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Using contact statistics to characterize structure transformation of biopolymer ensembles
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As a unique subset of functional polymers, many biopolymers have a set of well-defined three-dimensional
(3D) structural characteristics that can be described by spatial contacts between monomers. Statistical analysis of
the contacts has been extremely productive in characterizing the biopolymer structural ensemble, such as for 3D
chromosome structures. Often, native contacts and compartment structures are the focus of the studies, while the
generic polymer aspect, such as the overall decaying of contacts with increasing sequence distance, is analyzed
separately or preemptively removed. Here, we explore insights that can be gained by performing “compartment
analysis” that keeps the distance decay, which we believe is particularly useful for characterizing the structure
transformation of biopolymers. We tested contact analysis on several such transformations under physical
perturbation or biological processes, including (1) unfolding of proteins induced by thermal denaturation, (2)
chromosome conformation transition during the cell cycle, and (3) chromosome unpacking by physicochemical
perturbations. Useful score functions were developed to further quantitatively characterize the transformation
judging from the contact analysis. We also find that the sinusoidal undertone of eigenvector patterns (the
“unwanted,” low frequency signal, in contrast to the detailed A/B compartment) that had previously been
attributed to biological effects of centromere proximal and distal interactions may in fact reflect a universal
feature of polymers that have relatively weaker long-range contacts.
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I. INTRODUCTION

Many linear biopolymers, including well-understood ex-
amples of proteins and nucleic acids, are structured or
semistructured polymers, which means that they have defined
structure(s) or at least well-defined structural components
[1,2]. Often, their three-dimensional (3D) folded conforma-
tions are essential to fulfill their biological functions, and
their structural features separate them from generic polymers.
How these biopolymers are able to fold and sustain specific
shapes has been an important question in biological physics
research. The essential features are encoded by short-ranged
favorable contact interactions between monomers that are not
sequence neighbors. At the simplest level, even a model of
“two-colored” beads on a string reproduces basic features of
structure formation for biopolymers [3,4]. In protein fold-
ing, this type of model reflects a basic hydrophobic-polar
(HP) dichotomy where H-H contact interactions are favorable
compared to that of H-P [5]. In chromosome folding, this
two-color model reflects a dichotomy of gene-rich/gene-poor
regions (A/B compartments [6]) where gene poor or gene rich
regions tend to aggregate with like types (e.g., favorable B-B
and A-A interaction compared to A-B interaction) [7]. With
a more refined biopolymer model containing bead types that
accurately reflect the specific physical interactions between
different parts of the polymers, other complicated and vital-
for-function structures emerge.

How one should characterize the conformations of these
structural ensembles is an essential question for the physical
description of the biopolymers and the interpretation of their
biological functions. For the structural ensemble of a highly
structured biopolymer, the structural fluctuation can be char-
acterized similar to a “vibrating” solid [8,9], where a set of

Cartesian coordinates is conventionally used as the degrees of
freedom (DOFs). At the other limit, a generic polymer that
does not have specific non-neighboring interactions are best
characterized by internal coordinates of bonding terms (bond,
angle, and torsion angle) [10]. In between, when one wants
to study a biopolymer’s transformation, for example, from a
structural to a disordered state, it is more suitable to use con-
tact DOFs [11,12]. The concept of contacts (spatial proximity
formed between different parts of the polymer) is frequently
used to characterize such (semi)structured conformations, and
these contact interactions are often collectively displayed in
the form of a matrix. In the case of chromosomes, such contact
matrices often are derived from genome-wide chromosome
conformation capture (Hi-C) data.

Statistical analysis methods, especially principal compo-
nent analysis (PCA), have been used for studying the collec-
tive “modes” of biopolymer contacts. For example, a popular
contact analysis method, known as the “compartment anal-
ysis” in the chromosome field, was designed to characterize
and even amplify the “signature” of the well-folded structures
[6,13]. On the other hand, studying the more flexible or even
somewhat disordered structural ensembles can be important
and have practical biophysical applications. Researchers often
perturb the well-folded biopolymers with various environ-
mental perturbations to examine how their structural stability
and dynamics alter, eventually moving these biopolymers
out of their native conformations and into an unfolded state
[14–17]. Also, many biopolymers, from intrinsically disor-
dered proteins to whole chromosomes at certain points in the
cell cycle, may be viewed as weakly interacting polymers
(with significantly less specific long-range contacts) that ap-
proach a more generic polymer state. Thus, it is desirable to
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FIG. 1. A cartoon illustration of three different analysis methods,
(a) I-PCA, (b) MI-PCA, and (c) E-PCA, on contact matrices.

use contact analyses not only for characterizing the ultimate
structure aspect (the “enthalpic” aspect) of these biopolymers,
but also for accessing the generic polymer aspect of the
ensemble.

