
PHYSICAL REVIEW E 101, 012420 (2020)

Nonequilibrium biochemical structures in two space dimensions
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Integrin receptor (IR) clustering is an example of pattern self-organization in biological systems. This paper
describes a model for receptor activation whose content is guided by two major principles in cellular signal
transduction: (i) Proteins cycle between different conformational states; (ii) the dynamics of their conformational
dynamics is environment dependent. Based on a simple activation pathway where these two hypotheses are
formulated in a self-consistent way, this paper focuses mainly on stochastic simulations valid in the limit of
a small number of molecules. It is shown that coherent clustering can lead to digital signaling and receptor
competition in biochemical systems where the model gives a recruitment mechanism for the reinforcement
of the mechanical linkage with the extracellular matrix. Together with previous works, this paper provides a
workable model for cell integrin adhesive structures when feedback mediated by membrane diffusing signals is
dominant. Consequences are discussed in the framework of published data concerning the local production of a
key phospholipid for cell signaling (PIP2).
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I. INTRODUCTION

One of the most striking and ubiquitous phenomena in biol-
ogy is the emergence of self-induced and self-sustained struc-
tures. These spatial and temporal structures are archetypes of
pattern formation whose self-organization principles are only
partly understood [1–5]. In particular, adhesive complexes for
cells on substrate grow from nascent adhesions formed of
integrin receptors (IR) with no apparent elasticity and develop
into more rigid structures connected to the cytoskeleton. Other
adhesive structures, called podosomes [6], are characteristic
of invasive cells and form a dynamic bestiary of shapes
including mesoscopic rings. One ubiquitous property of these
structures is the recruitment of IRs into high-density orga-
nized clusters to serve as a hub and to process information [7].
The formation of IR-rich clusters having crucial effects on bi-
ological responses, it is relevant to study generic mechanisms
for their formation.

To study the early stage of IR clustering, the present paper
concentrates on a feedback mechanism with a membrane
diffusive signal. Since nascent adhesions use adhesome com-
ponents independently of mechanical forces [8], this paper
focuses on signaling properties for receptor clustering using
a reaction network where pattern formation is only due to
reaction-diffusion processes. Models for clustering such as the
purely mechanical trapping of Refs. [9,10] or other general
models for signaling components, including lipid rafts and
cytoskeleton linkages, have pointed out the role of feedback
in spatial clustering of molecules for efficient digital signaling
[11] and cell polarization mechanisms [12]. In these works,
positive feedback is generally associated with a molecule
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promoting its own production and it has been shown that this
mechanism leads nanoclusters of active molecules [13,14].

Changes in membrane composition play, however, a key
role in IR clustering [15]. It is therefore natural to study how
a diffusive membrane signal triggers the emergence of self-
sustained IR structures with size comparable to its diffusion
length when this signal is locally produced at adhesive sites. In
this paper, such a diffusive signal plays the role of an activator
and the model mimics key properties of phosphoinositide
signaling on IR regulation. In particular, phosphoinositides
such as PtdIns(4,5)P2, i.e., PIP2, are known to regulate actin
polymerization factors [16,17] and the membrane cytosol
interface by recruiting signaling components [15,18] which,
in turn, activate IRs [19–21]. In particular, super-resolutive
microscopies [22,23] have shown that a large fraction of IRs
are mobile within adhesive clusters with different types of
IRs exhibiting distinct dynamics and different spatial organi-
zations [24,25] in a constantly redistributed environment [25].

In the classical continuum framework for a diffusion-
reaction model, Ref. [26] has already shown that local pro-
duction of an activator is enough to cluster IRs. This raises
the question whether this model is still valid and what are the
different phases in a regime where the number of molecules
is small and where the intrinsic noise due to diffusion and
reaction dominates.

To this is end, a more general pathway is introduced model
appropriate to stochastic simulations which can be general-
ized to model more mature adhesive structures. As before,
the model is guided by two principles in signal transduction:
IRs cycle between active and inactive state and the rate of
this cycling depends on membrane composition which is
determined in a self-consistent way. This model reproduces
the sequence of phases (homogeneous, localized spikes, ex-
panding incomplete or complete rings) for different excitation
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FIG. 1. Schematic representation of the three modules studied
in this paper. Arrows correspond to IRs in their inactive/active-
immobile states (ni, na ). A change in color in the bar code indicates
a local change in composition u within the membrane corresponding
to lipid production, i.e., PIP2. An increase of u makes active IRs
more stable and, for this reason, u is an activator. The loop arrow
represents the local production of the activator u which serves as a
positive feedback loop to recruit new receptors in their active state.
Regulation of lipid production is controlled by a third field v (red
dots) when IRs are immobile. This field v mimics the recruitment of
specific kinases such as PIPKIγ to adhesive sites.

levels. The main difference between the stochastic and the
deterministic approach is the absence of the self-replicating
spot instability with the presence of expanding incomplete
arcs in a circle reminiscent of podosome mesostructures.
The use of stochastic framework is also appropriate when
local production of the activator induces crosstalks and phase
segregation for a mixture of receptors competing for immo-
bilization sites. In particular, this paper establishes a casual
link between the dynamics of receptors and how one type of
receptor can regulate the activation state of a different one
[27,28]. As a result, the IRs with the highest residence time are
favored and this differential recruitment mechanism predicts
a reinforcement for the force transmission through adhesive
structures as in other models which rely on a signal to increase
IR concentration, see Refs. [29,30] and references therein.

The biological significance of theses results is discussed in
the conclusion where this work is put into its biological con-
text with a summary of published data concerning PIP2 sig-
naling and IR clustering. To facilitate the reading, analytical
results concerning the conditions under which self-sustained
structures exist are reported in the Appendices. Movies
from the stochastic simulations are provided as Supplemental
Material [31].

II. CONTINUUM MODEL FOR RECEPTOR CLUSTERING

Following Ref. [26], the model is divided into three el-
ementary modules; see Fig. 1 together with Refs. [15,18–
20] for their biological significance. The first is a change in
membrane composition where u(x, t ) serves as a switch for
IR activation. This module simulates local changes in lipid
concentration (PIP2) to recruit cytosolic IR activators such as
Talin. For this reason, u(x, t ) is an activator. Second, IRs are
represented with a two-state density field, [ni(x, t ), na(x, t )].
Receptors switch between their inactive and active states with

rates ω±(u), and an increase in u makes the active state stable.
Inactive receptors are free to diffuse, but active ones are im-
mobile, because of their strong affinity to external ligands. In
cells, the kinetics of PIP2 synthesis and hydrolysis determines
when and where a PIP2 regulated protein can be activated and
local production of PIP2 by the lipid kinase PIPKiγ serves
to recruit new proteins. For this reason, a third field v(x, t )
is introduced for the local production of u(x, t ). This rate of
production of u(x, t ) is proportional to the product of the local
density of receptors by v(x, t ), i.e., v(x, t )na(u). Since the
depletion of v(x, t ) decreases the production of u(x, t ), this
field is a regulator.

