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The critical behavior of ribonucleic acid (RNA) secondary structures with quenched sequence randomness
is studied by means of the constrained annealing method. A thermodynamic phase transition is induced by
including the conformational weight of loop structures. In addition to the expected melting at high temperature,
a cold-melting transition appears when the disorder strength induces competition between favorable and
unfavorable base pairs. Our results suggest that the cold denaturation of RNA found experimentally might be
triggered by quenched sequence disorder. We calculate hot- and cold-melting critical temperatures for competing
favorable and unfavorable base-pair energies and present a folding phase diagram as a function of the loop
exponent and temperature.
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I. INTRODUCTION

Ribonucleic acids (RNA) are biopolymers that are crucial
to all living systems; they process and transmit genetic infor-
mation and take part in many important cellular activities [1].
The RNA primary structure is a sequence which consists of
four bases U, A, G, and C, while the secondary structure is
defined by the list of base pairings that occurs.

RNA molecules fold into a native conformation when the
temperature is lowered. As for proteins, the folding of RNA
structures is crucial for understanding their biological func-
tions and has been vastly studied, based mostly on the idea of
hierarchical folding [2]. In this scheme, the primary structure
determines the folding mechanism and the secondary struc-
ture forms independently of the tertiary structure. This drastic
simplification makes it possible to exactly compute the sec-
ondary structure partition function of given RNA sequences.
The molecule folding can be qualitatively and quantitatively
addressed via the experimentally observable helicity degree
θ defined as the average fraction of paired bases [3], which
increases when lowering the temperature in the standard sce-
nario.

A particularly interesting phenomenon that is observed
for polymers and proteins is cold denaturation [4–7]. The
denaturation of proteins and polymers with rising temperature
is a consequence of the increase in configurational entropy.
Denaturation when lowering the temperature is usually inter-
preted in terms of hydrophobic interactions. Experimentally,
denaturation can be inferred by the presence of peaks in the
specific heat CV , which physically follows from an abrupt
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increase of the system entropy [8–11]. In this paper, we give
an alternative explanation for cold denaturation in terms of
quenched disorder, which itself weakens the secondary struc-
ture formation at low temperature. The associated double-
peak behavior of CV turns out to be associated with two
different melting temperatures.

Here we focus on a two-letter alphabet binding energy
model with symbols chosen from the subset {U, A}, in
the spirit of [12–16], which corresponds to the hydrophilic-
hydrophobic model for protein folding [17]. Although this
approximation is an oversimplification, it has proven to re-
produce in a reasonable fashion the folding thermodynamics
and the glass transition [14,15,18,19].

For real RNA, the so-called Watson-Crick base pairs UA,
and GC are most stable. Since each base is essentially planar
and its conformations are limited, every RNA secondary struc-
ture is defined by a list of base pairings (i, j) with each base
appearing, at most, once. In addition, for any two base pairings
(i, j) and (k, l ), we only consider nested, where i < k < l <

j, and independent pairings, where i < j < k < l; see Fig. 1.
A third possibility would be to include pseudoknots where
one has i < k < j < l , but they can be excluded because they
are rare in real RNA [2,20]. This defines a hierarchical struc-
ture for the RNA conformation so that a recursive equation for
the partition function can be used. Besides, this choice dis-
cards all configurations that are not planar, meaning that in the
case of disordered sequences, the system displays frustration
[15,21]. By excluding pseudoknots, which can be accounted
for by using advanced theoretical techniques [22–25], we are
able to account for the combined effects of logarithmic loop
entropies and RNA sequence disorder, which otherwise would
not be analytically possible.
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FIG. 1. Upper panel: Secondary structure representation with
stacks and loops. Nucleotides are the green and yellow dots for U
and A, respectively. The wavy lines identify the hydrogen bonds for
favorable (red) and unfavorable (blue) base pairs, while the black
solid lines are the nested backbone links. Thick gray denote the
non-nested backbone links. In this secondary structure, a pseudoknot
is formed between two loops. Lower panel: The two possible types
of base pairings that are considered.

When the RNA molecule is far from the native state, i.e.,
when there is a significant amount of unpaired bases, the
presence of loops in RNA secondary structures plays a crucial
role. The configurational entropy contribution for loops of
length n, �Sloop

n ∼ kB ln n−c, is characterized by the universal
loop exponent c [26]. For ideal polymers, which can be
modeled as simple random walks, the exponent is cRW = Dν,
where D is the spatial dimensionality and ν = 1/2. Instead,
for a self-avoiding walk of length n, the probability to return to
the origin is PSAW(n) ∼ n−cSAW , where cSAW = Dν + γ − 1 >

cRW [27]. This value is further increased when considering
real polymers since c also depends on the number of helical
strands emerging from loops [28].

In the absence of disorder, i.e., for homopolymeric RNA,
a phase transition from the folded to the unfolded molten
state [14,29] occurs when the temperature increases up to
the melting point Tm(c) [30]. This happens for values of the
loop exponent 2 < c � 2.479 and the c-dependent critical
exponents have been analytically obtained [31]. Folding of
heteropolymer RNA in the presence of loop entropy has been
studied before [32], but not usually in the additional presence
of quenched disorder. The current lack of results that combine
quenched disorder with loop entropy is the main motivation
of this paper. By providing a variational approximation of the
average free energy in terms of the homopolymer free energy
with loop entropy, we are able to provide a solid framework
for describing the melting transition of heteropolymer RNA.

In this paper, we study the effect of a loop exponent
c �= 0 on RNA secondary structures with random sequences
where the disorder is quenched. This allows us to characterize
a generic RNA molecule and most of the results obtained
here also apply to DNA. For disordered sequences with an
energetic competition between favorable and unfavorable base
pairs, we find that in addition to hot melting, a cold-melting
phase transition appears when including loop entropy. We
describe the decrease in the number of paired bases, quantified
by the helicity degree θ , in terms of the singularities of the
grand-canonical partition function of a homopolymer [31].
To account for disorder, we use the constrained annealing
method [33]. We find that the decrease in the helicity degree
at low temperature is matched with a double-peak structure
of the specific heat CV that characterizes an abrupt increase
of the system entropy close to the cold-melting point [8,9].
Our results shed light on the experimentally observed cold
denaturation of proteins and provide a simple explanation
of the associated phase transition in terms of the interplay
between quenched disorder and loop entropy.

