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Annealing and rejuvenation in a two-dimensional model amorphous solid under oscillatory shear
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We study the annealing and rejuvenation behavior of a two-dimensional amorphous solid model under
oscillatory shear. We show that, depending on the cooling protocol used to create the initial configuration, the
mean potential energy can either decrease or increase under subyield oscillatory shear. For post-yield oscillatory
shear, the mean potential energy increases and is independent on the initial conditions. We explain this behavior
by modeling the dynamics using a simple model of forced dynamics on a random energy landscape and show
that the model reproduces the qualitative behavior of the mean potential energy and mean-square displacement
observed in the particle based simulations. This suggests that some important aspects of the dynamics of
amorphous solids can be understood by studying the properties of random energy landscapes and without
explicitly taking into account the complex real-space interactions which are involved in plastic deformation.
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I. INTRODUCTION

Amorphous solids and glasses exhibit structural character-
istics that are similar to liquids while responding elastically to
shear forces. An amorphous solid is typically created by fast
cooling a liquid into a supercooled state in which the viscosity
increases rapidly and the dynamics becomes sluggish while
the system avoids crystallization [1,2]. At the glass transition
temperature the viscosity is so large that the effective response
of the material in experimental time frames becomes that of a
solid rather than a liquid (i.e., in these time scales it seems as
if the viscosity is infinite) [1–3]. In the supercooled state the
dynamics becomes activated and the system stays most of the
time close to the minima of the potential energy function. In
geometric terms, one can think of this kind of dynamics as
motion on an energy surface since the potential energy,

u(r1, r2, ..., rN ) =
∑
i �= j

ui, j (ri, r j ), (1)

is a scalar function of the multidimensional space of configu-
rations and thus forms a hyper-surface in this space (here ui, j

is the energy due to a two-body interaction and ri is the posi-
tion of the ith particle). This energy surface is often referred
to as the “energy landscape” [4] since it typically includes
many different “hills” (maxima), “valleys” (minima), and
saddles [5]. The energy landscape also controls the manner
in which the material deforms under athermal conditions—at
zero temperature the system is always at a minimum of the
potential energy and when a small amount of mechanical
deformation is applied, the energy landscape changes its shape
and the position of the minimum shifts. When a large enough
mechanical deformation is applied, the minimum merges with
a close-by saddle in a saddle-node bifurcation which leads the
system to “flow” to a new minimum [5,6].
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In recent particle simulations and experiments, it was
shown that when subject to quasi-static oscillatory shear under
athermal conditions, after a transient period, an amorphous
solid reaches a steady state which is either periodic, for small
strain amplitudes, or chaotic/diffusive, for large strain ampli-
tudes [7–19]. For small strain amplitudes, the steady-state po-
tential energy was found to depend on the quenching protocol
[13] while for large strain amplitudes, the steady-state poten-
tial energy was independent of the initial conditions indicating
a regaining of ergodicity. This transition from asymptotically
periodic to asymptotically diffusive behavior is called “the
irreversibility transition” and it was found to occur at a well-
defined maximal shearing amplitude γc. In some of these
studies, that used the three-dimensional Kob-Andersen 20:80
model [20,21] and in which the initial configuration was
prepared by an infinite quench from a liquid, it was found that
for maximal strain amplitudes γmax that are below the critical
value, the oscillatory shear causes the zero-strain potential
energy to become lower at the steady state and thus to anneal
the amorphous solid. Furthermore, as long as the maximal
strain amplitude is smaller than the critical value, increasing
γmax causes a decrease in the steady-state potential energy.
For maximal strain amplitudes larger than the critical ampli-
tude the steady-state potential energy increased as a function
of γmax.

Since it is known that when sheared at a constant rate
and direction, a glassy system can either anneal (decrease in
energy) or rejuvenate (increase in energy) [22,23] a question
arises as to whether this behavior can also be reproduced
under oscillatory shear. One can imagine that for a system
trapped inside a low energy minimum, an oscillatory forcing
may cause it to escape this minimum and become trapped in
a local minimum with a larger energy. Here we demonstrate
such a behavior, using a two-dimensional particle model sub-
ject to athermal oscillatory shear, where the initial solid was
prepared by slow cooling rather than by an infinite quench. We
provide a qualitative explanation for our results using a simple
model of random dynamics on a random energy landscape
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FIG. 1. Ensemble-averaged potential energy per particle at zero
strain for a particle simulations with oscillatory shear with a maximal
strain amplitude γmax = 0.095 as a function of the number of cycles
n for initial configurations prepared by a slow quench.

that takes into account the features of the forcing in the
particle simulations and show that it reproduces qualitatively
the behavior of the steady-state potential energy and provides
a simple explanation for this behavior.