In the continuum limit, the pair (u, v) obeys the general
equations of motion:

∂t u = du�u + 1

ε
[−bu + vna(u)],

∂tv = dv�v + h(vc − v) − f (v)na(u), (1)

where du, dv are diffusion constants and b/ε is a rate constant
for the irreversible degradation of u. The last term in the
second equation, f (v)na(u), couples the dynamics of v to the
concentration u and h(vc − v) simulates the exchange of v

between the membrane and the cytosol. The function f (v) is
general. Since a cluster of receptors indicates a high density
of u, and thus a small density of v, we can Taylor expand f (v)
for small v as f (v) = a0 + a1v + . . . , a1 � 0.

To complete the system, the equation of motion for (ni, na)
follows from the kinetics

∂t ni = dn�ni − ω+(u)ni + ω−(u)na,

∂t na = +ω+(u)ni − ω−(u)na, (2)

where dn is the diffusion constant of inactive IRs. Finally, the
coupling between the kinetic rates ω±(u) and the environment
u(x, t ) is introduced if u(x, t ) is interpreted as a chemical
potential with

ω−(u)/ω+(u) = ω0
−/ω0

+e−βu, (3)

where β is a positive constant and ω0
−/ω0

+ � 1 so that the
inactive state is favorable in the low u limit and switches to
the active state in the other limit. This sets a lower bound for
the characteristic excitation in the spike as

uc = 1

β
ln

ω0
−

ω0+
. (4)

In the model considered here, however, all active IRs are
immobilized to external ligands, and 1/ω−(u) should be inter-
preted as a residence time which is typically much longer than
a conformational interconversion rates [32]. The chemical po-
tential difference between the two conformations should also
depend logarithmically on the cytosolic concentration of an
activator protein, but this log-dependence is subdominant with
respect to the linear dependence in u. For simplicity, this term
will be neglected. However, since u serves as docking sites
for large proteins such as Talin which regulate IR activation,
the effective diffusion of u is affected and is less than for a
usual lipid. This work assumes, therefore, that components
have almost equal diffusion constants, du � dv � dn.

As shown in the inset of Fig. 2, the problem defined by
Eq. (1) together with Eq. (2) has a unique fixed point (uh, vh)
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FIG. 2. Nullclines and trajectories [v(t ), u(t )] for Eq. (1) in the
limit of constant receptor density. The inset shows a typical trajectory
when the system is perturbed away of its homogeneous fixed point
(uh, vh ) where the two blue and red curves intersect. The main figure
represents the same time trace trajectory for the equivalent problem
but in the stochastic limit with the emergence of a stochastic limit
cycle absent in the deterministic case. This limit is studied in Sec. III
with a reference receptor density per compartment of 1000.

at low u for a broad range of parameters. Neglecting diffusion,
the shape of typical trajectories in the (u, v) plane demon-
strates that this system is excitable because of the following
reason. All initial conditions within a small neighborhood of
a stable fixed point give trajectories that decay directly to it,
but some initial conditions further away from the stable fixed
point give trajectories that undergo large excursions before
approaching the fixed point. These excursions are controlled
by the parameter ε in Eq. (1), so that when ε is small, large
excursions are expected.

Following a δ-like initial perturbation, numerical integra-
tion of the time-dependent equations of motion Eqs. (1) +
(2) converges to localized static or dynamic self-sustained
structures as in Fig. 3. These structures exist only in some
regions of the parameter space where the system is excitable
enough [26] and a typical phase diagram is shown in Fig. 4.
As studied in Appendix A, these structures are localized due to
local production of the activator u with clusters of active IRs
on a scale comparable to the diffusion length lu = √

duε/b.
The other length scale characterizing the problem is set by the
diffusion length of the activator, lv =

√
dv/h̃, where h̃ differs

little from h. As shown in Appendix A, the characteristic scale
for the activator in the spike is set by the ratio dvvh/(duε) with
logarithmic corrections. To compensate for the consumption
of v within the spike, the recruitment of v by lateral diffusion
must be strong enough. This sets a condition on the diffu-
sion constant of the regulator v and comparing with Eq. (4)
gives dv/du > εuc/vh as a lower bound. Because of these
strong logarithmic corrections present even for lv ≈ 10lu,
this asymptotic criterion gives only trends when compared
with numerical data, but this analysis has the advantage of
identifying key relevant parameters.

Static solutions such as the spikes or the rings of
Fig. 3 correspond to a regime where diffusion and reaction
are uncoupled. Receptors can diffuse rapidly through IR

FIG. 3. Plots of stable spike solutions with axial symmetry of
rotation. Case (a) corresponds to the activator u in blue and the
regulator v in orange. The figure corresponds to a spike solu-
tion on the right boundary line of Fig. 4 (ε = 5.91, dv = du = 1).
The insets show the solution for parameters on the ring boundary
line (ε = 4, dv = du = 1). Subfigure (b) represents the variations for
the inactive (green) and for the active integrin receptors for the same
values of the parameters. Note that the density of inactive IRs has
converged to one following an initial δ-like perturbation. Going from
the spike to the ring solution can be realized by varying the excitabil-
ity parameter ε or the kinetic rate for membrane recruitment h.

cluster before being immobilized so that IR concentration
can be considerably increased. This regime imposes, there-
fore, a maximum size for the cluster and this criterion is
consistent with experimental observations that IRs enter and
exit focal adhesions with a significant fraction of mobile
IRs [22,33].

III. STOCHASTIC SIMULATIONS

A. A molecular model

For stochastic simulations, it is useful to consider a pro-
totypical molecular pathway of Fig. 5. This biochemical net-
work can be reduced to the model we have considered so far,
but this form allows us to point out a key irreversible step
in the signaling pathway. To distinguish with the continuum
limit, concentrations are represented with capital letters. As
before, we assume that all active IRs are immobile and neglect
in a first stage any change in free ligand concentration.