The schemes of using principal component analysis for
studying contacts discussed in this work, E-PCA, I-PCA, and
MI-PCA, are recapitulated in Fig. 1. As we have described
previously, contact fluctuation analysis, E-PCA, characterizes
the dominant fluctuation of the structural ensemble, while
contact structural analysis, I-PCA (and its slight variation
version MI-PCA) describes the consensus features of the
ensemble such as domain and compartment classification
[18]. Specifically, the matrix form of the contact information
is used for these analyses. The column and row indices of
these matrices are naturally derived from the linear indexing
of the polymer. Contact interaction strength ui j has a value
of 1 if contact formed between monomers i and j, and 0
otherwise. A simple definition based on distance Ri j provides
ui j = �(RC − Ri j ), where RC is the cutoff. One needs further
define Ui j = 〈ui j〉 as the ensemble average of the contact
interaction strength, also known as interaction frequency.

E-PCA treats each contact explicitly as an independent
variable ui j and, for a matrix of N × N , it largely contains
an order of N2 variables varying from one matrix to another.
Here, N represents the dimension of the system, i.e., the
number of basic building blocks of that biopolymer. For
proteins, these building blocks can be amino acids [19] or
coarse-grained segments that may even contain secondary
structural elements [20], and, for chromosomes, the building
blocks are usually genomic regions: bin size ranges from
103 to 107 base pairs (bp), with typically used values from
104 to 106 bp. In general, E-PCA has a covariance matrix
CE

i jkl = 〈(ui j − 〈ui j〉)(ukl − 〈ukl〉)〉. In contrast, for I-PCA

and MI-PCA, which are methods frequently used for studying
chromosome contact matrices, one treats each row of con-
tact matrix as a set of independent data and one has total
N implicit contact variables ui that vary from row to row,
CI

i j = 〈(ui − 〈ui〉)(u j − 〈u j〉)〉. Specifically for MI-PCA, we
first obtain contact average over rows 〈Uj〉 = ∑

i Ui j/N and a
matrix δU defined by its elements δUi j = Ui j − 〈Uj〉. Then,
the covariance matrix for MI-PCA CI = δU T δU is obtained.
Once the covariance matrix CI or CE is obtained, principle
component analysis (PCA) is applied to obtain the collective
modes of fluctuation from the corresponding mean contacts
〈ui〉 or 〈ui j〉. These modes of variation for 〈ui〉 reveal the
domain information of the ensemble while variation modes
of 〈ui j〉 display dynamics.

II. THE GENERIC POLYMER LIMIT AND THE PROBLEM
OF REMOVING DISTANCE DECAY IN CONTACT

MATRICES

For chromosome contact data and particularly for the de-
tection of A/B spatial compartments, instead of direct analysis
of the “raw” contact interactions ui j , often researchers ma-
nipulate the matrix to enhance the weight of the off-diagonal
components (long-range contacts) and obtain an alternative
definition of contact interaction, vi j = ui j/b(|i − j|). Here,
scaling factor b is a function of genomic distance and scales
the raw contact data ui j . It was initially designed to preemp-
tively “subtract” the random, generic polymer nature of the
contact matrix and amplify the structured polymer aspect of
these biopolymers [21–23]. Even though some early analysis
recommended eigenvector decomposition of contact matrices
without such modification [24], most applications of PCA to
chromosome contact matrices (especially intrachromosomal
contacts) have continued to include such an operation (some
of the recent examples can be found in [25–27]) and the
differences between the results obtained with and without
this normalization have not been thoroughly explored, to our
knowledge, in any previous work.

