note that this is somewhat different from the equal-
time correlator in the presence of only annealed noise [22]:
∼q2

x/(wq2
y + Kq4

x ). However, it is clear that the real space
angular fluctuations 〈θ (x)2〉 = ∫

d2q/(2π )2〈|θq|2〉 converges
in the infrared, ∼1/

√
L, as the system size L → ∞ (again,

in contrast to the case with annealed noise where it scaled
as ∼1/L), signifying the presence of long-range order in two
dimensions. More formally, by examining the behavior of the
equal-time correlator under the transformation x → bx, y →
bζ y, t → bzt , θ → bχθ , I can calculate the linear roughness
χ , anisotropy ζ , and dynamical z exponents. Since the linear
fluctuations are governed by �a (which can be replaced by
its isotropic value for this argument), w, and TQ, choosing
exponent values such that these quantities remain invariant
under the rescaling transformation will ensure that 〈|θq|2〉
remains unchanged. Under rescaling, �a → bz−1�a, w →
bz−2ζ+2w, and TQ → b(2z−2χ−ζ−1)TQ, which implies that z =
1, ζ = 3/2, and χ = −1/4. The linear anisotropy exponent
is consistent with the fact that the fluctuations are strongest
in the regime qy ∼ q3/2

x and the roughness exponent implies
that the real space angular fluctuations 〈θ (x)2〉 ∼ L2χ decay
as 1/

√
L for L → ∞, as discussed earlier. The negativity of

the roughness exponent thus implies that the polar, moving
state has long-range order despite the presence of disorder.

To calculate the number fluctuations, I now consider the
concentration fluctuations

〈|δcq|2〉 = TQc2
0q2

yυ
2
p�

2

−2c0 p0q2
x q2

yυpγ�(w + υp�)�a + p2
0q2

x (w + υp�)2
[(

q4
y/q4

)
w2 + q2

x�
2
a

] + q4
y�

2(Dcw + c0υpγ )2
. (9)

This goes as q0 for most directions of the wave-vector space.
However, for qx � q2

y (i.e., around q ≈ qyŷ), it diverges as
∼1/q2

y and has another peak at around q2
y ∼ q3

x , where it
diverges as 1/qx. The strongest divergence is for wave vec-
tors q ≈ qyŷ whose contribution must dominate the integral
of 〈|δcq|2〉 over all wave vectors. In the direction qx � q2

y ,
concentration is the only hydrodynamic field, with a linear
diffusive equation of motion and driven by a conserving but
quenched noise. In this regime, the angular fluctuations that
enter the concentration equation (7) can be simply replaced by
θ = ξQ/p0w − (iγ /p0w)qyδc. The first leads to the quenched
conserved noise, while the second just modifies the diffusivity,
implying a 1/q2 divergence of the static structure factor in this
regime of the wave-vector space. For q ≈ qy, 〈|δcq|2〉 may be
approximated as

〈|δcq|2〉 ≈ TQc2
0υ

2
p�

2

p2
0δφ

2(w + υp�)2w + q2�2(Dcw + c0υpγ )2
,

(10)
where δφ is the angle between q and ŷ (note the unusual
definition). Now, performing an integral over the angular
variable by noting that this integral will be dominated by the
contribution around δφ ≈ 0 and therefore the range of the in-
tegral can be extended to infinity, I obtain 〈|δcq|2〉 ∼ 1/q. This
1/q divergence of the static structure factor of concentration

fluctuations implies that the rms number fluctuations
√

〈δN2〉
in a region of size � scales as 〈N〉3/4, where 〈N〉 is the mean
number of particles in the region, instead of

√〈N〉, as it would
in equilibrium systems not at a critical point [3]. Further, such
anomalous number fluctuation are also predicted to be absent
in polar suspensions in the absence of quenched disorder
[22], where

√
〈δN2〉 scales as

√〈N〉 as in passive systems.
Furthermore, the concentration dynamics is unaffected by any
nonlinearity in this regime because the allowed nonlinearities
∂xδc2  ∂2

y δc2, since this is the regime of the wave-vector
space under consideration, and ∂2

y δc2  ∂2
y δc, since a 1/q

divergence of the concentration static structure factor implies
that the real-space concentration fluctuations vanish at large
scales as 1/L.