A protein V binds an immobilized receptor and undergoes
an irreversible post-translational modification which affects
its binding to the complex Ia − V . The modified form ∅ is
inactive for the production of U and loses its anchor site to
the membrane. The down-regulation of the active form of V
can also be accomplished through competition for binding
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FIG. 4. Schematic phase diagram of the problem Eq. (1). The
x and y coordinates represent the excitability parameter and the
ratio of the diffusion constants for the activator u and the regulator
v. For a given ratio hvc/b, the phase plane is separated into three
different regions. At low excitability (large ε), on the right part of
the figure, the system returns to the quiescent homogeneous state
following a δ-like excitation. Crossing the boundary lines gives static
excited solutions. The shape of these solutions are either spikes on
the right-hand side of the gray domain or rings on the left; see Fig. 3.
For small ratios dv/du, expanding rings are only transient solutions
for other sets of parameters. The inset shows the same phase diagram
but in the (hvc/b, ε) plane for equal diffusion constants dv/du = 1.
Increasing the flux hvc makes the system to bifurcate from static to
the expanding rings (adapted from Ref. [26], h = 0.1, b = 0.2, β =
1, ω0

−/ω0
+ = 100). The two dots correspond to the parameters of

Fig. 3 with (uh, vh ) ≈ (0.56, 6.4).

by other cytoskeletal proteins and we define the dwell time
τ whose typical order of magnitude corresponds to a few
phosphorylation-dephosphorylation cycles. During this dwell
time, the complex Ia − V produces U at a rate gprod. In
this picture, the depletion of V occurs in tandem with an
accumulation of Ia − V . V must, however, be continuously fed
into the system because of the irreversible step

Ia − V
[1/τ ]−→ Ia + ∅. (5)

The model can easily generalized by introducing a series
(Ia − V )i of intermediate states before this irreversible step
without any changes. As before, the dynamics of U is written

FIG. 5. Schematic pathway considered in the stochastic section.
The molecule V (red dot) binds to an immobilized integrin receptor Ia

(down arrow) to form a complex Ia − V . A covalent modification of
V alters the affinity of V to Ia, V → ∅. As a consequence, ∅ unbinds
from Ia after a characteristic binding time τ where it loses its anchor
site to the membrane.

TABLE I. Correspondence between the stochastic molecular
model and the deterministic framework, see Eqs. (1). K± are the
binding-unbinding rates of the regulator V to the receptor I . Typi-
cal values corresponding to Fig. 6 are K+ = 0.01, K− = 1.0, H =
0.005, Vc = 7.5, gprod = 0.25, βU = 10U .

PDE Stochastic

k+ N0K+
k− K−
1/ε gprodτ

b/ε (1 + k−τ )/k+B
vc Vc/N0

h (1 + k−τ )/k+H

with the source term proportional to the concentration Ia − V ,

∂U

∂t
= Du�U − BU + gprod Ia − V. (6)

In the compartment based approach taken here, the diffusion
constants are appropriately renormalized as discussed later.
Let K± be the binding and unbinding rates of V to Ia. Since
τ is the typical time for a post-translational modification and
1/K− is the binding time for a biochemical bond, we expect
1/τ � K−. Assuming that the concentration of the complex
Ia − V can be approximated by its pseudo-equilibrium value
[34], we have

Ia − V = K+
K− + 1/τ

Ia × V, (7)

so that the equation for the dynamics of V is

∂V

∂t
= Dv�V + H (Vc − V ) − 1

τ
Ia − V. (8)

Equations (6) and (8) correspond the deterministic model
studied so far. The quasiequilibrium Eq. (7) approximation
simplifies the problem but will be relaxed in the numerical
simulation.

To proceed, it is convenient to scale the number of
molecules in compartment i, Ui, by reference with the aver-
aged number of receptors N0 per compartment. The number of
molecules in a compartment i and the densities are related by

U

N0
= u

n0
. (9)

The deterministic binding rate is thus related to binding rate
per compartment as k+ = N0K+ for d[Ia − V ]/dt = K+IaV to
be equivalent to d[na − v]/dt = k+nav. Table I summarizes
the correspondence between the parameters for the stochastic
molecular model with their deterministic PDE counterparts,
so that the nullclines of Fig. 2 can be compared in the two
cases.

After appropriate rescaling, Eqs. (8) and (6) are there-
fore equivalent to Eq. (1) with an effective dimensionless
parameter

1

ε
= gprodτ. (10)

The value of the molecular model is, therefore, to give a
physical meaning of the dimensionless parameter ε as the
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ratio of two well-known regulators in cell signaling, i.e.,
kinase activity and lifetime for a the activation of a molecular
architecture.

To complete this reaction scheme, we consider the occu-
pancy probabilities for N discrete compartments of a finite
lattice. Let (Ii, Ia,U,V, Ia−V )i be the number of molecules
in compartment i. Our method is standard and we follow
Refs. [35,36]. Each compartment is considered homogenous
and compartments are coupled via diffusion. An event is
either a chemical reaction taking place in a compartment or
a stochastic jump from one compartment to its neighbors.
The Gillepsie’s algorithm samples the joint probability dis-
tribution for occupancy by simulating the distribution rate for
each event and choose the next event to take place [35]. A
conformational change of a receptor in a compartment i is
considered as an event and the rates ω±(Ui ) in compartment i
depend on the number of activator molecules Ui in the same
compartment. As before, active receptors are assumed to be
bound to a ligand and are immobile.

Diffusion is described by the following chain of reactions
between nearest neighbor compartments for any specie Xi:

X1

[DX ]
�

[DX ]
X2

[DX ]
�

[D − X ]
X3

[DX ]
�

[DX ]
...

[DX ]
�

[DX ]
XN . (11)

The effective diffusion constant DX is scaled by the cell size l ,

DX = dx/l2, (12)

where dx is the usual diffusion constant when the model is
written with surface fraction x as in Eq. (1). The definition
of the size l is arbitrary. It is convenient to define l as
approximately half the size of the diffusion length of u which
is the smallest length scale entering in the problem

l = 1/2lu = 1
2

√
duε/b, (13)

so that Du can be directly computed and all other diffusion
constants appropriately renormalized. For all the results de-
tailed below, the diffusion constants of the different species
are comparable and we use a single compartment size to
avoid undesirable bias [36,37]. Using the correspondences of
Table I, Fig. 2 compares the phase space trajectories of Eq. (1)
in both its stochastic and deterministic versions. Since the
stochastic version does not assume stationary equilibrium for
the complex Ia − V , Fig. 2 is the projection on the u − v plane
of the actual trajectory. Although the traces in two figures
appear analogous, the smallness of the number of particles
triggers a self-induced stochastic resonance with the appari-
tion of a stochastic limit cycle absent without noise [38].
The appearance of this limit cycle obtained for N0 ∼ 1000
molecules is, however, considerably degraded for a smaller
number, e.g., ∼10, where the time series of u(t ) exhibits
strong bursts emerging from a very noisy signal presenting
irregular sequences; see Fig. 6.