The paper is structured as follows. In Sec. II, we intro-
duce the model for RNA secondary structures with base-
pairing energies depending on quenched disordered variables.
A recursion equation to compute the exact partition function
in the presence of disorder is presented for the cases with
and without loop entropy. In Sec. III, we review the known
results starting from de Gennes theory for nondisordered,
i.e., homopolymeric, sequences using a generating function
approach. The folding of homopolymer RNA in the presence
of loop entropy is discussed in the grand-canonical ensemble
as a function of the loop exponent c. In Sec. IV, we present our
main results. We first derive analytically the constrained an-
nealing method for computing the disorder average of the free
energy including the contribution of loop entropy. In addition
to the standard high-temperature denaturation of the molecule,
a cold melting phase transition appears and is explained in
terms of the homopolymer loop entropy contributions. We
validate numerically our theory and conclude the section by
presenting our findings in a global phase diagram in the
temperature-loop exponent plane. In Sec. V, we summarize
our results and present our conclusions.

II. DISORDERED RNA

A. The model

For a RNA sequence h of length N , we define the base-
pairing matrix S , which completely determines the secondary
structure, as the N × N symmetric matrix with components
si, j equal to unity if (i, j) are paired and equal to zero
otherwise. The model considered here includes the energy of
hydrogen bonds and the entropy of loops. The stacking free
energy between neighboring base pairs can, in principle, be
included by adding a constant term to the loop free energy,
as was shown previously in [31,34], but this is not pursued
in the present paper. If stacking energies are neglected, the
Hamiltonian for a given sequence can be written as a sum over
nonrepeated base pairs,

H(S, h) =
∑

(i, j)∈S
εi, j =

∑
1�i< j�N

si, jεi, j . (1)
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We assume the simplest nontrivial pairing energy function as
the sum of a constant and a disorder term in the spirit of [16],

εi, j = ε0 + εhih j . (2)

Helix stacking can, in principle, be taken into account by a
suitable redefinition of base-pairing energy [2]. In this paper,
we are concerned with the interplay between disorder and
loop entropy at the level of secondary structures. Thus, all
tertiary interactions are neglected, in line with previous works
[12–15,26,31,34].

The sign of ε0 defines the nature of the background in-
teraction between nucleotides. If ε0 > 0, the interaction is
repulsive and attractive otherwise. The second term in Eq. (2)
is the product of two independent variables and similar to
spin-glass models [35], and is multiplied by the additional
constant ε > 0. We assign Ising variables to each base along
the chain so that hi = +1 if i is the nucleotide U and hi = −1
if it is A. Note that the model can be easily generalized to
account for four bases.

Contrary to the base-pairing matrix elements si, j , which
are free to evolve within the dynamics of the system, the site
sequence variables hi are frozen. Having fixed the sign of the
background interaction ε0, the absolute value of the energy
ratio ε/ε0 is the relevant parameter characterizing the system
behavior. We take hi as quenched random variables with a
factorized probability distribution

P (h) =
N∏

i=1

ρ(hi ). (3)

The factorization approximation is motivated by the fact that
no strong correlations are found in base sequences [15]. Defin-
ing the probability of finding the base U as p ≡ ρ(hi = +1),
the probability distribution factors can be written as

ρ(hi ) = pδ(hi − 1) + (1 − p)δ(hi + 1). (4)

In the two-letter model adopted here, due to symmetry we
only need to explore the probability range 0.5 � p � 1.

B. Partition function with and without loops

The partition function of a given sequence h is the sum of
the statistical weight over all allowed realizations of the base
paring matrix {S},

ZN (h) =
∑
{S}

e−βH(S,h). (5)

Here, β = (kBT )−1 is the inverse temperature and {S} denotes
the set of all secondary structures without pseudoknots. The
free energy is obtained by performing the quenched average,
denoted by (· · · ), of the disordered free energy,

f (h) = − 1

βN
ln ZN (h), (6)

over the disorder distribution given by Eq. (3), yielding

f (h) =
∑
{h}

P (h) f (h) = − 1

βN
ln ZN (h). (7)

For sufficiently large chains, the physical properties of the
system do not depend on the specific disorder realization h

and the free energy self-averages [21],

lim
N→∞

f (h) = f (h). (8)

The full partition function for a given sequence h can, in
the absence of pseudoknots, be obtained via the recursive
equation [3]

Zi, j+1 = Zi, j +
j∑

k=i

wk, j+1Zi,k−1Zk+1, j, (9)

for the restricted partition function Zi, j+1 of the subsequence
of monomers going from i to j + 1, as illustrated in Fig. 2. The
first term on the right-hand side corresponds to the probability
that base j + 1 is not paired. The second term corresponds to
the probability associated to all possible nested and indepen-
dent pairings between bases k and j + 1 and where

wk, j+1 = exp(−βεk, j+1) (10)

is the corresponding statistical weight. The base paring energy
εk, j+1 = ε0 + εhkh j+1, according to Eq. (2), implicitly in-
cludes an entropic term εS

0 defined as βε0 = βεU
0 − εS

0 , where
εU

0 is the internal energy contribution. In what follows, the
entropic term is obtained from βε0 in the high-temperature
limit β → 0.

The recursive equation (9) allows one to compute the exact
partition function ZN = Z1,N without pseudoknots in O(N3)
time, starting with the boundary conditions Zi,i = Zi,i−1 = 1,
∀i [3].

In [26], the authors have shown how to take into account
loops of length n with a statistical weight [36],

vn = n−c, (11)

where c is the loop exponent. In previous work [34], we have
used a more complex form of the loop free energy which
included bending for small loops (which, in fact, is dominated
by the electrostatic contribution to the bending rigidity for
not too large salt concentration) and the loop initiation free
energy, which takes care of the stacking energy. The analytical
calculation we perform in the present paper, however, is not
tractable for this more complicated form and therefore we use
the approximate simple form of Eq. (11).

