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We show that a non-Markovian behavior can appear in a type of Markovian multimeric channel. Such a
channel consists of N independent subunits, and each subunit has at least one open state and more than one
closed state. Suppose the open state of the channel is defined as M out of N subunits in the open state with
N > M > 0. We show that, although the gating dynamics for each subunit between open and closed states is
Markovian, the channel can show a memory behavior of weak anti-cross-correlation between the adjacent open
and closed durations. Our study indicates that a non-Markovian binary time series can be obtained from a linear
superposition of some independent channel subunits with Markovian gating dynamics.
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I. INTRODUCTION

Ion channels, which transport various ions into or out of
biological membranes, play important roles in many physio-
logical processes, such as secretion, regulation, memory, and
signal transduction. With the patch clamp technique, one can
record single-channel ion currents with a time resolution of
1 ms [1]. The small background and large currents measured
by the patch clamp actually correspond to the closed and open
states of the channel, respectively. The analysis of the ion
current can then reveal the stochastic gating dynamics of the
ion channels. At the first stage, one can simply assume that
the stochastic behavior of the channel gating is Markovian.
Therefore, the recorded current data are modeled with the
assumption that the channel kinetics is a Markovian process
stochastically jumping among a small number of discrete
states [2,3].

However, clear evidence also shows that the stochasti-
cally open and closed dynamics of some channels are non-
Markovian [4–6]. Different non-Markovian behaviors have
been discussed, including long-range correlation, 1/ f noise,
long-term persistent or antipersistent process, and anti-cross-
correlation. The non-Markovian channel currents can be gen-
erated with the equilibrium gating dynamics among multiple
open and closed states with multiple transition pathways [5,6].
A statistical test is presented to determine whether stochastic
data obtained from channel currents are Markovian or non-
Markovian [7]. For the large conductance locust potassium
(BK) channel, a long-range correlation is observed for the
closed states [8]. The non-Markovian data can also be directly
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produced in a channel model with the nonequilibrium time-
dependent gating dynamics among the channel states [9].

The stochastic channel current can present long time mem-
ory effect as the 1/ f noise [10–16]. The 1/ f noise can be
caused by the equilibrium conductance fluctuations related to
the conformational flexibility of the structural geometry of
channel pores [10,11]. It was shown that the low-frequency
1/ f noise in fabricated solid-state nanopores is related to the
number of charge carriers, as described by the Hooge relation
[12]. The long time memory can also be studied by the Hurst
exponent or self-similarity parameter H with rescaled range
analysis, detrended fluctuation analysis, or the periodogram
regression method [17–19]. A Hurst exponent of H = 0.5
is typically observed with white noise, while a long-term
persistent process induces H > 0.5 and an antipersistent time
series leads to H < 0.5.

Besides the long time memory, non-Markovian correlation
can also occur at short timescale. It has been shown that,
for Ca2+ puffs which are released from a cluster of inositol
1,4,5-trisphosphate receptors (IP3Rs), the interpuff intervals
tend to be longer after large puffs and tend to be shorter
after small puffs, giving a positive correlation between puff
amplitude and interpuff interval [20]. However, the simulation
results indicate that the correlation between successive puff
amplitudes can be negative [21]. For sparks which are released
from a cluster of ryanodine receptors (RyRs), the correlation
between spark amplitude and spark rising time can also be
negative [22]. Thus the negative correlation displays a behav-
ior of the anti-cross-correlation (ACC) at the clustered channel
level. Biologically, these different correlation relationships
reveal different underlying microscopic kinetics of channels,
including the termination mechanism or stochastic attrition
[21,22].

We show in the paper that a non-Markovian behavior of
ACC can be generated at the single-channel level with a class
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FIG. 1. The De Young–Keizer model. (a) The eight-state IP3R
subunit model. (b) The stochastically gating dynamics between the
open and closed states for a subunit, and (c) the stochastic dynamics
between the open and closed states for the channel at I = 10 and
C = 0.1 μM. (d) The cross correlation � as a function of C, in which
the solid black cycles are for a single IP3R subunit at I = 1 μM, and
the open navy circles, solid pink squares, and open cyan diamonds
are for IP3R channel at I = 0.1, 1, and 10 μM, respectively. (e)
The cross correlation � for the channel as a function of I . The
model parameters are K4 = K1K2/K3, K1 = 0.13, K2 = 1.05, K3 =
0.94, K5 = 0.08 mM, a1 = 400, a2 = 0.2, a3 = 400, a4 = 0.2, and
a5 = 20 μM−1 s−1 with bi = aiKi as given in [27].

of Markovian channels. Many ion channels are comprised of
several independent subunits. Suppose that a channel consists
of N identical and independent subunits, and each subunit
has more than one closed state and at least one open state.
The open state of the channel is defined as at least M out of
N subunits are in the open state with N > M > 0. Then the
correlation between the adjacent open and closed durations of
the channel displays a weak ACC behavior, even though each
subunit has Markovian gating dynamics.