As a last point, we discuss how appropriate boundary
conditions are implemented with solutions matching their
homogeneous fixed point value Uh, Vh, N0 at infinity. For
this, we simulate a probabilistic thermostat in contact with
the boundaries. Since molecules outside the simulation box
are assumed to diffuse freely, the joint probability to find Ui,
Vi or Ii particles in compartment i along the boundaries is a

FIG. 6. Single cell stochastic simulation: Number of U
molecules as a function of time in the case of a single compartment
(homogeneous case). The average number of free integrin receptors
per compartment is N0 = 10. This simulation shows that the stochas-
tic dynamics of the activator u exhibits strong irregular bursts above
the homogeneous fixed point value (〈u〉 = 0.41, 〈v〉 = 3.91) given
by the deterministic case.

multinomial distribution given by their mean values Uh, Vh or
N0. From a practical point of view, a periodic update of the
compartments along the edges by drawing the number of par-
ticles according to this distribution simulates this probabilistic
Andersen thermostat. Systems from 50 × 50 to 100 × 100
compartments can be simulated at a reasonable computing
time.

B. Results in the stochastic case

The main results of this section are summarized by the
density plots of Fig. 7 for different runs along a line parallel
to the ε-axis of Fig. 4 with their corresponding movies in the
Supplemental Material [31]. When diffusion is taken into ac-
count, stochastic fluctuations are not able to excite the system
enough and the homogenous state is characterized by bursts of
active receptors with transient small clusters. Receptor clus-
tering is only induced by a threshold perturbation. Following
a δ-like excitation with a few tenths of Ia − V molecules
in the compartment at the center of simulating domain, one
obtains series of snapshots representative of the difference
phases. As expected, when the excitability is small, i.e., for ε

sufficiently large, a δ-like excitation slowly fades away and the
system returns to the homogenous phase. Receptor clustering
characterized by a pattern of high density of active receptors
occurs only at large enough excitability. When the average
number N0 of receptors is large, i.e., of the order of 100, the
static spike of the deterministic framework is reproduced. For
lower N0, i.e., a few 10 the static spike experiences strong
breathing deformations and exhibits an intermittent depletion
hole in the middle, see case (a), indicating local segregation
between the receptors. Even for this relatively large number of
molecules, fluctuations are huge and the dynamics processes
via bursts. Case (b) of the same figure shows a static spike
where the I − V complexes form a ring at the rim of the spike
with active receptors centered in the spike (see Supplemental
Material for movies [31]). This gradient reflects the strong
turnover of V molecules which diffuse from the outside of
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FIG. 7. Examples of density plot for stochastic self-sustained structures taken from snapshots of numerical calculations. Case (a) represents
a static spike with a reference number of IRs N0 equal 100. Immobile-active receptors Ia and complexes I − V are roughly equally distributed
with a slight increase of I − V at the rim. For all other cases, N0 = 10. Case (b) is the snapshot of a static spike where the I − V molecules
form a fluctuating ring at the rim of the spike. Panel (b) corresponds to active receptors Ia and tpanel (c) to the complex I − V . I − V
complexes are distributed at the rim of the adhesive spike. Case (d) is the snapshot of an expanding complete ring which becomes incomplete
above a critical radius with spiraling ends. Typical parameter values corresponding to (b) are: ω+(0) = 0.001, ω−(0) = 1, HVc = 2, H =
0.05, K+ = 0.1, K− = 1, τ = 1, gprod = 3.8, B = 0.1425. For companion movies, see the Supplemental Material [31].

the spike and leave active integrins Ia in the center of the
spike. Complete expanding rings are observed in the large
excitation regime. In the medium excitation regime, but still
in the dynamic part of the phase diagram, complete expending
rings break into circular arcs above a critical radius and form
“croissants” with spiraling ends. The size of this critical radius
is controlled by the parameters and can be bigger than the
simulating box.

In marked contrast with its deterministic counterpart ap-
proach, the self-replicating phase has not been observed in
numerical simulations. In such phase which appears above
a critical radius of an expanding ring, spot-like localized

structures grow, deform and make replicas of themselves until
they occupy the entire space. Within the stochastic framework,
this phase is replaced by a phenomenon where an expending
ring eventually breaks into two or more slowly expanding
croissants repealing each other. These structures reach the
boundary of the simulating box without further dividing even
if the size is twice the one of Fig. 7(d).

When rings expand, they suck the regulator V from the
corona in front of the moving interface. The consequence
of this process is that when two rings collide, they start to
interact at a distance larger than the “hardcore” radius. This is
shown in Fig. 8 which reproduces snapshots of two expanding
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FIG. 8. Expanding rings. Case (a) corresponds to a snapshot
for two expanding rings. For this set of parameters, the depletion-
mediated interaction between the two rings distorts the circular shape
of the rings which move away to optimize the diffusion of V . Case
(b) corresponds to an annihilation dynamics where the two rings fuse
in one (simulating box: 50 × 50).

rings in two generic cases. The top panel corresponds to
the situation where the two rings first deform and repeal
each other. The bottom panel corresponds to an annihilation
dynamics where two expanding rings fuse together in one, so
that small-scale features are also reproduced in the stochastic
framework. In general, however, two expanding rings tend
to avoid each other, cease from having a circular shape and
repeal each other.

C. Clusters serve to digitize biochemical signals
in the diffusion-uncoupled case

The model developed so far provides a simple mechanism
for nucleation of IR clusters in the absence of cytoskeleton.
When adhesion sites mature, local production of PIP2 not
only controls IR clustering but also controls actin dynamics
to provide strong binding sites for IRs. Consequently, actin
dynamics confiscate PIP2 molecules and limit IR recruitment.
In the usual case where adhesive complexes are much larger
than the nascent adhesions studied so far, a simple model
consists in limiting local production of PIP2 with a finite
density of ligands L distributed in an adhesive disk as in Fig. 9.