II. ANNEALING AND REJUVENATION
IN A MODEL GLASS

We performed simulations of a binary (50:50) mixture
of N = 16 384 particles interacting by a radially symmetric
potential in two dimensions (see details in the Appendix). Half
of the particles are 1.4 the size of the other half such that the
system forms a glass due to geometrical frustration, even for
relatively slow quenches. For this system and configuration,
it was shown that there is an irreversibility transition at
γc ≈ 0.11 [7,8,24] (for smaller systems sizes γc was larger).
We prepared amorphous configuration by first performing
molecular dynamics simulations at a high temperature then
gradually cooling the systems to a low temperature and even-
tually quenching the final configurations to zero temperature
using a minimization algorithm. We prepared two different
types of initial configurations—one type was prepared by a
fast quench, while the other was prepared by a slow quench
(see Appendix for details). Next, we started shearing the con-
figurations using the usual quasi-static protocol, where the
system is subject to a small strain step of magnitude δγ =
10−4 followed by an energy minimization using the FIRE
algorithm [25], and this is repeated up to a maximal strain
amplitude at which the strain direction is reversed. This
process is repeated periodically using a triangular progression
protocol [7,13]:

0 → γmax → 0 → −γmax → 0 → ... (2)

with γmax serving as a control parameter. In Fig. 1 we can see
the potential energy per particle at zero strain (stroboscopic)
averaged over 30 realizations for the periodic shearing with
γmax = 0.095 applied to the configurations that were prepared
by a slow quench. In Fig. 2 we show the steady-state potential
energy for initial configurations prepared using fast (blue
disks) and slow (yellow squares) quenches as a function of
γmax. While the behavior for a system that was prepared by a

FIG. 2. Mean potential energy per particle in particle simulations
(N = 16 384 particles) of an amorphous solid under oscillatory shear
in a-thermal quasistatic (AQS) conditions ensemble-averaged over
30 realizations. γmax is the maximal strain amplitude and the average
potential energy 〈U〉 is calculated at the steady state at zero strain.
Blue dots are the steady-state energies of simulations starting from
a sample prepared by a fast quench, while the yellow squares are
the steady-state energies of simulations starting from a slow quench.
A noticeable feature is that while the energy starting from a slow
quench is always increasing, the energy starting from a fast quench
is initially decreasing and starts to increase only for maximal strain
amplitudes above the critical point (in this system and system size
γc ≈ 0.11).

fast quench is consistent with the annealing behavior reported
for the Kob-Andersen model [20,21], we observe that for slow
quenches, the potential energy increases before reaching the
steady-state value and its steady-state value increases as a
function of the maximal shearing amplitude γmax even for
values smaller than the critical amplitude γc. To explain the
observed dependence of the potential energy on the applied
forcing and initial configuration, we introduce a simple model
for dynamics on a rough energy landscape.

III. MODEL FOR ENERGY-LANDSCAPE EXPLORATION

In the following we show that the observed behavior of
the potential energy can be rationalized in terms of dynamics
on an energy landscape. For this purpose we use a simple
model of energy landscape dynamics which takes into account
the randomness of the dynamics and the energy landscape
and the effect of the external forcing. A natural question
to ask is whether the dynamics under oscillatory, athermal
quasistatic shear is indeed random. In particle simulations
[24], it was observed that the vector of particle positions
(with origin at one of the simulation box corners) moves
stochastically from its initial position after a shearing cycle,
as long as the system does not enter a limit cycle [Fig. 3(a)].
To demonstrate this stochasticity, we calculated the angle of
the change of direction of the vector of displacements. If the
vector of coordinates of the particles in the simulation after
n shearing cycles is rn = (x1, y1, x2, y2, ..., xN , yN ), then the
displacement after the n + 1 cycle is defined as

�rn+1 = rn+1 − rn. (3)
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FIG. 3. (a) Displacement field after a shearing cycle of amplitude
γmax = 0.2 exhibiting disordered motion. (b) A histogram of the
angles between the displacement vectors after successive cycles for
γmax = 0.14 showing that the angle is a random variable with an
approximately Gaussian statistics (yellow line).