II. ACC IN STOCHASTIC IP3R CHANNEL MODELS

As an example we first discuss the stochastically open
and closed dynamics of the tetrameric IP3R channels [23].
The IP3Rs are intracellular Ca2+ channels that are regulated
by Ca2+ and IP3. It was found that IP3Rs are distributed at
the single-channel state on plasma membrane [24] or at the
clustered channel state on the endoplasma membrane [25].
Different models have been suggested to simulate the IP3R
dynamics [26–34]. An IP3R model [27] was proposed by De
Young and Keizer to describe the patch clamp data obtained
from IP3R reconstituted in a bilayer membrane in vitro [28].
A modified De Young–Keizer IP3R model comprises four
identical and independent subunits [29]. In each subunit,
there are three independent binding sites, i.e., an activating
Ca2+-binding site, an inhibitory Ca2+-binding site, and an
IP3-binding site. Thus, there are eight states for a subunit
which can be described by (ijk) with the indexes i, j, and
k representing the occupied (=1) or nonoccupied (=0) state
at IP3, activating Ca2+, and inhibitory Ca2+-binding site,
respectively. A schematic picture of the transitions among
these eight states of the subunit is shown in Fig. 1(a). The
(110) state bound with an IP3 and an activating Ca2+ is called

the open state, and the others are closed states. The channel is
open when three or four subunits are in the open state [29].

In the paper we focus on the stochastic channel dynamics
at constant Ca2+ concentration C and IP3 concentration I ,
which corresponds to the patch clamp experiments [35]. To
simulate the Markovian dynamics of subunits, the transition
probability in the simulation is defined by kδt for a transition
process with transition rate k in a small time step δt. Random
numbers homogeneously distributed in [0,1] are generated
at each time step and compared with transition probabilities
to determine to which state each subunit will transfer [36].
As a consequence, the detailed states for all the subunits of
the channel can be traced and updated at every time step.
Accordingly, both the stochastic durations of open and closed
states for each subunit [Fig. 1(b)] and the stochastic durations
of open and closed states of the channel [Fig. 1(c)] can be
obtained.

Then we calculate the cross correlations between the adja-
cent active and resting time durations of individual subunits
and between the adjacent open and closed durations of the
channel. The cross correlation � between two time series {to}
and {tc} is defined as

� = 〈(〈to〉 − to)(〈tc〉 − tc)〉√
〈(〈to〉 − to)2〉

√
〈(〈tc〉 − tc)2〉

= 〈totc〉 − 〈to〉〈tc 〉√〈
t2
o

〉 − 〈to〉2
√〈

t2
c

〉 − 〈tc〉2
, (1)

where 〈· · · 〉 represents the averaging process.
As expected, the cross correlation for each subunit is

around zero [solid black cycles in Fig. 1(d)]. Intriguingly,
the cross-correlation is typically negative for the channel as a
function of C at different I [Fig. 1(d)]. Although each subunit
has a zero cross correlation between the adjacent open and
closed durations, the channel which consists of four indepen-
dent subunits shows a weak ACC between the adjacent open
and closed durations. Such a negative correlation means that
a short (or long) open time duration for the channel is more
likely to be followed by a long (or short) closed time duration
and vice versa. Figure 1(e) shows that an ACC can also be
found for the channel between the open and closed durations
as a function of I at C = 0.1 μM.

Another modified IP3R model [37] has been proposed to
describe patch clamp data recorded from IP3R in the native
environment of the nuclear envelope in the Xenopus oocyte
[35]. Compared to the original De Young–Keizer model, the
new model further includes a conformational change [37],
whereby a subunit in the (110) state (i.e., only with one IP3

and one activating Ca2+ bound) is “inactive,” and it must
change through a conformational transition to the open state
(A) before it can contribute to the channel open state. The
model also assumes that the channel is open when either three
or four subunits are in the open state. A schematic diagram of
the state transitions for a subunit is shown in Fig. 2(a).