It is nontrivial to model factor b(|i − j|), and various
function forms have been tested to best serve the signal
enhancing purpose. There are largely two types of approaches.
One is using a derived or empirical function form, and
previous studies on generic polymers have been quite ex-
tensive [28–30]. For example, factor b be can a power law
form |i − j|−D/2 or an exponential form exp(−α|i − j|). The
other enhancing approach uses the statistics of raw data ui j

itself. The power law form was derived from the generic
polymer limit, in which case the distribution of the end-

to-end displacement
⇀
r , according to the random walk the-

ory [29], is p(
⇀
r ; L)d

⇀
r = (2πLa2)−3/2 exp[−3r2/(2La2)]d

⇀
r ,

where L is the number of basic building blocks and a is
the linear length of the building block unit. This equation
can be generalized in a general D-dimensional polymer as

p(
⇀
r ; L) = (2πLa2)−D/2 exp[−Dr2/(2La2)]. Thus, for a 3D

random polymer (D = 3), the chance of residues i and j form-
ing a contact can be viewed as a loop or a polymer cyclization
problem, where the chance of a random walker revisiting
the same location r = 0 after distance L = |i − j| steps is
p(0; i − j), i.e., pi j ∼ |i − j|−3/2. This random walker model
can be used to describe the simplest case: an ideal generic
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polymer in a theta solvent. The practical situations can be
more complicated. For example, a poor solvent condition
packs the polymer, while on the other hand polymers in good
solvent are more extended. Researchers found that a fractal
dimensional biopolymer [30] might be better for the hierarchi-
cal structure of chromosome fold [21]. Using the generalized
form of random walk models, one obtains a power law decay
p(0; L) ∼ L−D/2. Practical fitting for chromosome data even
provides varying D depending on L, such as D ≈ 2 for longer
L and as small as D ≈ 1.5 for shorter L [31]. Other variety of
empirical function forms with a gentler decay have been used
as well, such as exponential form p(L) ∼ exp(−αL), which
has the advantage of smoother short length scale. However,
such exponential formula can also be limited by its applicable
range [31].

As shown in Fig. 2(a), we calculated the top eigenvectors
of MI-PCA using a directly generated mean contact matrix for
exponential and power law decay and a computer simulated
random polymer. One can observe that the results are always
a symmetric odd function with respect to the middle point.
The components of MI-PCA eigenvectors always have mixed
signs, i.e., some are positive, while others are negative, if
the diagonal elements of the matrix are larger than the off-
diagonal elements. Practically, this is always true for a poly-
mer’s contact matrix since the contact frequencies of sequence
neighbors are much higher. The location of sign change can
be defined as a node or a boundary. Often these nodes for a
structured polymer are important and can be used to separate
biopolymers into distinct structural domains, often called A/B
compartments for chromosomes [32]. In contrast to MI-PCA,
the elements of an E-PCA eigenvector can potentially have the
same sign, i.e., a global “breathing” motion that have contacts
forming and breaking simultaneously.

Besides mean contact matrices constructed using exact
mathematical formulas of the exponential or power law de-
cay forms, we also obtain the mean contact matrix using
computer simulation data of a 65-bead generic polymer that
lacks specific contact interaction. For a fair comparison of
polymers with different number of beads, we can project the
result on the ideal mathematical formulation-based results of
a 100-bead polymer using a scaling transformation: x∗ = x ×
(100/65) and y∗ = y × (100/65)−1/2. This random polymer
simulation is a limiting case of a protein polymer simula-
tion where the native contact interactions are removed. The
rationale for scaling to account for the difference between
different sizes of the mean contact matrix will also be given
in the next section, where we discuss the conformations of a
65-residue protein polymer under thermal perturbation. Our
simulation results matched quite well with the ones generated
by mathematical formula, particularly, the exponential decay
ones [Fig. 2(a)].

From Fig. 2(b), we also can observe that high order eigen-
vectors (those with a smaller eigenvalue) have more nodes
and in general, the nth mode, MI-PC n, contains n nodes
at the generic polymer limit. It is interesting to point out
that the eigenvectors MI-PC1 to 5 resemble an expansion of
cosine series, which is not accidental. In fact, one can locate
a family of matrices having their eigenvectors being exactly a
series of trigonometric expansion. The eigenvectors of Rouse
polymer matrix A provide such an instance, where matrix A
is essentially a second-order differentiation operator [33,34].
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FIG. 2. (a) The dominant mode of MI-PCA for a random poly-
mer, MI-PC1, including power law form of mean matrix, exponential
decay form of mean matrix, and a result of computer simulation of
the polymer. (b) The top five eigenvectors of MI-PCA for the case
of the exponential decay with α = 1.5. Eigenvectors with smaller
eigenvalues have increasing number of nodes. (c) The top eigenvec-
tor of a band matrix whose nonzero elements are uniform varies with
changing bandwidth k.