Using this definition, we can extract the angle between the dis-
placements in two consecutive cycles from the scalar product:

cos θn+1 = �rn+1 · �rn

|�rn+1||�rn| . (4)

In previous work [24], we have found that the angle θn+1

is random and its distribution is well-described by a nor-
mal distribution [see also Fig. 3(b)]. The randomness of the
displacement is a result of the plastic events and nonaffine
displacements that occur during a cycle and cause the vector
of coordinates to move to a random position after each cycle.

While there is a random component to the dynamics, it is
not completely random and is limited by the relation between
the energy landscape surrounding the current configuration of
the system and the maximal magnitude of the forcing. This
is illustrated in Fig. 4 where it is shown that the effect of

FIG. 4. (a) When shear is applied to the system it causes the
energy barriers around a given minimum to decrease by a certain
amount. If this decrease is large enough, then the system flows to
a neighboring minimum. The exact minimum to which the system
will flow depends on the barriers that are being suppressed but the
motion also has a random component since typically there are many
smaller minima, distributed at random, which the system traverses
before it reaches the final minima (see Fig. 3). (b) To model the
barrier suppression due to the forcing we lower the energy of sites
surrounding the instantaneous position of the system by an external
force. (c) This effectively “opens” new sites near the current position
so that the system can now move to these sites (in the image the
“opened” site is to the right).

applying positive and negative forcing on a random energy
landscape is to “flatten” nearby energy barriers and “open”
new areas for the system to explore (in the illustration—the
minima to the left and right of the minimum at the current
position). It is also clear from this illustration that the extent
to which a forcing of a given maximal amplitude can allow
the system to escape from a local minimum depends on
the properties of the environment in which this minimum
is situated. Specifically, it will be dependent on the relative
difference between the energy in the current minimum and
the energy barriers surrounding it compared to the forcing.

To obtain further insights into the observed behavior of the
mean energy, we study a simple model of energy landscape
dynamics. Rather than model the dynamics during the entire
shearing cycle, we chose to model the change in energy after
a cycle. To simplify the model, the position of the particle,
representing the vector of coordinates of the system, is con-
strained to a square lattice with linear size N . Each lattice
site has a potential energy chosen from a multivaried Normal
distribution with a correlation length σ :

P[(u(r1), u(r2), ..., u(rN ))]

= 1

(2π )N/2|�|e
∑N

k,m u(rk )�−1
km u(rm ), (5)

where the rk is a position of a lattice site,

�km = C[u(rk ), u(rm)] = e− |rk −rm |2
σ2 , (6)

is the covariance matrix and C[u(ri ), u(r j )] is the covariance
function. Each point on the lattice represents a local minimum
of the potential energy and the correlation length σ represents
correlations between minima that are close-by in configura-
tion space.

To capture the combined effects of lowering energy bar-
riers during a shearing cycle, the randomness of the energy
landscape and the randomness of the displacement, we sug-
gest a model of dynamics on a lattice in which each step
includes a random step from the current lattice site to a
neighboring site. However, such a step is allowed only when
the energy of the neighboring site after subtracting the forcing
energy f is lower than the energy of the current site:

uk ( f ) = uk (0) − f � ui(0). (7)

Here ui(0) is the unperturbed energy of the site i in which
the system is positioned before the shearing cycle, and uk (0)
is the unperturbed energy of site k ∈ N (i) where N (i) is the
set of nearest neighbors of site i. For an illustration on a two-
dimensional lattice, see Fig. 5.

If the condition Eq. (7) is not met, then the algorithms waits
for the next time-step. The forcing parameter f represents
the energy lowering effect of the maximal forcing applied
during a shearing cycle. This effect is due to the change in
potential energy when the system is subject to a maximal
strain amplitude γmax:

uk (γmax) = uk (0) − σmaxγmax ≈ uk (0) − μγ 2
max, (8)

where γmax is the maximal strain amplitude in the particle
simulation or experiment and σmax is the corresponding max-
imal stress. From elasticity theory σmax = μγmax where μ is
the shear modulus which we are assuming is approximately
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FIG. 5. A close-up of a two-dimensional energy surface used
in the model, showing the lattice scale with respect to the typical
gradients in potential energy values. A further close-up (right) shows
the energy at position i and its neighboring positions k j ∈ N (i). The
value of the potential energy increases with color from cold to warm.
Note that the scale at which the energy changes is larger than the
scale of a lattice site and is related to the correlation length σ .