The conclusions reached on the basis of the linear theory
may, however, be modified by relevant nonlinearities. I have
already argued above that the dynamics is essentially linear
for q ≈ qyŷ. In the regime qy ∼ q3/2

x , where angular fluctu-
ations are the largest and concentration fluctuations are also
divergent at small q, albeit not as strongly as along ŷ, the
size of linear concentration fluctuations is determined by υp

(the choice of the linear dynamical, anisotropy and roughness
exponents fixes the other quantities). Therefore, additionally
rescaling δc → bχcδc and demanding that the concentration
fluctuations remain invariant implies that υp → b(z−χc+χ−ζ )υp

012605-3



ANANYO MAITRA PHYSICAL REVIEW E 101, 012605 (2020)

must be held fixed. This yields the linear exponent χc = −3/4
(χc is smaller than −1/2—the value which would have been
expected based on

∫
q〈|δcq|2〉 ∼ 1/L—because, for qy ∼ q3/2

x ,

the small wave-vector divergence of 〈|δcq|2〉 is weaker than
for q ≈ qy). As in the corresponding annealed noise problem
[22,35] and as discussed in the Appendix, the nonlinearities in
the θq equation have the forms (qy/qx )(θ2)q, (θ3)q (both with
coefficient w), qy(θ2)q, δcq−kkxθk , and qy(δc2)q, while those in
the concentration equation have the form qx(δc2)q, qyθq−kδck ,
and qx(θ2)q. Using the linear exponents obtained above, I find
that the only relevant nonlinearities in the θq equation are
(qy/qx )(θ2)q and (θ3)q, both of which must rescale the same
way as the linear (q2

y/q2)θq term, while concentration equation
has only one relevant nonlinearity qx(θ2)q. In the annealed
noise model, if one ignored the concentration fluctuations,
one could obtain the exact static exponents [22,35] through
a mapping to a two-dimensional smectic and, ultimately,
to a 1 + 1-dimensional KPZ equation [36,37]. However, an
equivalent mapping is not available here. Nevertheless, these
nonlinearities must change the linear exponents discussed
earlier. This can be seen by a simple argument: Within the
linear theory, the nonlinearities (qy/qx )(θ2)q and (θ3)q grow,
while the linear term (q2

y/q2)θq does not. However, due to
rotation invariance, the coefficient of all three terms must
rescale the same way (which implies χ = 1 − ζ ), implying
that the exponents calculated above have to be modified by
fluctuations. This parallels the situation with only annealed
noise [22,35], where the linear exponents (χ = −1/2, ζ = 2)
do not satisfy this relationship, but the exact exponents (χ =
−1/2, which remains unchanged and ζ = 3/2) do. While I
have not been able to calculate the exact exponents for this
model, it is reasonable to assume that nonlinearities will not
destroy the long-range order in this system with quenched dis-
order as well. If that is the case, the concentration fluctuations
are bound to remain anomalous, as predicted by the linear
theory.

III. APOLAR SUSPENSIONS ON
DISORDERED SUBSTRATES

I now contrast the behavior of polar suspensions on sub-
strates with quenched disorder with apolar suspensions. The
deterministic parts of the equations of motion for the apolar
suspension are the equivalent to those in Ref. [23]. I denote
angular fluctuations about a homogeneous state, with con-
centration c0, ordered nematically along the x̂, by the angle

field θ (x), the concentration fluctuations by δc = c − c0, and
an overdamped velocity field by u. As in the polar model,
I ignore time-dependent, annealed fluctuations since their
contribution to the static correlations are subdominant to the
quenched disorder considered here. The equation of motion
for angular fluctuations is

θ̇ = 1 − λ

2
∂xuy − 1 + λ

2
∂yux − 
θ

δH
δθ

+ ξQ, (11)

where |λ| > 1 describes particles with a tendency to align
under a shear flow, ξQ is a quenched orientational disorder
which has the correlation 〈ξQ(x)ξQ(x′)〉 = TQδ(x − x′) as in
the polar system, and