In general, matrix B = A + cxI (I being identity matrix and
c a constant) shares the same eigenvectors with matrix A.
Practically, all mean contact matrices with much stronger
diagonal component and a very fast off-diagonal decay will
have a covariance matrix CI with similar characteristics.

We also examined the MI-PC1 signature of another type of
contact matrix, band-diagonal matrices [Fig. 2(c)]. One can
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see that with increasing band width, the signature of MI-PC1
deviates from the eigenvectors of the “ideal” non-interacting
polymers displayed in Fig. 2(a). As we will demonstrate
below, some of the features of the deviation resemble certain
observations of mitotic chromosome structures.

Because it is not clear which function form is best at
removing the random polymer “background feature” in prac-
tical situations, the alternate common approach of treatment
is normalization by an empirical average or median contact
count at each length scale [21–23,35]. The common approach
is directly normalizing by the average of the off-diagonal,
more precisely, the average of k-diagonal elements, where
k is a measurement of its relation to the main diagonal,
i.e., vi j = ui j/bk with bk = ∑

i j ui j × δ|i− j|−k/
∑

i j δ|i− j|−k =∑
i ui,i+k/(N − k). Here Kronecker delta selects k = |i − j|.

This way, the strength of matrix elements vi j will not drop
off as that of ui j with increasing k. One drawback for this
practical approach is that, when k is large, that is for those
extreme super-diagonals and sub-diagonals, there are few
matrix elements to contribute to the average.

While pre-treating a contact matrix can be useful to em-
phasize off-diagonal interactions, it has a few potential disad-
vantages. First, as we will demonstrate below, such treatment
will remove or at least reduce the aspect of polymer (ther-
mal) fluctuation, and thus make the examination of polymer
conformations subjected to physical and chemical perturba-
tions less direct. Secondly, the treatment will create false
positive information on domain structure when the polymer is
near the generic polymer limit. The reason is straightforward.
At the generic polymer limit, a truly fully sampled ui j will
provide all elements vi j ≡ 1 and thus, return a zero valued
covariance matrix and thus a uniform domain. However, in
any practical situation, there will be at least numerical noise
that make vi j less than perfect and thus create false-positive
domains in the now nonzero covariance matrix. Thus, we find
that treated matrices can be useful to reveal changes in folding
patterns when the “signal” is strong enough, but they may
not be best when one wants to compare a broad spectrum of
conformation ensembles, as we will demonstrate below using
specific examples.

It is also important to point out that, throughout this work,
the pretreatment by scaling (ui j → vi j) refers to off-diagonal
distance normalization. This operation must not be confused
with many correction schemes to remove biases from raw
Hi-C data [24,36–39]. For example, the correction to remove
experimental artifacts (which arise from Hi-C steps involving
sequence-specific DNA cleavage and differential PCR ampli-
fication of sequences with different GC content) is achieved
by iterative correction and eigenvector decomposition (ICE)
normalization. This ICE approach balances the matrix row

and column sums by transformation ui j = u′
i j

βiβ j
, where βi =∑

k u′
ik and u′

ik is the raw number of contact hits [24,38].

III. CONTACT ANALYSIS FOR PARTIALLY STRUCTURED
PROTEINS AND CHROMOSOMES

Here we provide examples of biopolymer data that may
exhibit a large range of dynamic (folding) motions along a
spectrum of structure order, from relatively structured to the

effective generic polymer limit, without specific contacts. The
first example is a model protein system subject to increasing
thermal noise which undergoes an unfolding transition. The
second example is chromosome changes during the cell cycle,
where chromosome structure dramatically reorganizes from
interphase to metaphase. Last but not the least, we examined
the less structured ensemble resulting from a physicochemical
perturbation of chromosome structures, in which chemicals
such as salt and histone deacetylase inhibitor drugs act to
decondense chromosomes, which might destabilize chromo-
some structures and push them towards the direction of losing
specific contacts.