Let us consider the restricted partition function ZM
i, j of a

polymer going from monomer i to monomer j with M � j − i
non-nested (i.e., unlooped) links; see Fig. 1. Using the bound-
ary conditions ZM

i,i = δM , ZM
i,i−1 = δM+1, and Z−1

i, j = δ j+1−i,
the recursive equation for the partition function can be written
as [26]

Z̃M+1
i, j+1 = Z̃M

i, j +
j∑

k=i

wk, j+1Z̃M
i,k−1Z̃0

k, j+1. (12)

Contrary to Eq. (9), this recursive equation, illustrated in
Fig. 3, requires a longer computational time that scales as
O(N4) with the base number. Here, Z̃M

i, j ≡ ZM
i, j/uM is the

partition function rescaled by the statistical weight of M
nonlooped links uM , and

Z̃0
k, j+1 =

j−k−1∑
l=−1

Z̃ l
k+1, jvl+2 (13)

is the partition function of a substrand that is terminated by a
helix.
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FIG. 2. Hierarchical recursive scheme for the partition function given by Eq. (9) without loop entropy. The subchain partition function
from base i to base j + 1 is the sum of the partition function from base i to base j and the partition functions of all base pairings formed
between base j + 1 and base k ∈ (i, j) [3].

C. Helicity degree without loops

A key quantity to characterize the RNA conformation is the
helicity degree defined as [3,13]

θ = 2

N

∑
i< j

〈si, j〉 = 2

N

〈∑
i< j

si, j

〉
= 2

N
〈|S|〉, (14)

where 〈·〉 denotes the thermal average over the canonical
ensemble and

|S| ≡
∑
i< j

si, j (15)

is the number of paired bases in the structure S . Since 〈|S|〉 ∈
[0, N/2], the helicity degree is a function of the temperature

in the interval [0,1] with θ = 1 if every base is paired, corre-
sponding to the native state, and θ = 0 if no base is paired.
Therefore, the helicity is a convenient measure of the order of
the RNA conformation. The helicity can also be expressed in
terms of the free energy by noting that

θ = 2

N

1

ZN (h)

∑
{S}

e−βε0|S|e−βε
∑

i< j si, j hih j |S|

= 2

N

[
− ∂

∂ (βε0)

]
ln

∑
{S}

e−βε0|S|e−βε
∑

i< j si, j hih j

= 2
∂

∂ (βε0)
β f (h). (16)

=
ii

j

+
j

k=i

wk,j+1

ZM+1
i,j+1 ZM

i,j ZM
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k,j+1

=
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k
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k + 1
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j + 1
k
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k − 1
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j

j + 1

j + 1 j + 1 j + 1j + 1

FIG. 3. Recursion scheme for the partition function given by Eq. (12) including loops. The partition function of a RNA sequence ranging
from i to j + 1 with M + 1 non-nested backbones (thick gray lines) is computed from the sequence ranging from i to j with M non-nested
backbones by adding a base at position j + 1 and considering all possible pairings with a base k ∈ (i, j) [26]. Each of these pairings defines
a structure which has zero non-nested backbones, i.e., an arbitrary substrand that is terminated by a helix. The explicit diagrams for the latter
are shown in the lower panel and are obtained by considering the sum over all non-nested backbones with associated statistical weight given
by Eq. (11).
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FIG. 4. Helicity degree for (a) ε0 = −1 and (b) ε0 = +1 with
ε = 0.5|ε0| in the absence of loop entropy with probability of U base
occurrence p = 0.75. Each red curve corresponds to the helicity of
a single RNA sequence realization of the disorder. The quenched
average (black line) is obtained from the exact computation of the
partition function for 30 random sequences of length N = 50. The
black dashed line denotes the high-temperature limit θ∞ given by
Eq. (25).

In the absence of loops, the helicity can be computed as

θ = 2

N

∑
i< j

Pi, j, (17)

where Pi, j = 〈si, j〉 is the probability of base-pair formation
between nucleotides i and j [14]. The latter is obtained from
the partition function in the absence of loop entropy, given by
Eq. (9), as [37]

Pi, j = e−βεi, j
Z int

i, j Z
ext
i, j

Z1,N
, (18)

were Z int
i, j = Zi+1, j−1 is the partition function of the inter-

nal sequence (i + 1, . . . , j − 1), while Zext
i, j is the partition

function of the external sequence (1, . . . , i − 1, j + 1, . . . , N )
that can be computed by considering the duplicated sequence
(1, . . . , N, N + 1, . . . , 2N ) as Zext

i, j = Zj+1,N+i−1.
The average of the helicity degree, obtained from nu-

merical exact enumeration over 30 disordered sequences as
a function of the temperature, is shown in Figs. 4(a) and
4(b) for attractive (ε0 < 0) and repulsive (ε0 > 0) background

energy, respectively. It is seen that the helicity in the zero-
temperature limit depends on the value of the energy pa-
rameters ε0 and ε, as will be discussed in full detail further
below.

III. HOMOPOLYMER RESULTS

Most of the known results on RNA folding properties were
obtained for the special case of homopolymers, which we
shall review in this section. De Gennes derived an expression
for the canonical partition function based on a singularity
analysis of the generating function [38]. By setting ε = 0 in
Eq. (1), the pairing energy becomes site independent, i.e.,
εi, j = ε0, ∀(i, j), thus making the energy of the structure S
depending only on the number of paired bases |S| defined by
Eq. (15).

A. Folded RNA without loops

First, let us consider the simpler no-loop scenario. Since for
homopolymers the partition function is translational invariant,
the restricted partition function for a sequence of length
j − i + 1 can be written as Zi, j = Qj−i+1, which depends only
on the difference between position i and position j. It is useful
to introduce the z-transform of QN ,

Q(z) =
∞∑

N=1

z−N QN . (19)

The canonical partition function

ZN = QN =
∑
{S}

w|S|, (20)

where |S| is defined by Eq. (15), is obtained by back trans-
forming the positive root of the equation for Q(z). In the limit
of large N , a saddle-point approximation yields the scaling
[14]

ZN =
∑
{S}

w|S| ∼ ξ (w)Nα−1z−N
0 , (21)

where α = −1/2 and z0 = 1/(1 + 2
√

w), while ξ (w) is a
scaling function that depends on the homopolymer statistical
weight,

w = exp (−βε0). (22)

In this description, the free energy assumes the same scaling
for all temperatures with universal prefactor 3/2 characteristic
of the folded state [38], and thus no phase transition takes
place.