FIG. 9. Numerical simulations with an adhesive disk where re-
ceptors get immobilized by binding to ligands. The adhesive disk
consists in a central disk with a finite number of ligands L per com-
partment, 2 in this case, and without any ligand outsidew. Only the
complexes I − L can bind V to trigger the feedback loop. This case
corresponds to the diffusion-uncoupled regime where the diffusion
of V is much faster than its association time so that the adhesive disk
is homogeneously populated with dynamic clusters of active IRs.

Ligands immobilize active IRs as

Ia + L
[l+]
�
[l−]

Ia − L (14)

with kinetic rates l±. In what follows, only the species Ia − L
form with V a complex which produces U . When L is in
very large excess, this intermediate step is irrelevant, since
active IRs can always find available ligands. In parallel, the
irreversible step Eq. (5) is now taken as

Ia − L − V
[1/τ ]−→ I − L + ∅, (15)

FIG. 10. Relative fraction of occupied ligand as a function of the
feedback strength 1/ε in the adhesive disk of the pattern of Fig. 12.
The system can be tuned from a low occupation probability to a
high occupation probability by a small variation of the feedback
strength (gprod). This example corresponds to the system studied in
the Appendices with one ligand molecule per compartment.
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where τ is the dwell time of the complex I − L − V producing
the activator U . Equation (15) can be further generalized

by adding another reaction step Ia − L − V
[1/τ ]←→ Ia + L + ∅

without change in the following.
To avoid spurious boundary effects where the activator is

produced only at the rim of the adhesive disk, the diffusion of
V and I must be much faster than the immobilization rate for
binding Ia to L or V to I − L. This sets a maximum size of
an adhesive disk controlled by the density L0 of available lig-
ands. In this diffusion-uncoupled regime, the adhesive disk is
homogeneously populated by inactive receptors. The system
can therefore take advantage of freely diffusive IRs to increase
locally active receptors by a burst of activator.

As shown in Fig. 9, IR clusters are clearly observable at
low enough rate of production gprod where not all ligands are
occupied. Increasing this rate drives the system to the fully
occupied regime in a step wise manner; see Fig. 10. This is
explained in Appendix D, where the system is shown to be
analogous to a φ3 theory with a threshold blurred by finite
size effects. Membrane diffusive components can, therefore,

FIG. 11. A trans-regulation mechanism is a mechanism by which
one receptor perturbs the binding of another receptors to a ligand. In
this in example, two IRs, I1,2, compete for the same ligand L. The
two receptors have the same parameters but differ in their effective
off-rates ω−(u). Due to the feedback loop which increases the con-
centration of the receptor with the slowest dynamics, I2, the binding
of I1 to L is down-regulated by I2. 10 ligands per compartment.

digitize signals by controlling the density of immobilization
sites. Clearly, even in the low production rate regime, the
feedback loop is enough to give small clusters of active IRs
near the sites of production of u.

D. IR crosstalk

The same feedback mechanism can also be generalized
to the case of a mixture of different families of IRs. A key
regulator of this crosstalk is known to be the cytoskeleton
binding proteins Talin which activates IRs [27,39] in a PIP2

dependent way. Here, this crosstalk is studied by introducing
two IR families, I1,2, competing for immobilization sites with
the production of the same activator U . As expected, a small
molecular asymmetry between the two IRs is amplified by the
feedback loop which localizes active receptors near the site of
production of U .

A simple way to introduce this asymmetry is to take β2 >

β1 for the off-rates ω−(U ) with equal affinities in Eqs. (14)
and (15). In this case, the I2 receptors spend more time
in the active state and thus experience the slowest diffu-
sive dynamics when they bind and unbind from the ligand.

FIG. 12. Case where ligands are patterned inside the central
adhesion disk, so that IRs can only bind ligands in this adhesive disk.
The total number of ligands per compartment is 10 so that the central
zone of disk is exclusively populated by type I2 receptors with the
longest dwell time τ2 > τ1 (L = 10)) for otherwise symmetric IRs.
K−,i = 1/τi, i = 1, 2 for both integrin. The two kinases V and S are
specific to I1,2, respectively.
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Because of the feedback, the relative concentration of active I2

receptors is considerably increased in comparison to I1’s, and
the probability for a ligand to bind an active I2 is the highest.
Ligands are thus dominantly bound to receptors of type 2.

This is the case in Fig. 11, where the two receptors have
the same unperturbed densities to simulate the same expres-
sion level. Different scenarios can be considered depending
on the effective off-rate ω−(U ) of the receptors. First, in
the unmixed case and in the sufficiently large off-rate limit,
ω−(U )/ω+(U ) < 1 for the I1 receptors, the fraction of occu-
pied ligands approaches one while the fraction of unbound
active IR is negligible. When I1 receptors are now mixed with
I2 receptors with β2 = 2β1, the I2 receptors switch off the
I1’s by binding to the L’s; see Fig. 11. As a result, mixing
the two IR families drives the I1’s to the inactive state so
that I2 receptors down-regulate the signaling of I1 which are
now all inactive. In the other limit of not too large off-rate,
the scenario is similar. The increase of I2 due to the self-
production of the activator still increases the density of the
active receptors in the active state, so that the fraction of
I1 receptors bound to ligands is again negligible. However,
because of the effective off-rate ω−(U ) of I1, the fraction of
active I1 receptor is no more negligible so that they can bind
other sites than L. In this case again, I2 receptors regulate the
binding of I1 receptors to the ligands.

For simplicity, IR crosstalk has been analyzed in the simple
scheme where the dynamics of the two receptors differ. Other
mechanisms as kinase specificity or different binding times
may also contribute to this crosstalk. For example, Fig. 12
demonstrates the same exclusion effect for two IR differing
in their dwell times τ1,2 and when the kinases V and S are
specific to the receptors. In general, the model predicts a trans-
regulation mechanism which amplifies the concentration of
IRs with the highest residence time near immobilization sites
and which are therefore the most capable ones to transmit a
mechanical force. Since actin polymerization and mechanical
linkage are PIP2 dependent and occur in concert, favoring the
IRs with the highest residence time as predicted by the model
gives a recruitment mechanism for the reinforcement of force
transmission to the extracellular matrix.