A. Proteins approach the generic polymer limit
with rising temperature

The first example is a structural contact analysis of a small
protein (65 amino acid residues), chymotrypsin inhibitor CI-
2 (PDB ID: 2CI2) [40] subjected to thermal perturbations.
The advantage of using simulation data is that they provide
information about individual structural fluctuation and we can
perform E-PCA for a comparison with MI-PCA. They also
provide direct 3D coordinate information that is not available
for chromosome structures at high resolution. Here, we use
MI-PCA for this pedagogical system to demonstrate how
partially folded protein conformations can be characterized by
contact statistics and how the results change with increasing
temperature. CI-2 has a simple fold of several secondary
structure elements (four β strands and one α helix), as shown
in Fig. 3(a). We adopted a simple coarse-grained Hamiltonian
(Cα Go model) of the protein that has frequently been used
to study protein contact dynamics and folding [41,42]. The
configurations were sampled from the molecular dynamics
simulation package GROMACS [43] and setup program SMOG

[44]. The simulation timestep dt is 0.0005 and total 2 × 108

steps were used for each simulation. Snapshots were taken at
every 10 000 steps. Finally, 20 000 snapshots were converted
to contact matrices. Here a simple distance scheme is used,
i.e., a contact is being formed and ui j = 1 when the distance
between Cα atoms of a pair of amino acid residues ri j is
less than a distance cutoff 6.5 Å, and ui j = 0 otherwise. The
contact matrix of the crystal structure using this definition is
shown in Fig. 3(a).

We display the results of I-PCA (particularly, MI-PCA)
and E-PCA for this system at various temperatures (T =
0.5, 1.0, 4.0, and 10.0 Tf ) in Figs. 3(b) and 3(c), respectively.
Here, temperature T is expressed in the unit of the folding
temperature Tf at which point the protein spends roughly 50%
of time in the native, folded state and the other 50% unfolded.
For a lower temperature T = 0.5 Tf , we observed that MI-
PC1 characterizes the mean contact map with clear domain
features, while the corresponding E-PC1 describes the internal
contact breaking and forming dynamics of this folded struc-
ture. At T = Tf , we see that the structural features revealed
by MI-PCA are weakened. At even higher temperatures, the
structural features disappear and the results approach that of
the generic polymer limit shown in the previous section. Note
that these high temperatures are not meant to be taken literally.
Rather, they are used to demonstrate the effect of weakening
native interactions. An interesting observation is that, even at

012419-4



USING CONTACT STATISTICS TO CHARACTERIZE … PHYSICAL REVIEW E 101, 012419 (2020)

0 15 30 45 60
0

15

30

45

60

B

A:E

C:D

D:E

(a)

-0.2
-0.1

0
0.1
0.2

T=0.5

(b) A B C D E

-0.2
-0.1

0
0.1
0.2

T=1.0

-0.2
-0.1

0
0.1
0.2

T=4.0

-0.2
-0.1

0
0.1
0.2

T=10.0

0 15 30 45 60
residue index

-0.2
-0.1

0
0.1
0.2

T=35.0

15 30 45 60
0

15

30

45

60

15 30 45 60 15 30 45 60 15 30 45 60

T =  0.5 T
f

T =  4.0 T
f

T =  T
f

T =  10.0 T
f

(c)
residue index

re
si

du
e 

in
de

x

residue index

re
si

du
e 

in
de

x

M
I-

P
C

1

FIG. 3. (a) Structure and contact map of protein CI2. (b) MI-PC1 of protein CI2 at different temperatures. The dashed line is the reference
system of backbone interaction only. (c) The corresponding E-PC1 of protein CI2 at different temperatures are shown using its significant
elements (a cutoff of |di j | > 0.025).

high T = 35 Tf , IPCA still reveals noticeable deviation from
the ideal polymer behavior. Meanwhile, one could not easily
distinguish such ensemble from a random unfolded ensemble
by direct visualization, which indicates the sensitivity of the
I-PCA method.

For a comparison and a demonstration of what E-PCA
reveals, we show the top dynamic modes at the corresponding
temperatures. Note the drastic differences of contact structural
analysis I-PCA and contact dynamics analysis E-PCA’s eigen-
vectors. One is expressed essentially by a linear plot, i.e., 1D
function ai while the other is often expressed in the form of
the matrix ai j that symbolizes a particular fluctuation mode of
contact dynamics. For example, T = 4.0 Tf E-PC1, the domi-
nant mode of fluctuation, displays the forming/breaking of the
α helix, which further nucleates with the rest of the secondary
structures around Tf , which is consistent with experimental
and theoretical studies [45,46].