From Eq. (21), it is possible to express the helicity degree
given by Eq. (14) as a function of the statistical weight w

in a very simple form. By writing the homopolymer partition
function as ZN = ∑

{S} e|S| ln w, and using Eq. (14), we obtain

θ = 2

N

1

ZN

∂

∂ ln w
ZN = 2

N

∂ ln ZN

∂ ln w
. (23)

Finally, using w∂/∂w = ∂/∂ ln w, and the scaling form found
by de Gennes in Eq. (21) for N � 1, the helicity in the folded
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phase takes the form

θ = 2

N
w

∂ ln ZN

∂w

= 2

N
w

∂

∂w

[
ln ξ (w) − 3

2
ln N + N ln(1 + 2

√
w)

]
≈ 2

√
w

1 + 2
√

w
. (24)

In this case, the helicity, as shown in Fig. 4, asymptotically
approaches a constant value in the high-temperature limit,

θ∞ = lim
T →∞

θ = lim
β→0

2e−βε0/2

1 + 2e−βε0/2
= 2

3
, (25)

where the last equality follows from βε0 = βεU
0 − εS

0 with a
vanishing entropic term εS

0 . We note that the occurrence of a
finite fraction of bound base pairs at high temperatures follows
if the binding energy does not contain an explicit entropic
contribution. A finite entropic cost of base pairing, εS

0 < 0,
decreases the fraction of bound base pairs at high temperature.

B. RNA folding with loops

Let us now consider the case of a finite loop entropy. As
in the no-loop scenario, for homopolymers, we set w = e−βε0

for all pairs and consider the translationally invariant parti-
tion function Q̃M

N with M ∈ [−1, N] non-nested backbones
of a chain of N links. In the absence of external forces
[39,40], the canonical partition function including loops is ob-
tained by summing over all non-nested backbones as Z loop

N =∑∞
M=0 Q̃M

N . The grand-canonical partition function follows as

Z loop(z) =
∞∑

N=0

zN Z loop
N =

∞∑
N=0

∞∑
M=0

zN Q̃M
N , (26)

where z is the fugacity. By performing the double sum∑∞
N=0 zN

∑∞
M=0 on both sides of the recursive equation and

rearranging indices, one obtains [31]

Z loop(z) = κ (w, z)

1 − zκ (w, z)
, (27)

where κ (w, z) is the grand-canonical partition function of
RNA structures with zero non-nested backbones, i.e., struc-
tures which consist of just one nucleotide or structures
where the terminal bases are paired. For |zκ| < 1, the grand-
canonical partition function given by Eq. (27) can be ex-
panded into a geometric series as Z loop = ∑∞

M=0 zMκM+1.
Comparing the coefficients of the power series with Eq. (26)
leads to the implicit equation for κ (w, z),

κ (w, z) − 1 = w

κ
Li[c, zκ (w, z)], (28)

where Li(c, x) ≡ ∑∞
n=1 xnn−c is the polylogarithm [41]. This

relation yields the first constitutive equation for homopoly-
mers with loop entropy.

The canonical partition function obtained from Eq. (27)
takes the general form of Eq. (21), but with α and z0 not
determined univocally. In fact, contrary to the no-loop sce-
nario, now the grand-canonical partition function features
two relevant singularities. These are the simple pole z0 = zp,

where the denominator of Eq. (27) vanishes, and the branch
point z0 = zb of the function κ (w, z), characteristic of the
unfolded and folded phase, respectively.

For z < zb, at least one real solution of Eq. (28) exists,
while exactly at z = zb, the two solutions merge and the slope
of the right-hand side of Eq. (28) at the tangent point zb equals
unity [31]. By imposing this condition, Eq. (28) yields

κ2
b = w[Li(c − 1, zbκb) − Li(c, zbκb)], (29)

where we use the short notation κb ≡ κ (w, zb). This relation
together with Eq. (28) univocally determines the branch sin-
gularity zb, if it exists. By a first-order expansion of κ (w, z)
near the branch point, the canonical partition function can be
shown to scale as [31]

Z loop
N ∼ ξb(w)N−3/2zb

−N , (30)

which demonstrates that the free energy scales logarithmically
in N with universal prefactor 3/2, in agreement with the
no-loop scenario given by Eq. (21). The partition function
given by Eq. (30) therefore describes homopolymeric RNA
including loop entropy contributions in the folded phase.
From Eq. (30), the helicity degree given by Eq. (23) follows
as θb ≈ (2w/N )(∂ ln z−N

b /∂w) = (−2w/zb)(∂zb/∂w), which
gives

θb ≈ 2Li(c, zbκb)

Li(c − 1, zbκb)
. (31)

Conversely, the simple pole zp of Eq. (27) is determined,
together with Eq. (28), by

zpκp = 1, (32)

where κp ≡ κ (w, zp). By inserting Eq. (32) into Eq. (28), the
explicit expression for the pole singularity is obtained,

zp = 2[1 +
√

1 + 4wζ (c)]−1, (33)

where ζ (c) = Li(c, 1) = ∑∞
n=1 n−c is the Riemann zeta func-

tion. In this phase, the partition function scales as [31]

Z loop
N ∼ ξp(w)zp

−N , (34)

which in contrast to the branch point does not lead to a
logarithmic N contribution in the free energy. Equation (34)
describes the thermodynamics of homopolymers above the
melting critical point. In this phase, the helicity degree θp ≈
(−2w/zp)∂zp/∂w takes the explicit form

θp ≈ 1 − 1√
1 + 4wζ (c)

. (35)

A phase transition is possible only if a critical fugacity zm

and a critical base-pairing weight wm exist such that zm =
zb(wm) = zp(wm). At the critical point, the three constitutive
equations (28), (29), and (32) have to hold simultaneously.
Using Eqs. (32) and (33), a closed-form expression can be
given for the critical weight as a function of the loop exponent
[31],

wm(c) = ζ (c − 1) − ζ (c)

[ζ (c − 1) − 2ζ (c)]2 . (36)