IV. CONCLUSION

This paper combines conformational signaling with envi-
ronment sensing to derive a model for IR clustering. Here
this combination is implemented with a lifetime of a signaling
receptor in its active state which depends on its membrane
environment. The present approach departs from traditional
Turing patterns usually described by classes of model with
very different diffusivities and where the form of a polynomial
nonlinearity determines the selection and the stabilization of
patterns [40–42]. Here, these nonlinearities at the origin of IRs
recruitment are fixed by a chemical potential for IR activation.
Naturally, this chemical potential is modulated by the concen-
tration of a key membrane phospholipid known to serve as a
docking platform for numerous adhesive regulators. A point
like excitation with a threshold gives nonequilibrium excited
patterns with size corresponding to the diffusion length of
this key membrane component. Clusters of receptors grow
by lateral accretion and limiting factors resulting from the

stress accumulation of IRs intercalating into rigid structures
are neglected. This mechanism is validated in the stochastic
regime and illustrates the role of robust parameters such as
the size of the adhesive pattern and the ratio of the activator-
regulator diffusion lengths.

To connect with cellular signaling, it may be helpful to
recall that PIP2 is easily transformed by many enzymatic
activities. Its diffusion length is expected to be at most a few
hundred of nanometers. Because this phopholipid controls
many cellular processes including actin polymerization [17]
and integrin activation, its local production at adhesive sites
is well documented [15,43]. In particular, PIP2 is produced
at adhesive complexes by the PIKIγ kinase under the control
of the kinase Src [18,20]. Src, additionally, is inactive in the
cytosol and is recruited to the membrane where it diffuses
to adhesive sites where it becomes active. For simplicity,
the model presented in this paper lumps together these two
kinases in one single module V and outlines these generic
recruitment rules. PIP2 can be considered as a fine regulator
in the coordination of integrin since the specific ablation of
PIPkIγ at adhesive impairs only temporally integrin activation
[28] but has strong effects on integrin-cytoskeleton linkages
and abolishes adhesion reinforcement. This is consistent with
the present model where sites of PIP2 production and sites
of immobilization are spatially coordinated. Although other
pathways working in synergy with PIP2 signaling [44,45]
are likely to occur, the feedback loop model of this paper
predicts that active integrins should be coordinated and form
nanoclusters as suggested in Ref. [23].

This work establishes also a formal casual relation be-
tween the dynamics of the IRs and their signaling properties,
since dynamic receptors with relatively fast apparent diffusive
motion can only form short-lived immobilized complexes.
This principle could explain the different collective behaviors
and patterning in adhesive complexes of two different IRs
having slightly different binding properties. In particular, β1

integrins, with slower dynamics in focal adhesive clusters
than β3 integrins, are spatially segregated from β3 integrins
in adhesive complexes [22] and podosome structures [24].
Integrin segregation in maturing adhesive complexes [46] and
competition for binding talin has been invoked before as a
trans-dominant inhibition between two integrin receptors [39].
This work links this phenomenon to PIP2 local production
and gives a differential recruitment mechanism for IRs which
supports models for mechanical reinforcement as in Ref. [29].

As a final point, this paper together with Ref. [26], predicts
that the type of localized excited adhesive structures strongly
depends on the ratio of the two diffusion lengths for the
activator and regulator. One way to change this ratio and
to change IR patterning behavior is to engineer synthetic
molecules which are directly recruited to adhesive sites. This
approach has recently been taken in Ref. [47] where the use
of photocontrolable SRC kinase demonstrates that IR clusters
forming adhesive complexes reorganize into podosomes under
the condition of direct SRC recruitment.
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APPENDIX A: SPIKE SOLUTIONS

Turing patterns are generically studied in reaction diffusion
systems where species have very different diffusion constants
and ratio of 100 are commonly reported in stochastic studies
[36]. When the diffusion length of the inhibitor is much
larger than the diffusion length of the activator, an asymptotic
analysis for a simpler model is tractable in one dimension
[48,49] and this analysis can only be partially extended to
two-dimensional problems [50,51] for ring solutions. The
method outlines below provides a simple analytical approach
for the present 2D-model valid when the diffusion lengths are
comparable in magnitude and it demonstrates how this model
differs qualitatively from previous ones.

Assuming symmetry of revolution, it is convenient to
rewrite Eqs. (1) as

du
1

r

d

dr

[
r

du

dr

]
− b

ε
u = −1

ε
v(r)na(u),

dv

1

r

d

dr

[
r

dv

dr

]
+ h̃(vh − v) = vña(u), (A1)

where h̃ and ña(u) are defined as h̃ = h + na(uh) and ña(u) =
na(u) − na(uh). Using this notation, the diffusion length
lv =

√
dv/h̃ appears naturally, because ña(u) behaves as a

Dirac δ function. We use fixed boundary conditions with
(u, v) = (uh, vh) so that ña(u) tends to zero as r goes to
infinity with a spike centered at r = 0. In Eq. (A1), we assume
also the IRs have converged to their asymptotic value, so that
na(u) = n0ω

0
+/ω0

−eβu, β = 1.
These equations can be formally solved using the Green’s

function technique. Recall that if w0(z), w1(z) are two solu-
tions of the homogeneous problem with boundary conditions
w′

0(z = 0) = w′
1(z = ∞) = 0, then the Green’s function with

appropriate boundary conditions is

Gx(z) = 1

xW (x)
w1(x)w0(z) for x � z,

Gx(z) = 1

xW (x)
w0(x)w1(z) for x � z, (A2)

where W (x) is the wronskian.
For d = 2, w0,1(r) are Bessel’s functions. Then u(r) solves

the integral equation

u(r) = 1

duε

[
K0(r/lu)

∫ r

0
zdz I0(z/lu)v(z)na(u)

+ I0(r/lu)
∫ ∞

r
zdz K0(z/lu)v(z)na(u)

]
, (A3)

where I0, K0 are Bessel functions of zero order. From
Eq. (A1), v(r) satisfies a similar equation. Specializing to
r = 0, we have for the values of u and v at the maximum of

FIG. 13. Comparison between the analytical and numerical so-
lutions for the spike solution along the boundary line of Fig. 4.
The activator u and the regulator have equal diffusion constants,
du = dv = 1, with lv/lu = 1.68 as indicated by the bar. The contin-
uous lines for u(r) and v(r) correspond to the numerical solutions
of Eq. (1). The dotted lines for u(r) and v(r) are the analytical
solutions corresponding to (us, vs ) solutions of Eq. (A7). Points on
the continuous u-curve correspond to the analytical solution when
Eq. (A5) is self-consistently calculated using v(r) from the analytical
solution. For convenience, u-curves have been normalized by their
maximum values which almost coincides [umax = 5.72 for the direct
integration and umax = 5.92 for system Eq. (A7)].

the spike

us = 1

duε

∫ ∞

0
rdr K0(r/lu)v(r)ña(u) + vs

vh
uh,

vh − vs = 1

dv

∫ ∞

0
zdz K0(z/lv )v(r)ña(u), (A4)

where ∫ ∞

0
rdr K0(r/lu)v(r) ≈ vsl

2
u , (A5)

since ña(u) = na(u) + na(uh) in the first equation with
na(uh) � 1. This is enough to calculate (us, vs). For plotting
u(r) as in Fig 13, u(r) must tend to uh as r � lu. When
uh is negligible, this does not pose problem, but to compare
with numerical calculations at small but nonzero values of the
activator in the quiescent state, one has to self-consistently
evaluate this integral using v(r) from the analytical solution
for u to match uh as r goes to infinity. As expected from
Fig. 13, vh − vs is well approximated by the 2D-Green’s
function ∝ −K0(r/lv ).