B. Mitotic chromosomes approach the effective generic
polymer limit during the cell cycle

Chromosomes are semistructured biopolymers which
change their conformations and compactness depending on
the cell cycle stage [47]. The transition from interphase
chromosome structure through prophase and into metaphase
was recently captured in detailed Hi-C contact maps for

synchronized DT-40 chicken cells [48]. In G2 (t = 0 min),
before the cell enters mitosis, chromosomes show all the
typical hallmarks of highly organized interphase structure,
including topologically associating domains (TADs) [49,50]
and A/B compartments [6]). As the cell progresses through
mitosis, these conformations start to disappear. Upon entering
prophase [t = 2 min after cyclin-dependent kinase 1 (CDK1)
checkpoint release], compartments and TADs are lost, and the
chromosomes start to become linearly organized structures.
The chromatids become more shortened and thicker as the
cell enters prometaphase (t = 10 min) and ultimately lead
to the formation of fully condensed metaphase chromosomes.
Here, we examine the contact matrices of the 39 chicken
chromosomes at seven time points (t = 0, 2, 5, 7, 10, 30, and
60 min) starting from G2 phase to late prometaphase, binned
at 40 kb and preprocessed with iterative correction [48].

We display the MI-PC results of chicken chromosome 21
(chr21) in Fig. 4. As shown, chr21 is quite structured at the
G2 phase (t = 0 min). But as the prophase progresses, the MI-
PC1 signals start to resemble that of a generic noninteracting
polymer. From these observations, it can be concluded that
chr21 transitions from well folded (highly ordered structure
with specific contacts) to a linearly organized “effective poly-
mer” (fiber) that lacks specific long-range contacts during the
mitotic phase. It is important to discuss the structural nature
of the mitotic chromosome here. As demonstrated by the
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FIG. 4. MI-PC1 of chicken chromosome 21 (chr 21) at time-
points progressing from G2 to late prometaphase.

imaging results at t = 60 min in Ref. [48], chromosomes are
shown as thick fibers with a thickness of 1 μm. It is important
to point out that the close match to the MI-PCA curve of a
generic noninteracting polymer during metaphase does not
mean that the structure behaves as a linear DNA polymer at a
much finer resolution. Instead, the compacted metaphase fiber
as a whole acts as a coarse-grained polymer without specific
distal contacts, while a sophisticated local structural model
of regular loops being packed along a spiral “vine” to form
such fiber was shown [48]. Also, it is noteworthy that one
can observe the underlying sinusoidal undertone throughout
the time points of the cell cycle monitored here, even at
t = 0 min where the chromosomes are still quite structured.
Such undertone indicates the relatively weaker long-range
contacts compared to the near diagonal ones.

C. Chromosomes maintain detailed structure
under salt and drug treatments

We next asked whether chemical perturbations to chromo-
somes, analogous to increased temperature in protein simula-
tions, would cause their structure to approach a more generic
polymer state. We have examined two types of perturbations
with Hi-C: changes in chromatin compaction via histone
modifications and changes in cation concentration [51] (high
and low salt). We find overall that these perturbations did not
unpack the chromosome to the level of an effective generic
polymer. However, we note that this approach can distinguish
the degrees of partial chromosome folding that otherwise

would look nearly identical in a distance decay normalized
compartment analysis.

Histone deacetylases (HDACs) directly affect local chro-
matin structure by removing acetyl groups from histone tails
and in turn making chromosomes more packed [52]. Their
inhibitors, HDACi, such as trichostatin A (TSA) allow the
chromosome to exist in a more acetylated state, an open
conformation which is more easily accessible to transcription
factors [53]. The decondensation of chromosomes by TSA
has been shown to affect the overall physical stiffness of
nuclei [54], but it is not clear how it affects the polymer
properties of chromosomes as measured by Hi-C contacts. We
have analyzed the Hi-C chromosome contacts of cells treated
with 0.5 μM TSA for 2 hours, a time point at which local
histone modifications can be detected [53]. As demonstrated
in Fig. 5 using human chr21, MI-PC1 is heavily structured
under these perturbations and does not resemble the signature
of a generic polymer. However, one can clearly identify inter-
esting regions (such as 21q22.2-21q22.3) that show significant
differences in MI-PCA profiles that is not noticeable with a
decay-normalized analysis. A full discussion of the important
biological implications of these specific changes are beyond
the scope of the current study, whereas here we emphasize
that applying MI-PCA without matrix pretreatment reveals
variations between two structures that are not apparent in
traditional “compartment analysis.”