This equation defines the critical line in the phase diagram for
homopolymer RNA and also determines an upper bound for
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FIG. 5. Phase diagram of homopolymeric RNA in the T − c
plane featuring the unfolded and folded phase for (a) repulsive
(ε0 > 0) and (b) attractive (ε0 < 0) base-pair interaction energy. The
critical lines, obtained by solving wm(c) = w = e−βε0 , diverge for
c = c1 for both attractive and repulsive interaction energy. For c � 2,
the molecule is always folded and at c∗ ≈ 2.479 the critical weight
wm(c) diverges, so that for c > c∗ no folded phase can exist.

the range of the loop exponent c in which a phase transition
can occur. The latter is given by the universal value c∗ ≈
2.479 [31] for which the denominator of Eq. (36) vanishes,

0 = ζ (c∗ − 1) − 2ζ (c∗). (37)

As the statistical weight at the critical point, wm(c∗), diverges,
the melting temperature is zero, and thus the molecule is
always in the unfolded state. In addition, the derivative with
respect to κ of the right-hand side of Eq. (28) converges
only for c > 2, which sets the lower bound of the critical
region. This means that only for 2 < c < c∗ can a phase
transition occur between the folded and the unfolded phases.
The corresponding phase diagram for attractive and repulsive
interaction is obtained by solving wm(c) = exp(−βε0) and is
displayed in Fig. 5.

We define an additional universal value for the loop expo-
nent that will play a crucial role in the following. Depending
on the nature of the interaction, repulsive if ε0 > 0 and
attractive otherwise, the behavior of the statistical weight of
base-pair formation w = exp(−βε0) can be smaller than or
greater than one. We define the value c1 ≈ 2.241 from the
equation

0 = ζ (c1 − 1) − ζ (c1) − [ζ (c1 − 1) − 2ζ (c1)]2, (38)

which determines the statistical weight at the melting point
with wm(c1) = 1. We note that a nonvanishing entropic contri-
bution εS

0 �= 0 in the base-pairing energy ε0 would change the
universal value of c1 accordingly by imposing the condition
wm(c1) = eεS

0 instead of wm(c1) = 1. As we will show next, a
necessary condition for cold melting is that c > c1 is satisfied.

IV. CONSTRAINED ANNEALING WITH LOOP ENTROPY

A. Outline of the method

Instead of the replica approach used in spin-glass theory
[21], to compute the average over the disorder of the free
energy given by Eq. (7), we use the constrained annealing
approximation [33]. Here we closely follow the approach out-
lined in [13]. A related approach for the constrained annealed
ensemble was first presented for RNA with quenched disorder
and no loops in [42]. The basic idea of the method is to
perform an annealed average,

f a = − 1

βN
ln ZN (h), (39)

in which the disorder variables hi are free to evolve with the
dynamical degrees of freedom si, j in the partition function
(5), but with the additional requirement that {h} are coupled
to appropriate constraints {μ}, which assume the form of
Lagrange multipliers. The values of the constraints {μ} that
for N � 1 maximize the thermodynamic potential,

f ca(μ) = − 1

βN
ln Zca

N (μ), (40)

are those that select the realizations with a correct value of the
disorder intensive variables and, at the same time, minimize
the difference between the quenched free energy (7) and the
annealed free energy (39).

The constrained annealing free energy f ca(μ) improves the
lower bound estimation for the quenched free energy based on
Jensen’s inequality [43] given by f a, so that

f (h) � f ca(μ) � f a ∀μ. (41)

The constrained annealing partition function [33],

Zca
N (μ) = ZN (h)e−Nμα(h), (42)

is defined in terms of a function α(h), that we define as

α(h) ≡ 1

N

N∑
i=1

[hi − (2p − 1)], (43)

so that its average vanishes. Using

h ≡
∑
{h}

P (h)h =
∑

h=±1

ρ(h)h = 2p − 1, (44)

it follows immediately that

α(h) −−−→
N→∞

α(h) = 0. (45)

In the following, we show that since the model considered
here is separable [44] as the disorder in the Hamiltonian (1)
depends on sites and not on links, each term can be averaged
independently. To see this, we write the partition function
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given by Eq. (5) as

ZN (h) =
∑
{S}

e−βε0|S|
N∏

k<l

e−βεsk,l hkhl . (46)

The constrained annealing partition function (42) then reads

Zca
N (μ) = eNμ(2p−1)

∑
{S}

e−βε0|S|�(μ), (47)

with

�(μ) ≡
∑
{h}

N∏
i=1

ρ(hi )e
−μhi

N∏
k<l

e−βεsk,l hkhl . (48)

In this product, we have contributions that are different from
unity only when sk,l = 1 and each base can only participate in,
at most, one base pair. Thus, in the average over the disorder,
we get a product of |S| = ∑

i< j si, j times the factor e−βεhkhl

and, since hi are mutually independent, each disorder term
can be averaged independently. Performing the average in
Eq. (48), we obtain

�(μ) =
[ ∑

h=±1

ρ(h)e−μh

]N−2|S|

×
⎡⎣ ∑

h,h′=±1

ρ(h)ρ(h′)e−μhe−μh′
e−βεhh′

⎤⎦|S|

= �N (μ)

[
ϒ(μ)

�2(μ)

]|S|
, (49)

where we have defined the two auxiliary quantities,

�(μ) = pe−μ + (1 − p)eμ,

ϒ(μ) = e−βε[p2e−2μ + (1 − p)2e2μ] + eβε2p(1 − p).

The disorder average yields the new interaction energy,

ε(μ) ≡ − 1

β
ln

ϒ(μ)

�2(μ)
, (50)

where all the information relative to the disorder is included
in the variational parameter μ. As a consequence, Eq. (47)
reduces to

Zca
N (μ) = eNμ(2p−1)�N (μ)Zhom

N (μ). (51)

Here,

Zhom
N (μ) =

∑
{S}

[wca(μ)]|S| (52)

is the partition function of homopolymers of the form (20)
with statistical weight

wca(μ) = exp[−βεca(μ)], (53)

with constant interaction energy between monomers,

εca(μ) = ε0 + ε(μ). (54)

The maximization with respect to μ of the reduced free
energy,

β f ca(μ) = ln
e−μ(2p−1)

�(μ)
− 1

N
ln Zhom

N (μ), (55)

is achieved by imposing

∂

∂μ
f ca(μ)

∣∣∣∣
μ=μ̃

= 0. (56)

This condition yields the value μ̃(βε0, βε) for which

f ca(μ̃) = max
μ

f ca(μ) ≈ f (h), (57)

while the lower bound given by the annealed free energy is
obtained simply by setting μ = 0 in Eq. (51).