Since ña(u) is strongly peaked at r = 0 and tends to zero
at infinity, all integrals in Eq. (A4) can be evaluated using the
saddle-point approximation. The second derivatives of u and v

are known from the equations of motions. Equations (A4) are,
therefore, equations for (us, vs), and this system completely
determines the solution. One finds for the second derivative

u′′(0) = 1

2l2
u

[
us − 1

b
vsna(us)

]
,

v′′(0) = 1

2dv

[vsña(us) − h̃(vh − vs)], (A6)

and all high order derivatives can be calculated in the same
way.
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Truncating this expansion to the second order gives only an
approximation for the integrals but is enough to describe the
bifurcation to the spike. One can now approximate u(r) and
v(r) in Eq. (A4) and use definition Eq. (C1) of Appendix C to
find

us = vsña(us)

b
F

(
ws

4
, l2

u /dv

)
+ vs

vh
uh,

vh − vs = vsña(us)

h̃
F

(
l2
v

l2
u

ws

4
,

l2
v

l2
u

l2
u

dv

)
, (A7)

where ws = vsña(us)/b − us is twice the magnitude of the
curvature of u at r = 0 scaled by l2

u with definition Eq. (C3)
for F .

To summarize, the saddle point approximation is a used as
substitution method to replace the problem of finding a set
of integral solutions by the problem of finding the solutions of
an algebraic system. Once the values us and vs are determined,
the full solution can be obtained from Eq. (A3) using again the
saddle point approximation. The main difference with the one-
dimensional calculation [48,49] is that the curvature of v(r) in
not negligible in two dimensions even in the limit lv/lu � 1,
so that v(r) cannot be considered as constant within the spike.

APPENDIX B: RESULTS FOR THE SPIKE SOLUTION

In general, Eqs. (A7) can only be numerically solved. To
proceed, the contour plots for the (us, vs) solutions of these
equations are plotted and the intersection points determined.
Figure 14 demonstrates the generic behavior of these solutions
as the ratio dv/(duε) is varied. When this ratio is sufficiently
large, the lateral diffusion of v is large enough to compensate
for the loss of v within the spike. The system possesses
two solutions at low and large values of the activator us in
the spike. The small us solution approximates reasonably the
numerical simulation, see Figs. 13 and 15, while the large
us solution of Eq. (A7) is almost singular within the spike.
This observation is consistent with a saddle-node bifurcation
where a stable and unstable solutions merge together along the
boundary line and cease to exist for lower ratio of dv/(duε)
when lateral diffusion is not strong enough. One interesting
consequence of the saddle approximation is that the scaling of
Eq. (A7) gives the geometry for the boundary line in Fig. 4
between the homogeneous state and the spike solution. Since
the parameters ε and dv enter only through the combination
ε/dv , the existence of solutions is only conditional to this ratio
when both parameters are varied. As a result, the bifurcation
between the homogeneous and the spike phases occurs along
a line in the (ε, dv/du) plane for the phase diagram of Fig. 4.

To derive approximate asymptotic results, it is useful to
approximate Eq. (A7) as

us = (us + ws)F
(
ws/4, l2

u /dv

)
,

h̃vh

b
= (us + ws)F

(
l2
v ws/

(
4l2

u

)
, l2

v /dv

)
, (B1)

since vs � vh and to consider the asymptotic expansions
derived in Appendix C. In practice, Eq. (B1) is a very good
approximation to Eq. (A7).

FIG. 14. Contour plot of the two self-consistent Eqs. (A7) in the
(us, vs ) plane for different values of dv/du. For sufficiently large
values of dv (continuous lines) the problem gives two intersection
points at low and large values of us. The small u solution corresponds
to case (a) of Fig. 15, while the large u solution has much stronger
variations (not shown). Decreasing dv (×0.8 for this case), the two
solutions merge at a single point and ceases to exist below a threshold
for dv/duε (dashed lines) corresponding to the homogeneous-spike
boundary line at the right of the phase digram of Fig. 4. Compared
with the direct integration method of Fig. 4(a), this approach gives
(us, vs ) ≈ (7.4, 0.1) instead of (7.85,0.16) from the direct numerical
integration of the system.

Taking the ratio of the last two equations gives for us

us = h̃vh

b

F
(
ws/4, l2

u /dv

)
F

(
l2
v ws/

(
4l2

u

)
, l2

v /dv

) . (B2)

Ignoring logarithmic corrections of order ln(l2
v /l2

u ), see
Appendix C, one obtains a characteristic scale for the activator
within the spike

us ≈ l2
v

l2
u

h̃vh

b
= dv

du

vh

ε
. (B3)

In practice, this expression overestimates the numerical result
by a factor of order two, so that comparison with the numerical
calculation is only possible by numerically solving Eq. (B1).
This asymptotic expression gives, however, a lower bound for
dv/(duε) under which the spike solution ceases to exist. To
derive it, it suffices to require that uh must be larger than some
threshold set by the natural rates of the IRs. One finds

dv

du
>

ε

vh
ln

[
ω0

−
ω0+

]
, (B4)

which overestimates the apparent slope of Fig. 4 by a factor 2
(where vh ≈ 6.4).