constant (in practice μ typically changes somewhat due to
rearrangement of particles, an effect which will not be taken
into account here). From this equation we see a simple relation
between f and γmax:

f = uk (γmax) − uk (0) ≈ μγ 2
max. (9)

This suggests that

γmax ∝
√

f , (10)

which will be assumed in the following. The dynamics is
illustrated in Fig. 5. While we believe that the model cap-
tures some aspects of the dynamics, due to our simplifying
assumptions, there are several features that are not captured.
First, the dynamics in the model is isotropic in the energy
landscape, which is not the case in a sheared amorphous
solid since in those systems the external forcing is applied
in a certain direction. Second, we assume that the energy
barriers are due to the energy difference between positions
i and k which should not be strictly true in an amorphous
solid since the system encounters larger energy barriers during
the shearing cycle. Another feature that is not captured in
the simple model is the fact that under AQS conditions the
dynamics is deterministic. For this reason, for small forcing,
the dynamics will be confined to a compact region in the
energy landscape, similarly to the dynamics in an amorphous
solid [24] but will not be repetitive since the randomness
is encoded in the dynamics—at each time step it reaches a
new point contrary to the dynamics in the particle simulations
which enters a limit cycle where the system is visiting the
same point over and over after each cycle. Below we describe
simulations based on these principles and their results.

A. Model results

Due to memory and simulation time constraints we only
simulated the dynamics on two- and three-dimensional sur-
faces which is to be contrasted with the much larger number
of degrees of freedom in a particle simulation of amorphous
solids (in the simulations discussed here, the number of de-
grees of freedom, or dimension of the vector of coordinates rn

was 2N = 32 768). Nevertheless, even for such a small num-

FIG. 6. (a) Transient dynamics observed in the particle simula-
tions starting from a fast quench (blue circles) and a slow quench
(yellow squares). For γmax = 0.08 < γc the lines do not meet, while
for γmax = 0.14 > γc the different initial conditions reach the same
steady state. (b) Transient dynamics observed in the model (three-
dimensional surface) starting from the minimum (yellow lines) and
maximum (blue lines) of the energy landscape. For F = 1 < Fc the
lines do not meet, while for F = 1.7 > Fc the different initial condi-
tions reach the same steady state similarly to the behavior observed
in (A). In both simulations and model the steady state is ergodic
for γmax > γc (F > Fc) and nonergodic for γmax < γc (F < Fc). (c)
Average energy using the energy landscape model starting from the
minimum (yellow squares) and maximum (blue circles) of the energy
landscape for different forcing parameters for simulations on a two-
dimensional surface. (d) Same simulations on a three-dimensional
energy surface. In both cases, the observed behavior is qualitatively
similar to the one shown in Fig. 2. Dotted, vertical, red lines mark√

Fc.

ber of dimensions, we observed dynamics that is qualitatively
similar to the dynamics observed in particle simulations. For
the two-dimensional energy landscape we ran the simulations
for forcing values in the range F ∈ [0, 3]. The forcing was
normalized such that it is effectively a percentage of the
difference between the energy of the maximum and minimum
energy of each surface:

f = F
(Emax − Emin)

100
. (11)

In the two-dimensional simulations we used lattices of
dimensions 1000 × 1000 and in the three-dimensional sim-
ulations we used lattices of dimensions 500 × 500 × 500.
In both cases we used periodic boundary conditions and
correlation length σ = 0.1. For each dimension (d = 2, 3) we
ran the simulations on 10 different random surfaces, on each
one of them we ran 10 000 random walker realizations (1000
in the 3D simulations) half of them starting from the global
minimum and the other half from the global maximum of the
surface (we do not believe that the initial configurations in
the particle simulations were close to the global maximum
or minimum of the energy but the idea was to use initial
conditions that are consistently of high or low energy). We can
see in Fig. 6 that similarly to the particle-based simulations,
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for forcing values smaller than a critical value F < Fc, starting
from the two different regions in the energy landscape, the
system reaches two different asymptotic values of the average
energy and for forcing values Fc or larger (Fc ≈ 1 for the
2D system and Fc ≈ 1.2 for the 3D system at the simulated
system sizes), different initial conditions end in the same
average energy values after a transient [see comparison of the
transient behavior between the particle simulations and model
in Figs. 6(a) and 6(b)]. This is an indication that the system
becomes ergodic for F > Fc, in the sense that the energy
is independent on the initial conditions. To understand the
dynamics microscopically, we can look at simulation movies
in the Supplemental Material [26]. We can see there that for
F < Fc the dynamics is trapped in a local region while for
F > Fc it is free to explore large parts of the energy landscape
(see Supplemental Material [26] for movies of the dynamics
at F < Fc and F > Fc.