Perturbations such as altering concentration of salts may
also affect the level of packing [51]. For example, depleting
salt perturbs the electrostatic interaction, leading to stronger
electrostatic repulsion and swelling of the chromosomes. On
the other hand, stronger electrostatic shielding at high salt
concentration will compact chromosomes [55]. However, ex-
ploratory study of MI-PC1 analysis of Hi-C contacts under
these perturbations shows that higher order topology is main-
tained, and these chromosomes do not behave more like a
generic noninteracting polymer (data not shown).

D. Cross comparison using score functions

We demonstrate here that score functions based on the
MI-PC1 can further characterize the generic polymer nature
(or lack thereof) of biopolymers such as proteins and chro-
mosomes. Before we present the application with concrete
data, we first introduce two empirical score functions (based
on MI-PC1 as the input) to measure how close a particular
conformational ensemble is to the two limiting cases: at one
end, the native, folded structure and at the other end, the
generic, noninteracting polymer.

For comparing whether a structure is close to a specific
folded structure, we must use information from that specific
structure as a reference state, as there is not a universal
structural signature for all structured polymers. Specifically,
we define a structure deviation score Rstr = ∑

i (ai − ai,ref )2.
Here the reference state is chosen as the MI-PC1 of a highly
structured ensemble. For example, for protein ensemble, we
can use the low temperature limit as a reference state. A
high value of Rstr may indicate a large deviation from that
structure. On the other hand, we would like to define how
an ensemble is deviated from to the presumed generic poly-
mer limit with no specific structures. Here we define an
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FIG. 5. The comparison of drug (TSA) treated human chromo-
some 21 and the corresponding control using direct contact analysis,
i.e., MI-PCA on ui j (a) and the conventional approach with the
distance-decay scaled (b), i.e., MI-PCA on vi j . Here the bin size
used for the analysis is 40 kb. The corresponding contact interaction
matrices ui j (ICE normalized, but no distance normalization applied,
bin size 100 kb) for the control (c) and TSA treated (d) chr21. The
region where direct contact analysis detected a difference between
TSA and control is highlighted with ellipses.

ad hoc function, termed the interacting polymer score, Rip =∑N−1
i=1 (ai+1 − ai )2 × N2

4π2 , which works out well practically.

Here, the linear size of the chromosome contact matrix, N is
defined as the ratio of the total size of chromosome over the
bin size. The rationale behind the resolution-free definitions of
Rip and Rstr is as follows. Ideally, we want our score functions
to be independent of how we choose the bin size. When we
perform the MI-PCA, we can describe the normalized top
eigenvector with its components ai with i = 1, . . . , N . How-
ever, this definition of ai is not resolution free and depends on
bin size. By the definition of a normalized eigen vector, we
have

∑N
i=1 a2

i ≡ 1, so with increasing N the value of element
ai decreases as 1/

√
N . This point was well demonstrated

in the transformation of y∗ = y × √
65/100 in Fig. 2(a), so

we can project I-PCA results of a hypothetical 100-bead
ideal polymer using a 65-bead polymer simulation. Thus, a
resolution-independent definition of normalized eigenvector
is necessary. Thus, we define a transformation ai → ã(x)
which makes ∫π

−π ã(x)2dx ≡ 1, where we define

x ≡ 2π × (i/N ) − π. (1)

Here, we map the discrete index range i ∈ [1, N] to the
normalized continuous range x ∈ (−π,+π ]. We choose to
use π in our definition of a normalized range because, as
demonstrated above, the IPCA eigenvectors of polymers ap-
proaching the noninteracting limit have the nature of a cosine
function series. Comparing the normalization condition in the
integral form and in the discrete sum form and since dx →
� x = 2π/N , we can define a new resolution-free function

ã(x) ≡ ai × (2π/N )−1/2 . (2)

Finally,

Rip ≡
∫ (

dã(x)

dx

)2

dx =
∫ (

ã(x + �x) − ã(x)

�x

)2

dx

=
∑

i

(
ai+1 − ai

�x

)2

× (2π/N )−1 × �x

=
∑

i

(ai+1 − ai )
2 × (2π/N )−2. (3)

Thus, we have a factor (N/2π )2 in the definition of Rip. This
factor essentially accounts for the slope being steep in the
normalized function ã(x) since the length is 2π instead of
N . On the other hand, for Rstr, we do not need to explicitly
compensate when comparing different resolutions N , since