H =
∫

d2r
[

K

2
(∇θ )2 + γ c∂x∂yθ + c ln c

]
, (12)

where K > 0 characterizes the tendency of the particles to
align and γ denotes a symmetry allowed coupling between the
concentration and orientation fields. The adsorbed equation
for the flow velocity is


u = −∇� + f p + fa, (13)

where 
 is the friction coefficient against the substrate and
the pressure � serves as a Lagrange multiplier enforcing the
incompressibility condition ∇ · u = 0 for the suspension as a
whole. Onsager symmetry and Eq. (11) yield the density of
passive forces

f p = −1 + λ

2
∂y

(
δH
δθ

)
x̂ + 1 − λ

2
∂x

(
δH
δθ

)
ŷ, (14)

while the active force density fa, to lowest order in
gradients, is

fa = −(
ζ

Q
1 �μ + ζ

Q
2 �μ

)
∂yθ x̂ − (

ζ
Q
1 �μ − ζ

Q
2 �μ

)
∂xθ ŷ,

(15)
where ζ

Q
1 and ζ

Q
2 are two independent phenomenological con-

stants and �μ denotes the strength of the overall activity in the
system [23]. The evolution of the concentration fluctuations δc
is governed by a conservation equation,

∂tδc = Dc∇2 δH
δc

+ ζc�μ∂x∂yθ = Dc∇2δc + ζc�μ∂x∂yθ,

(16)
where the active term ζc�μ couples orientation fluctuations
with concentration fluctuations and is a feature of active
nematics [3,14]. On eliminating the fluid velocity u, the
Fourier-transformed equation for angular fluctuations become

∂tθq = −q2

[
�μ

{
q2 − λ

(
q2

x − q2
y

)}{
ζ

Q
2 q2 − ζ

Q
1

(
q2

x − q2
y

)}
2
q4

+ 
θK

]
θq + qxqy
θγ δcq + ξQ = −q2K̄θq + qxqy
θγ δcq + ξQ,

(17)

where K̄ is the nematic stiffness renormalized by activity. It
was shown in Ref. [23] that K̄ can be positive even at arbi-
trarily high �μ when ζ2 > |ζ1| and |λ| < 1 [23]. A negative
K̄ would signal a linear instability of the ordered state. Here

I concentrate on K̄ > 0. The static correlators for angular and
concentration fluctuations are calculated from (17) and the
Fourier-transformed version of (16) after setting ∂tθ = ∂tδc =
0 and averaging over the quenched noise. The static structure
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factor of angular correlations, averaged over the quenched
disorder is

〈|θq|2〉 = TQD2
cq4(

DcK̄q4 + q2
x q2

yγ
θ�μζc
)2 ∝ 1

q4
. (18)

This implies that the angular fluctuations diverge at least as
strongly as 1/q4 in all directions of the wave-vector space.
If γ ζc < 0, then there is a possibility that along some special
directions the denominator goes to 0, but in that case higher
order in wave vector terms have to be retained in the equations
of motion and the divergence of angular fluctuations at small
wave vectors would be stronger than 1/q4. This implies that
the real space angular correlation function diverges strongly
(as L2) with the system size L, implying that nematic order
is impossible on disordered substrates even for active sus-
pensions (i.e., they only have short-ranged order) just like
their passive counterparts. However, the active analog of the
Imry-Ma length scale ξIM scales with the activity �μ, for large
activity. To see this, note (as pointed out in Ref. [23]) that for
large �μ, the active term in K̄ , ∝ �μ dominates the passive
one ∝
θK , K̄ ∼ �μ. Thus, the denominator of (18) ∼�μ2.
The rms angular fluctuations can be calculated as

〈θ (x)2〉 =
∫

|q|�1/L

dq
4π2

〈|θq|2〉 ∼ TQ

�μ2
L2, (19)

where L is the system size. Setting the distortion to be O(1),
I obtain the Imry-Ma length scale ξIM ∼ �μ/

√
TQ. This im-

plies that the domain size beyond which the active nematic
(which is linearly stable) loses order increases with increasing
activity, which is another manifestation of active stabilization
discussed in Ref. [23]. Thus, it is possible to experimentally
tune activity to obtain arbitrarily large nematic domains.