In Figs. 6(c) and 6(d) we can see that on both two- and
three-dimensional hyper-surfaces, for initial conditions at the
minimum, the energy keeps increasing with the forcing, while
for initial conditions at the maximum, the energy decreases as
long as the forcing is smaller than Fc. For small initial energy,
the forcing causes only a moderate increase in the potential
energy since the size of the volume that is accessible to the
system due to the forcing increases gradually. For a large
initial energy, the decrease in the mean energy is much steeper
since a small increase in F opens up larger regions with
significantly lower energies. When the forcing is larger than
Fc, the average energy at the steady state keeps increasing.
All of these features are in qualitative agreement with the
results obtained from the particle simulations even though the
dynamics in the model is much simpler and we have further
made the simplifying assumption that the energy surface is
Gaussian and two- or three-dimensional.

B. Diffusive behavior

To further understand the ergodic behavior of the system,
we study the mean-square displacement (MSD) which pro-
vides an indication of the size of the region on the landscape
that is being explored. We performed simulations on a 2D
500 × 500 lattice and averaged over 1000 random wakers
starting from the minimum and maximum of 10 random
surfaces with σ = 0.1. As we can see in Fig. 7, the dynamics
is qualitatively similar to the dynamics that was observed
in particle simulations of amorphous solids [13]—for small
values of F the MSD reaches a plateau, while for large
enough F , the dynamics is diffusive. For values of F close
to but above Fc ≈ 1.8 (Fc here is larger than in the energy
simulations due to the smaller system size used) the diffusion
coefficient increases gradually and starting from F = 5 the
behavior is simple diffusion with a constant diffusion coef-
ficient. We also observe transient super-diffusion which is
consistent with observations in particle simulations [13]. The
transition from an asymptotically constant MSD to a diffusive
MSD (〈r2〉 ∼ t) is a clear indication of a transition from
nonergodic to ergodic behavior. One difference between the
model and particle simulations is that since the system does
not reach a limit-cycle, it takes the MSD longer time to reach

FIG. 7. (a) Mean-square displacement in a two-dimensional
model subject to different forcing F = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 5.0, starting from
the maximum of the energy landscape. (b) Mean-square displace-
ment for the same forcing values as in (a) starting from the mini-
mum of the energy landscape. In both cases blue curves represent
dynamics with F < Fc while the yellow curves represent dynamics
for F > Fc. The black curve represents the dynamics at Fc ∼ 1.8. For
F > 5 the MSD does not change with F and appears as a straight line
(simple diffusion).

a plateau and this sometimes occurs after the energy settled
into a constant value.

C. Ergodic behavior of the mean energy

One of the pronounced features of the average potential en-
ergy in the particle simulations, is that for an initial configura-
tion prepared with a fast quench, such that its initial potential
energy is high, upon increasing the maximal strain amplitude
(but keeping it below the critical value γc), the steady-state
values of the energy decrease. However, for maximal strain
amplitudes above the critical value, the steady-state energy in-
creases. This effect is reproduced by the energy surface model
which also provides a simple explanation for this observation
(Fig. 8). For initial conditions at the maximum of the energy
landscape, any change in the position on the energy landscape
results, on average, in a downhill motion on the energy
surface and thus causes the mean energy to decrease. How-
ever, increasing the forcing parameter also allows the system
to explore areas of larger and larger energies. These two
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FIG. 8. Parts of the energy landscape covered by a single
random-walker starting at the maximum of the landscape for
different forcing parameters (F = 2.0, 4.0, 4.5, 5.0) for a two-
dimensional 100 × 100 system.

competing tendencies meet close to the critical point leading
to the observed cross-over behavior (see Fig. 9 for illustra-
tion). The increase of the mean potential energy for F >