Rstr ≡
∫

(ã(x) − ãref (x))2dx =
∑

i

(ai − ai,ref )2. (4)

We first apply our scoring functions to the protein folding of
CI-2 at different temperatures. As shown in Fig. 6(a), with
rising temperature the polymer gradually loses long-range
contacts (measured by a smaller interacting polymer score)
and gradually loses its nativeness (measured by an increasing
of deviation from the native reference MI-PC1). Here the na-
tive structure reference state is defined by T = 0.5 Tf . For the
second example of chromosomes during the cell cycle, we can
measure the corresponding properties for chr21, and we obtain
an interesting curve with the evolution of time [Fig. 6(b)]. It
first decreases the structural order by losing native contacts
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FIG. 6. (a) Protein CI-2 at different temperatures characterized
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a specific folded structure at the low temperature limit and the y
axis represents how well the structure resembles the features of
the corresponding generic polymer. (b) Chicken chromosome 21
at different time points during the cell cycle characterized by two
parameters Rstr and Rip.

and forming new contacts then increases nativeness again at
t = 10 − 30 min before finally approaching the noninteract-
ing limit at t = 60 min. Other chicken chromosomes show
a similar dynamic signature as well, suggesting that this
multiphase progression towards the mitotic chromosome is a
fundamental biological feature. The detection of this multi-
phase structure transition feature showcases the usefulness of
the contact analysis as this feature is not immediately apparent
in the original Hi-C contact matrices.

Also, the conclusion that the nearly noninteracting, generic
effective polymer state of prometaphase chromosomes at t =
60 min holds throughout the chicken genome, not only for
chr21. In Fig. 7, we display the MI-PC1 [Fig. 7(a)] and the
corresponding interacting polymer score [Fig. 7(b)] across
chicken chromosomes at prometaphase. We observed an in-
teresting feature: the longer chromosomes have a larger Rip

than the shorter ones. A few chicken chromosomes, chr16,
22, 25, and Z, display gaps in their contact maps which
may affect their scores, but the differences observed between
others cannot be simply explained by data artifacts and curve
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FIG. 7. (a) The structural features of chicken chromosomes at
t = 60 min expressed by the MI-PC1s of the contact matrices.
(b) The Rip versus the corresponding chromosome length.

roughness. Further, this trend cannot be explained by the more
trivial aspect of polymer chain length dependency, as the score
function Rip has been properly normalized in its definition.
It is interesting to speculate why larger chromosomes have
larger Rip at t = 60 min and are visually different from the si-
nusoidal curves. One possible explanation is that larger chro-
mosomes lag behind shorter ones in term of cell cycle dynam-
ics, taking longer to reach their final mitotic structure. Another
scenario could be that, with a fixed persistent length, larger
chromosomes make more long-range contacts and thus effec-
tively have a wide band-diagonal like matrix, as illustrated in
Fig. 2(c).

Another interesting observation is that allosome chrW
appears to be the only chromosome highly structured at t =
60 min, both from a direct observation of MI-PC1 and from
its position as a clear outlier on the score function plot.
Upon closer inspection of the contact map, we speculated that
these “structures” in fact represented errors in the sequencing
assembly of the chicken genome chrW as represented in
genome database galgal5 [56]. This misassembly, confirmed
by galgal6, would have been much less noticeable without this
current method of examination.
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IV. CONCLUDING REMARKS

Statistical analysis of contact matrices has been used to
characterize the structure and dynamics of biopolymers. Par-
ticularly, I-PCA type of contact structural analysis is used
to describe chromosome structures. Often, the matrix is pre-
treated to scale up the long-range contacts and enhance the
signature of the structure. We explore the advantages of
performing similar analyses with untreated contacts, espe-
cially for those structural ensembles of biopolymers with little
specific structure and thus few long-range contacts. We also
further suggest secondary tools to characterize the transfor-
mation from structured polymers to a generic polymer limit
based on the first eigenvector of I-PCA. We found that certain
operations on chromosomes will make them approach the
noninteracting polymer limit (such as those that occur during

certain phases of the cell cycle) while other perturbations
are not dramatic enough. The methods and score functions
developed can be useful to quantitatively study a wide range
of largely unstructured biopolymer systems, from intrinsically
disordered protein domains to mitotic chromosomes.
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