The concentration fluctuations also scale as ∼1/q4 in all
directions for length scales below ξIM (above this scale, the
nematic state itself is destroyed and a description in terms of
the angle field is invalidated):

〈|δcq|2〉 = TQq2
x q2

y�μ2ζ 2
c(

DcK̄q4 + q2
x q2

yγ
θ�μζc
)2 . (20)

This can be used to calculate the mean-squared number fluctu-
ations 〈δN2〉 = 〈N2〉 − 〈N〉2 in a box of size � < ξIM〈δN2〉 =∫
�×�

d2rd2r′〈δc(r)δc(r′)〉. Since 〈δc(r)δc(r′)〉 ∼ |r − r′|2 in
all directions, below the Imry-Ma length scale 〈δN2〉 ∼
�2+4 ⇒

√
〈δN2〉 ∼ �3. Since 〈N〉 ∼ �2, this implies 〈δN2〉 ∼

〈N〉3/2. This implies that the number fluctuations in active
nematic suspensions on a dirty substrate, in a region in which
the nematic is ordered (i.e., in a region smaller than the Imry-
Ma length scale), are expected to be even larger than in active
nematics on a clean substrate. Beyond the Imry-Ma scale, the
nematic order itself is destroyed and the number fluctuations
should be normal and obey the law of large numbers.

IV. CONCLUSIONS

In this paper, I have demonstrated that active polar fluids
can have long-range order with anomalous number fluctua-
tions even in the presence of weak random-field disorder. The
presence of long-range order in a two-dimensional system
with disorder is a further consequence of the active Anderson-
Higgs mechanism [38,39] discussed in detail in Ref. [22]

where it was shown that due to the interplay of activity
and the constraint of incompressibility, the Nambu-Goldstone
mode [40,41] associated with the broken rotation symmetry
becomes gapped, with the gap vanishing only precisely along
the ordering direction. The calculation here suggests that the
long-range ordered state should be observed in biological
experiments, such as in crawling cell layers [19] in which a
certain amount of disorder may be expected. Furthermore, the
theory described here should be quantitatively testable even
in weakly compressible systems such as the one composed
of motile rods in a bath of immotile beads [32] since, as
shown in Ref. [22], such systems behave as incompressible
two-dimensional polar suspensions up to large length scales.
In this artificial system, the strength of quenched disorder may
be tuned by fixing a subset of the polar particles in space.
It is interesting to note that in Ref. [42] anomalous number
fluctuations are observed in a polar suspension with long-
range order, which could, perhaps indicate the presence of
quenched disorder. However, the presence of Toner-Tu waves
[8] in that experiment, which should be damped in the kind
of incompressible system I consider here, probably indicates
that the constraint of incompressibility is not experimentally
relevant there due to the large chamber thickness and, instead
it should be modelled as a compressible polar flock. However,
a more strongly confined variant of Ref. [28] should observe
the effects I predict.

The theory for the apolar suspensions on substrates should
also be testable in a variety of biological and nonbiological
experiments. First, though I constructed a theory of apolar
suspensions, the orientational and density fluctuations should
have the same form in dry active nematics without a suspend-
ing fluid medium, unlike in the polar system. In this context,
the prediction of increasing Imry-Ma scale with activity as
well as number fluctuations which are even larger than in
disorder-free active nematics can be tested by introducing a
low density of fixed, randomly oriented apolar rods in the ex-
periment described in Ref. [43]. Turning now to experiments
on bacteria, a highly ordered nematic state was observed in a
suspension of Escherichia coli [44]. Introduction of disorder
would imply that the quasi-long-range nematic state observed
in that experiment would become short range with a Imry-Ma
scale that increases with bacterial swimming speed, which
should be proportional to activity. Finally, the predictions of
this paper can also be tested in experiments on living liquid
crystal, composed of swimming bacteria in a passive, ordered
nematic fluid [45] by introducing a small degree of quenched
disorder in the passive nematic.
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APPENDIX : POLAR SUSPENSION WITH
QUENCHED DISORDER DETAILS