B. Critical behavior: Cold melting

The behavior of the specific heat and the helicity degree for
the two-letter model with quenched disorder has been previ-
ously studied with the constrained annealing method [13] by
solving Eq. (56) and using the folded-phase partition function
given by Eq. (21) for Zhom

N in (55). The comparison between
the quenched free energy, computed by exact enumeration of
the disorder realizations and the constrained annealing aver-
age, showed remarkable agreement. A double-peak structure
in the specific heat CV appears for 0.5 < p < 1 and ε0 �= 0.
Interestingly, if the energy parameters satisfy the condition
ε > |ε0|, the low-temperature peak is more pronounced than
the high-temperature peak and the helicity degree θ decreases
with lowering temperature.

Here we provide a physical interpretation of the results
obtained in [13] and account for loop entropy by using the
folded and the unfolded scaling expressions for the partition
function, given by Eqs. (30) and (34), with corresponding free
energies

β f ca
[b,p](μ) ≈ ln

e−μ(2p−1)

�(μ)
+ ln z[b,p](μ). (58)

Here the lower index in square brackets distinguishes be-
tween the branch and the pole singularity associated with
the folded and unfolded phases, respectively. While zb can
only be computed by numerically solving Eqs. (28) and (29)
simultaneously, the pole singularity zp is explicitly given by
Eq. (33) for w = wca(μ). A phase transition in the disordered
model can then be described in terms of the two singularities
z[b,p] of the homopolymeric partition function. In particular,
the unusual decrease in paired bases found in [13] when
lowering the temperature can formally be interpreted as a
thermal phase transition to the unfolded state.

To proceed, Eq. (56) yields the equation

2p − 1 =
{

∂ ln �(μ)

∂μ
+ 1

NZhom
N (μ)

×
∑
{S}

|S|[wca(μ)]|S|−1 ∂

∂μ
wca(μ)

}
μ=μ̃

=
[
∂ ln �(μ)

∂μ
+ 〈|S|〉

N

∂ ln wca(μ)

∂μ

]
μ=μ̃

=
[
∂ ln �(μ)

∂μ
+ θ ca(μ)

2

∂

∂μ
ln

ϒ(μ)

�2(μ)

]
μ=μ̃

, (59)
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FIG. 6. Specific heat with loops in the folded phase (a),(b) with c = cRW = 1.5 and (c),(d) without loops (corresponding to c = 0). The
quenched average (black curve) is numerically obtained from averaging over 30 random sequences (red curves) with N = 50, p = 0.75, and
interaction energy (a),(c) ε = 0.5|ε0| and (b),(d) ε = 1.5|ε0|. The analytical result using the constrained annealing method is shown in blue.
Here, the partition function of each sequence is computed with the loop recursive equation (12) and the constrained annealing free energy
is f ca

b (μ̃) defined by Eq. (58). Insets: The corresponding free energies from numerics and the constrained annealing method from which the
specific-heat curves in the main panels are obtained.

where we have used Eqs. (23), (50), and (54), and where

θ ca(μ) = 2
∂

∂ (βε0)
ln

[
1

1 + 2
√

wca(μ)

]
= −2

1 + 2
√

wca(μ)

[
1√

wca(μ)

∂wca(μ)

∂ (βε0)

]
= 2

√
wca(μ)

1 + 2
√

wca(μ)
. (60)

Once the solution μ̃(βε0, βε) of Eq. (59) is known, the
folded-phase singularity zb(μ̃) that maximizes the constrained
annealing free energy can be obtained by solving the follow-
ing system of equations:

κ̃ca
b

(
κ̃ca

b − 1
) = wcaLi

(
c, zbκ̃

ca
b

)
(
κ̃ca

b

)2 = wca
[
Li

(
c − 1, zbκ̃

ca
b

) − Li
(
c, zbκ̃

ca
b

)]
, (61)

where we use the notation κ̃ca
b ≡ κ[wca(μ̃), zb(μ̃)] and where

all variables are evaluated at μ = μ̃. In the unfolded phase,
zp(μ̃) is instead determined by the explicit expression

zp(μ̃) = 2[1 +
√

1 + 4wca(μ̃)ζ (c)]−1. (62)

0 1 3 5
kBT/|ε0|

1

2

3

4

5

w
ca

(μ̃
)

0 1 3 5
kBT/|ε0|

1

2

w

FIG. 7. Statistical weight in the constrained annealing approx-
imation in the competitive regime (� = 2/3) with ε = 1.5|ε0|
(orange) and in the noncompetitive regime (� = 2) with ε =
0.5|ε0| (violet) as a function of the temperature at p = 0.75. In-
set: Homopolymer weight w = e−βε0 with ε0 > 0 (orange) and
ε0 < 0 (violet), for repulsive and attractive background interaction,
respectively.
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The disorder average of the free energy in both phases (58)
together with the system of Eqs. (61) and (62) constitute the
main result of this paper.

At this point, we have all the necessary ingredients to
describe the melting phase transition of disordered RNA
molecules with loop entropy. First, we note that the critical
weight wm(c) defined by Eq. (36) is a monotonically increas-
ing function of the loop exponent c in the interval 2 < c <

c∗, which defines the critical region for homopolymers. For
w > wm, the molecule is always folded, governed by zb, and
unfolded otherwise, governed by zp.

In Figs. 6(a) and 6(b), we compare quenched and con-
strained annealing averages in the folded phase for loop
exponent c = cRW = 1.5, which qualitatively reproduce the
behavior for c = 0 shown in Figs. 6(c) and 6(d), with
the characteristic double-peak structure in the specific heat.
The latter is computed from the free energy as

Cca
V (μ̃) = −T

∂2 f ca(μ̃)

∂T 2
. (63)

The quenched and constrained annealing free energies show
good agreement for low temperatures, with the exception of
the first few data points at T ≈ 0 in the no-loop noncompeti-
tive scenario [Fig. 6(c)]. The deviation between numerics and
the constrained annealing results is roughly linear in T and
thus does not affect the specific heat significantly.