In conclusion, this method allows to identify characteristic
orders of magnitude for the activator in the spike and for the
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FIG. 15. Examples of spike solutions with symmetry of revolu-
tion for decreasing ratios of the diffusion lengths lv/lu indicated by
the thick bar. From the top to the down, (a) lv/lu = 5.26, (b) lv/lu =
2.80. The continuous lines, with a maximum at the center of the
spike, correspond to the activator u. The continuous lines, with a
minimum, are plots of the regulator v. The dotted lines correspond
to the saddle solutions for the same parameters. Cases (a) and (b) are
for parameters on the boundary lines with the homogeneous phase;
see Fig. 4. For graphical reasons, the plots of the activator u have
been normalized by the same value u(0), the saddle approximation
Eq. (A7) giving the same result as the numerical solution within a
few percent (h = 0.02, b = 0.1, 1/ε = 4.65 for the top curve and
h = 0.05, b = 0.1, and 1/ε = 2.6 for the bottom one).

boundary line between the homogeneous and the spike phase
of Fig. 4.

APPENDIX C: AN INTEGRAL

For what follows, it will be useful to consider the following
integral, see Ref. [52], Eq. (6.63):

Fn(α) =
∫ ∞

0
xndx K0(x)e−αx2

= 1

2αn/2
e

1
8α

[
�

(
n + 1

2

)]2

W− n
2 ,0

(
1

4α

)
. (C1)

When α is large, the following expansions hold:

F1(α) ∼ (ln(4α) − γ )/(4α) + . . . ,

F3(α) ∼ (ln(4α) − γ − 1)/(4α2) + . . . , (C2)

where γ = 0.577276 . . . is the Euler constant.

As in Eq. (A7), one defines

F (w, l2
u /dv ) = F1(w) + l2

u

4dvvs
[vsña(us) − h̃(vh − vs)]F3(w).

(C3)

From the numerical point of view, F1(α)/[αF3(α)] approaches
1 only in the limit where ln(α) is sufficiently large, so that
strong logarithmic corrections to Eq. (B3) are expected.

APPENDIX D: CURRENT CONSERVATION
AND φ3 THEORY

This Appendix demonstrates the equivalence of the model
with a φ3 theory in the asymptotic limit where the activation
of the feedback loop is simplified by introducing ligands
for receptor immobilization. In the limit we consider, the
limiting factor for the production of u is set by the number of
ligands, so that we disregard the regulator V assuming that all
I − L complexes are bound to V . We introduce the molecular
scheme

Ia + L
k+�
k−

I − L, (D1)

where an activated receptor binds an immobilized ligand
to form a complex I − L. Conservation of ligands in each
compartment implies the sum of complexed and free ligands
must be constant, L + I − L = L0. As in the text, we assume
that ligands are patterned inside an adhesion disk of size R
and that diffusion is sufficiently fast so that the concentration
of bound receptors is homogeneously distributed inside the
adhesive disk. We write Ia,out or Ia,in for the concentration of
activated receptors outside and inside the adhesion disk. As
before, the Ii,...’s correspond to inactive receptors.

Equilibrium between the active and inactive states of the
receptors implies

ω+(u)Ii,in − ω−(u)Ia,in = 0, (D2)

where u is the concentration of activator inside the disk. A
similar relation holds outside the disk and

Ia,out = ω+(0)

ω−(0)
Ii,out, (D3)

with

ω+(0)

ω−(0)
� 1. (D4)

Finally, conservation of ligands implies that the number of
complex I − L scales as

I − L = k+Ia,in

k+Ia,in + k−
L0, (D5)

so that it suffices to know Ia,in to know I − L.
To proceed, we note that current conservation for receptors

at the boundary of the adhesive zone implies

DiIi,out + DaIa,out = DiIi,in + DaIa,in, (D6)

where the Di,a’s are diffusion constants for the active or
inactive forms of receptors. We will take the limit Da � Di as
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FIG. 16. Plot of the equivalent φ3 functional f (u) for gprod =
0.11, 0.115, 0.12, where a is the rate of production of the activator
as defined in Eq. (D11). For comparison with the stochastic simula-
tions, the parameters are the same as the ones in Fig. 10. According to
the Maxwell’s condition, bifurcation takes place between the lowest
u− and highest u+ root of f (u) when the area under the curve is zero;
see Eq. (D12). Note that the continuous limit gives a larger value for
the feedback strength, i.e., ≈0.12, than its stochastic counterpart, i.e.,
≈0.1075.

done in text. Outside the disk, the number of activated receptor
is small so that Ia,out = 0. We conclude

Ii,in = Ii,out

[
1 + Da

Di

ω+(0)

ω−(0)
eβu

]−1

, (D7)

with

Ia,in = ω+(0)

ω−(0)
eβuIi,in, (D8)

so that we can use Eq. (D5) to find I − L.
To simplify this expression, we assume the activated recep-

tors have small diffusion constants, Di/Da � 1. In that case,

I − L = L0

[
1 + k−

k+Ia,in

]−1

= L0

[
1 + k−

k+

ω−(0)

ω+(0)Ii,in
e−βu

]−1

.

(D9)

In the fast diffusive regime, Ii,in = Ii,out is constant inde-
pendent of u. Because I − L is a function of u, we write
I − L = I − L(u) in Eq. (D9).

Assuming furthermore that the rate of production of u is
proportional to I − L with a proportionality constant gprod, the
equation of u takes the form

∂u

∂t
= du�u + f (u), (D10)

with

f (u) = −bdegu + gprod I − L(u), (D11)

where the irreversible degradation rate constant bdeg plays the
same role as b/ε in the text. Plots of f (u) are graphed in
Fig. 16 and demonstrate that the rate of activation of u has
the form of a single reaction diffusion with the property of
bistability, since it admits two steady states given by the zeros
u± of f (u). Then, it is known that the stability criterion for
switching from one solution to the other one is given by the
Maxwell condition [34],

∫ u+

u−
f (u)du = 0, (D12)

which can be meet by varying the rate of production gprod.
Comparison with the stochastic calculation of Fig. 10, see
Fig. 16, demonstrates that the slight difference for the thresh-
old value of a can be easily explained using finite sizes scaling
arguments as in critical phenomena.

Finally, it is interesting to investigate the large off-rate limit

k−
k+Ii,in

� 1, (D13)

with a large number of ligands such that the ratio L0/k− stays
finite. Then, by Eq. (D5) I − L is finite and we neglect the
changes in the concentration of ligands.

This means that the critical ratio for the effective functional
in Eq. (D9),

k−
k+Ii,in

ω−(0)

ω+(0)
e−βu � 1, (D14)

is much larger than 1. In this limit, the equivalent Landau
functional has an equivalent functional form of the one studied
in the first part of this paper, or

−bu + aIi,in
k+
k−

ω+(0)

ω−(0)
eβu. (D15)
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