As discussed in the main text, the Fourier transformed
linear equations of motion for a polar suspension in the
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presence of disorder are

∂tθq = −i
γ

p0
qyδc − i�aqxθ − w

q2
y

q2
θq + 1

p0
ξQ, (A1)

where

�a =
(
λa + w

�

)
p0 − wp0
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(
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−
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y
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]

(A2)

and ξQ is the projection of ξQ transverse to p. Only the value
of �a for q ≈ qx affects the equal-time angular correlator in

the limit of small wave vectors. We assume that �a|q=qx > 0
in this paper. The concentration equation is

∂tδcq = −Dcq2δc − ivpc0 p0qyθ − i
(
vp + w

�

)
p0qxδc. (A3)

The steady-state solution of (A1) and (A3) are simply ob-
tained by setting ∂tθq = ∂tδcq = 0 and solving the matrix
equation⎡
⎣i�aqx + w

q2
y

q2 i γ

p0
qy

ivpc0 p0qy i
(
vp + w

�

)
p0qx + Dcq2
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⎦(

θq

δcq
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=

( 1
p0

ξQ

0

)
.

(A4)
The solution of this equation then straightforwardly yields the
disorder-averaged correlation functions for θq:

〈|θq|2〉 = TQq4
[
D2

cq4�2 + p2
0q2

x (w + υp�)2
]

−2c0 p0q4q2
x q2
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2
a

) + q4�2
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q4
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(A5)
In the q → 0 limit, this then yields

〈|θq|2〉 = TQ

p2
0

[(
q4

y/q4
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w2 + q2

x�
2
a

] ≈ TQq4
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0
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2 + q6
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2
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) (A6)

as discussed in the main text.
Beyond the linear theory, the nonlinear equation of motion for θq is

∂tθq = −i
γ

p0
qyδc − i�aqxθ + w

[
qy

qx

(
−qy

qx
θq + θkθq−k

2

)
− θq−k

(
−ky

kx
θk + θk−mθm

2

)]

− iλ1δcq−kkxθk − iλ2qxθq−kθk − iγ1qyδcq−kδck − iγ2θq−kkxδck + 1

p0
ξQ, (A7)

where we have used the fact that in the regime in which
angular fluctuations are the largest, qy ∼ q3/2

x , and therefore
q2 ≈ q2

x for small wave vectors. Here λ1, λ2, γ1, γ2 are coef-
ficients that may scale independently under a renormalization
group treatment, unlike the nonlinearities with the coefficient
w, in the square brackets, which, due to rotation invariance,
must all scale the same way to preserve the form of the
term in the square brackets. They will be anisotropic, just
like �a, but since, as discussed in the main text, all of them
turn out to be irrelevant, we have not shown their (somewhat
cumbersome) anisotropic forms nor expressed them in terms
of coefficients introduced in (1) and (4). However, it is easy
to see the origin of these nonlinearties: λ2, within this theory,
should arise from the same terms that contribute to �a and
therefore should be equal to �a. The concentration nonlin-
earities can be understood as arising from the concentration
dependence of γ , λa, ζ1, ζ2, υ. For instance, since every
term in �a can be a function of concentration, λ1 should be
∂�a/∂c|c=c0 plus additional contributions from the projection

of p orthogonal to itself to obtain an equation in terms
of θq. γ1 arises due to the concentration dependence of γ

while γ2 appears due to the projection of p transverse to
itself.

The nonlinear concentration equation is

∂tδcq = −Dcq2δc − ivpc0 p0qyθ − i
(
vp + w

�

)
p0qxδc

− iλcqyθq−kδck + iw1qxδcq−kδck + iw2qxθq−kθk .

(A8)

The nonlinear coefficients λc and w1 can rescale indepen-
dently under a renormalization group treatment but w2 must
scale the same way as vpc0 p0. It is simple to see the origin of
these nonlinearities as well: λc should be vp/c0, w1 appears
from a concentration dependence of vp or υ, and w2 appears
from expanding ∇ · p to second order in θ and therefore
should have a coefficient ∝vpc0 p0.
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