In the following, we distinguish the two energetic regimes,
depending on whether or not quenched disorder significantly
affects RNA folding. Since μ̃ depends implicitly on β =
(kBT )−1, βε0, and βε, we have two possible regimes depend-
ing on the value of the base-paring energy ratio,

� ≡ |ε0|
ε

. (64)

If � > 1, there is no competition between the favorable UA
and unfavorable AA/UU pairings, meaning that they are
either both attractive or repulsive [see Eq. (2)]. We will call
this the noncompetitive regime. Instead, if � < 1, the effect of
quenched disorder becomes relevant and there is an energetic
competition between favorable and unfavorable pairings. This
case we refer to as the competitive regime.

By setting ε0 < 0, in the competitive regime ε0 + ε is
positive. In this case, wca(μ̃) exhibits a global maximum as
well as a global minimum at low temperatures, independently
of the values of p, ε0, and ε; see Fig. 7. From the temperature
dependence of the statistical weight for homopolymers, w =
exp(−βε0), shown in the inset of Fig. 7, substantially different
behavior is found for the disordered model in the competitive
regime (orange curve). When � < 1, the competition be-
tween favorable and unfavorable base pairs results in a global
maximum in wca(μ̃), for all probability values in the range
0.5 < p < 1.0. As we show next, the presence of a global
maximum in the statistical weight of base pairings is closely
related to the behavior of the helicity degree.

From the temperature dependence of the helicity degree
θ in the competitive and noncompetitive regimes, we find
a behavior that is similar to that of the statistical weight
of base pairings; see insets in Fig. 8. However, only in the
competitive regime where � < 1 [Fig. 8(b)], the helicity
degree drops when lowering the temperature and displays a
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FIG. 8. Specific heat for c = cRW = 1.5 and different probabil-
ities, from light to dark, p = 0.5, p = 0.6, p = 0.7, p = 0.8, p =
0.9, and p = 1.0, in the constrained annealing approximation in the
(a) noncompetitive regime (� = 2) with ε = 0.5|ε0| and (b) com-
petitive regime (� = 2/3) with ε = 1.5|ε0|. Insets: Corresponding
helicity degrees. All curves converge to the asymptotic value of
Eq. (25) in the high-temperature molten phase.

global maximum for all 0.5 < p < 1.0. In Fig. 8, we show that
the specific heat CV always displays two peaks, corresponding
to hot and cold melting, respectively. This result confirms that
cold melting appears only in the competitive regime where the
low-temperature peak of CV is more pronounced.

Finally, it is interesting to compare the helicity degree in
the RNA structures with disorder with the fraction η− of
Watson-Crick (i.e., AU) and η+ of non Watson-Crick (i.e.,
AA and UU) base pairs. To numerically estimate the fraction
of favorable η− and unfavorable base pairs η+, we define the
auxiliary quantity η = 2

N 〈∑i< j hih jsi, j〉, so that

η± = 1
2 (θ ± η). (65)

Performing the same derivation as in Eq. (16), in the
constrained annealing approximation, we find η(μ) ≈
2 ∂

∂ (βε)β f ca(μ), which gives

η(μ) ≈ θ (μ)

[
1 − 4eβε p(1 − p)

ϒ(μ)

]
. (66)

The temperature dependence of η±, shown in Fig. 9, gives
additional insight into the mechanism behind the low-
temperature phase transition. In the noncompetitive regime
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FIG. 9. Fraction η− of favorable (dashed line) and η+ of un-
favorable (solid line) base pairs for c = cRW = 1.5 and different
probabilities, from light to dark, p = 0.5, p = 0.6, p = 0.7, p = 0.8,
p = 0.9, and p = 1.0, in the constrained annealing approximation
in the (a) noncompetitive regime (� = 2) with ε = 0.5|ε0| and
(b) competitive regime (� = 2/3) with ε = 1.5|ε0|.

[Fig. 9(a)], the behavior of η± follows the one found for the
helicity in Fig. 8(a), with η± increasing at low temperature.
We see that only in the competitive regime [Fig. 9(b)] does
the fraction of non-Watson-Crick contacts η+ (solid lines)
abruptly decrease at low temperatures for all values of the
probability p, roughly coinciding with the low-temperature
peak of the specific heat found in Fig. 8(b). Thus, in this
regime, the base-pairing mechanism at low temperatures be-
tween identical nucleotides AA and UU is suppressed by
the disorder-induced competition between those pairings and
the favorable pairings. Instead, Watson-Crick contacts η− in
the competitive regime monotonically grow when lowering
the temperature in a similar way as in the noncompetitive
regime.

C. Global phase diagram

In order to fully understand the peculiar behavior of the
specific heat and the helicity degree in the competitive regime,
it is instructive to consider the loop exponent values c1,
defined by Eq. (38), and the two additional values cmax and
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FIG. 10. (a) Phase diagram in the noncompetitive regime (� =
2) with ε = 0.5|ε0| and ε0 < 0. The critical line that defines hot melt-
ing is defined in the range c1 < c < c∗ [see Eqs. (37) and (38)] so that
for c < c1, the RNA molecule is always folded. (b) Phase diagram
in the competitive regime (� = 2/3) with ε = 1.5|ε0| and ε0 < 0.
For c < cmin, the molecule is always folded since wm(c) < wca(T ),
∀T . For cmin < c < c1, there is only hot melting, while for c > cmax,
the molecule is always unfolded since wm(c) > wca[T, μ̃(T )], ∀T .
In the range c1 < c < cmax, both hot and cold melting take place. In
both panels, the color of each curve corresponds to a different value
of the probability p, from light to dark, p = 0.5, p = 0.6, p = 0.7,
p = 0.8, p = 0.9, and p = 1.0. Inset: Critical line for p = 0.75.
Since 0.75 > p∗ in the range c1 < c < cmax, the double intersection
between wm(c) and wca[T, μ̃(T )] introduces the additional cold-
melting phase transition.

cmin defined, respectively, as

wm(cmax) ≡ max
T

wca[T, μ̃(T )], (67)

wm(cmin) ≡ wca[0, μ̃(0)]. (68)

Note that since wca is an implicit function of p, ε0, and ε, so
are the loop exponents cmax and cmin.