Fc (γmax > γc) is a feature that cannot be reproduced by a
one-dimensional energy landscape model, of the sort that is
commonly used in theories of plasticity of amorphous solids
[27–29] and is a result of the fact that even when the system

FIG. 9. Average energy of the accessible part of the surface as
a function of the forcing parameter for a system starting at the
maximum of the energy surface. Since the system is rather small
(100 × 100) the point of transition occurs at a larger value of F than
in the systems used in the simulations and can fluctuate significantly
from sample to sample. Inset: same results for systems starting both
at the vicinity of the maximum (blue) and minimum (yellow) of the
energy surface.

becomes ergodic in the sense that different initial conditions
lead, on average, to the same steady-state potential energy,
there are parts of the landscape that are inaccessible for values
of F close to Fc. These parts become accessible as F is
increased, causing an increase in the average potential energy.

IV. DISCUSSION

We have shown, using a model of a two-dimensional amor-
phous solid, that under athermal quasistatic oscillatory shear,
with subyield maximal strain amplitudes, the zero-strain po-
tential energy of an amorphous solid exhibits both annealing
(a decrease in the energy) and rejuvenation (an increase in
the energy) depending on the preparation protocol of the
initial configuration. This has implications for the rheology
of glasses, as well as toward understanding the irreversibility
transition. We explain the observed dynamics by studying a
simple model of dynamics on a rough energy landscape and
show that the model can reproduce qualitatively important
aspects of the dynamics observed in our two-dimensional par-
ticle simulations. These results indicate that certain features
of the irreversibility transition can be understood as resulting
from changes in the dynamically accessible regions of the
energy landscape when an external forcing is applied. Future
studies will focus on studying the behavior of the mean energy
and the irreversibility transition in more models in two and
three dimension as well as further exploring the effects of
using different cooling protocols such as the advanced Monte
Carlo methods recently used to show a transition from brittle
to ductile behavior in amorphous solids under unidirectional
shear [30].
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APPENDIX: SIMULATION DETAILS

1. Simulation details

The interaction potential that we are using is

U (r) =

⎧⎪⎪⎨
⎪⎪⎩

ε
[(

a
r

)12 − (
a
r

)6 + 1
4 − h0

]
, r

a � x0,

εh0P
( r

a −x0

xc

)
, x0 < r

a � (x0 + xc),

0 , r > a(x0 + xc),

(A1)

which was developed in Ref. [31] and consists of the repulsive
part of the standard Lennard-Jones potential, connected via
a hump to a region that is smoothed continuously to zero
(see Fig. 10). The point x0 is the position at which the
Lennard-Jones potential is minimal, x0 = 21/6, xc = 0.5, and
the position where the potential vanishes is a(x0 + xc). The
parameter h0 determines the depth of the minimum. The
polynomial P(x) is chosen as

P(x) =
6∑

i=0

Aix
i, (A2)

with the coefficients given in Table I.
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FIG. 10. The radially symmetric potential used in the particle
simulations reported in the paper.

2. Units used in particle simulations

We used the reduced simulation units for positing r∗, time
t∗, and temperature T ∗:

r∗ = r

a
, (A3)

t∗ = t

τ
= t

√
ε

ma2
, (A4)

T ∗ = kBT

ε
. (A5)

where τ = √
ε

ma2 .

3. Quenching protocol for particle simulations

a. Fast quench

Initial configurations which were referred to as prepared
using a fast quench were equilibrated using a standard molec-
ular dynamics algorithm with a Berendsen thermostat for
20τ in T ∗ = 1. Then they were equilibrated at T ∗ = 0.1 for
another 50τ and then quenched using the FIRE minimization
algorithm to zero temperature.

b. Slow quench

Initial configurations which were referred to as prepared
using a slow quench were equilibrated for 10τ at T ∗ = 1
and then cooled down by steps of T ∗ = 0.025 to T ∗ = 0.1
while equilibrating for 10τ after each cooling step. After

TABLE I. The coefficients in Eq. (A2).

A0 −1.0
A1 0
A2 1.785826183464224
A3 28.757894970278530
A4 −81.988642011620980
A5 76.560294378549440
A6 −24.115373520671220

the last step of equilibrating at T ∗ = 0.1 the system was
quenched using the FIRE minimization algorithm to zero
temperature.
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