Depending on whether we are in the competitive regime
(� < 1) or not (� > 1) and depending on the value of the
loop exponent c, there are three possibilities. There can
be two, one, or no intersection between wca[T, μ̃(T )] and
wm(c). The last two cases correspond to the well-known high-
temperature denaturation of RNA molecules and to the stable
folded phase, respectively. If two intersections are present,
we obtain more complex behavior with an additional cold-
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FIG. 11. Specific heat for the disordered model using the constrained annealing approximation with p = 0.75 and ε = 1.5|ε0| in (a) the
competitive regime with � = 2/3 and (b) for a homopolymer with ε0 < 0. In both cases, the different curves correspond to different values of
the loop exponent c. In the disordered model, the two critical temperatures Tcm ≈ 0.488|ε0|/kB (blue circle) and Thm ≈ 2.961|ε0|/kB (red circle)
correspond to the value of the loop exponent c = 2.26, while for the homopolymer there is only a single melting transition at Tm ≈ 2.605|ε0|/kB.
In (c) and (d), the corresponding helicity degrees are shown.

melting phase transition in the low-temperature regime. In the
latter case, if p > p1, where p1 is defined by wm[cmin(p1)] =
1, cold melting appears for c1 < c < cmax, where cmax de-
pends on p, ε0, and ε, while c1 ≈ 2.241 is the universal
value defined by Eq. (38). On the contrary, if p < p1, one
has cmin(p) > c1 and cold melting appears for cmin < c <

cmax. In this case, the homopolymer melting weight wm(c)
intersects wca[T, μ̃(T )] at two different temperatures Tcm and
Thm. Cold melting is a proper thermodynamic phase transition
and separates two phases that are characterized by different
singularities of the grand-canonical partition function given
by Eq. (27). However, this can only happen in the competitive
regime (� < 1), when wca[T, μ̃(T )] displays a global max-
imum. By contrast, in the noncompetitive regime, only hot
melting takes place.

In Fig. 10, we present the global phase diagram for dis-
ordered RNA in the T − c plane at different probabilities
p with the critical lines separating the folded and unfolded
phases for the noncompetitive [Fig. 10(a)] and the competitive
[Fig. 10(b)] regimes. Each line is obtained by numerically
solving the equation wca[T, μ̃(T )] = wm(c), which yields
the melting temperature as a function of the loop exponent.
Comparing these results to those obtained within a replica
approach in [14], where in the no-disorder limit the glass-

phase critical temperature vanishes, we similarly find that in
the limiting case of no disorder, εi j = ε0, ∀(i, j), the cold-
melting transition disappears.

The c dependence in the folded phase of the specific
heat is very subtle for both the disordered model, where
there is a two-peak structure, and the homopolymeric model,
where CV features only one peak; see Figs. 11(a) and 11(b).
A similar weak dependence on c is found for the helicity
degree [see Figs. 11(c) and 11(d)], where for the folded
phase we use θb defined by Eq. (31) with κb = κ̃ca

b obtained
by solving Eq. (61). In the unfolded phase, θp is simply
obtained from Eq. (35) with w = wca(μ̃). The cold- and
the hot-melting temperatures are obtained numerically for
c = 2.26, p = 0.75, and ε = 1.5|ε0| as Tcm ≈ 0.488|ε0|/kB

and Thm ≈ 2.961|ε0|/kB, respectively. We note that the crit-
ical point for the cold-melting transition lies almost ex-
actly in the valley formed by the two peaks of the specific
heat.

V. CONCLUSIONS

In this paper, we have studied the critical behavior of
RNA secondary structures including both quenched sequence
disorder and loop entropy. In previous work based on the
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two-letter model without loop entropy, it was shown that the
heat capacity exhibits a peculiar two-peak structure in the case
of energetic competition between favorable and unfavorable
base pairs [13], indicating hot as well as cold melting. For
homopolymers, on the other hand, a finite loop entropy leads
to a genuine thermal phase transition between the folded and
unfolded states in a well-defined range of the loop exponent c
[26,31]. Here, we combine the relevant features of these two
models and consider a two-letter RNA model with quenched
randomness and in the presence of loop entropy. As the central
result, we show that if there is an energetic competition be-
tween favorable and unfavorable base pairs, in a specific range
of the loop exponent c, two different phase transitions occur
at two different critical temperatures Thm and Tcm, resulting
in a folded state that is only stable at intermediate tempera-
tures. Most importantly, the results obtained here are not of
limited theoretical interest, but presumably are related to the
experimental observation of cold melting of RNA [4,8]. While
there is no direct physical interpretation of the loop exponent
range within which both hot and cold melting occur, we have
provided an interpretation of this phenomenon in terms of the
behavior of the statistical weight of base-pair formation w that
displays a global maximum at intermediate temperatures. By
combining loop entropy with quenched disorder in our model,
we are able to reproduce the cold-melting phenomenon and
reveal that it is a genuine thermal phase transition.

A natural extension of the method outlined here consists
in including all four RNA nucleotides uracil (U), adenine (A),
guanine (G), and cytosine (C). This can be done simply by
adding an additional disorder term in the Hamiltonian [33].
Then the constrained annealing average can be performed in
a similar fashion, leading to qualitatively comparable results
for the important thermodynamic quantities studied here; see
[13]. The main difference from the two-letter model is that
four-letter sequences do not always admit perfect matching, as
first established by Valba and collaborators [45], and the limit-
ing helicity degree at zero temperature can be below the value
θ (T = 0) = 2 min(p, 1 − p) found in the inset in Fig. 8(b).
While this might be relevant, to some extent, for investigating
the glass transition, we stress that we find qualitatively the
same behavior in the helicity degree with a global maximum
at intermediate temperatures as found for the four-letter model
[13], which is what ultimately explains, in our framework, the
cold-melting transition.

Our results suggest that the cold-melting transition is con-
tinuous because it is triggered by the same conformational
effect as found for homopolymers [31]. In particular, we argue
that the cold-melting transition is of the order of n, where n
is determined by (c − 2)−1 − 1 < n < (c − 2)−1. It remains
a challenge for future work to investigate the connection
between cold denaturation found in the disordered model and
the glass transition [14,15,46,47].
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