For this model, each subunit has a constant mean time
t = 1/b0 in the open state, which is independent of C or I .
The zero correlation between the adjacent open and closed
durations at I = 10 μM for a single subunit is given as a
function C in Fig. 2(b) with solid cycles. As a comparison,
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FIG. 2. The modified De Young–Keizer model with allosteric
activation. (a) The nine-state structure of IP3R subunit. The parame-
ters are reaction dissociation constants (K1 = 0.0036, K2 = 16, K3 =
0.8, K5 = 0.8 μM, and K4 = K1K2/K3) and binding rates (a1 = 60,
a2 = 0.2, a3 = 5, a4 = 0.5, a5 = 150 μM−1 s−1) with unbinding
rates bi = aiKi as given in [37]. Related to the open state A, a0 =
540 μM−1 s−1 and b0 = 80 s−1 (b) For stochastic IP3R channel, �

via C are plotted at I = 0.05 (open orange star), 0.1 (open navy
circle), 1 (solid pink square), and 10 μM (open cyan diamond). For a
single IP3R subunit, � via C at I = 10 μM is given with solid black
circles.

the cross correlations between the adjacent open and closed
durations of the channel are plotted in Fig. 2(b) as a function
of C at I = 0.01, 0.1, and 1 μM, respectively. Again, a weak
ACC for channel dynamics is observed in the model.

For the tetrameric IP3R channel, one can assume that the
channel is open when all of the four subunits are in the
open state where the subunit can be either the eight-state
[Fig. 1(a)] or the nine-state model [Fig. 2(a)]. However, with
such a model, one cannot observe any correlation relationship
between the adjacent open and closed durations of the channel
(data not shown).

III. GENERATOR MATRIX THEORY FOR
CHANNEL DYNAMICS

In this section we first introduce the generator matrix
theory to discuss the channel dynamics [38]. Generally the
open probability PO, the mean open time τO, and closed time
τC of a channel can be given by

τO = PO

J
, τC = PC

J
, (2)

where PC = 1 − PO is the closed probability and J the equi-
librium probability flux from open states to closed states. We
can write PO in terms of un-normalized open and closed prob-
abilities POi and PCi for all the open and closed states, which
are relative to a reference state given by unity probability.
Normally taking the reference state to be an unliganded closed
state, i.e., PC0 = 1, we have

PO =
∑

i pOi

Z
, PC =

∑
i pCi

Z
, (3)

where Z = ∑
i pOi + ∑

i pCi is the normalized factor, so that
PO + PC = 1.

The probability flux J is given by

J =
∑

i kOC
i pOi

z
, (4)

where kOC
i is the transition rate from the open to closed state

out of the ith open state. In terms of the transition matrix
QOC from the open to closed state and the vector of open
probabilities wO, the probability flux from the open to closed
state can be written as

J = wOQOCuO, (5)

where uO is a vector of NO ones, if there are NO open states.
At the equilibrium state all fluxes balance, so that the

flux from the closed to open state equals the flux from the
open to closed state, i.e., wOQOCuO = wCQCOuC , where wC

is the vector of closed probabilities. If there is more than one
pathway out of the ith open state into various closed states,
then kOC

i is the sum of all such rates. If there is no such
pathway, then kOC

i = 0. In the simplest case of one open state,
τO is given by 1/kOC and so that, if no pathway out of the
open state requires ligand binding, τO is a constant.

The agonist-activated ion channels are typically studied by
varying ligand concentrations. If the binding kinetics obeys
the law of mass action and the detailed balance, the relative
probability for an open state with i ligands bound is KOiLi,
where KOi is the product of the inverse disassociation con-
stants along any path from the unliganded closed reference
state to the open state under consideration and Li is the ligand
concentration. If more than one state has i ligands bound, one
can still take the relative occupancy of all states with i ligands
bound to be KOiLi but now KOi has to be taken as the sum over
all states with i ligands bound of the products of the inverse
disassociation constants. The open and closed probabilities
and the flux can then be written as [39]

PO =
∑

i KOiLi

Z
, PC =

∑
i KCiLi

Z
, J =

∑
i JiLi

Z
. (6)

In this paper we analyze the cross correlation of the model
based on the matrix theory. The cross correlation between the
adjacent open and closed durations can be given by

� = πOQ2
OOQOCQ−2

CCQCOuO, (7)

where πO = wOQCO/J is the entry probability for the open
states with wO the vector of open probabilities, and QOO, QOC ,
QCO, and QCC are the transition rate matrices of open to open
state, open to closed state, closed to open state and closed to
closed state, respectively.

IV. ACC IN A STOCHASTIC TOY MODEL

Here we apply the generator matrix theory above to discuss
a toy channel model. The toy channel has two identical
and independent subunits. Each subunit has three states: two
closed states (C1 and C2) and an open state (O), given as

, (8)

where L is the ligand concentration, and constants k1, k2, k3,
and k4 donate the reaction rates. The channel is open when
at least one of the two subunits is in the open state. For this
model, each subunit has a mean time τA = 1/(k4) in the open
state.

012418-3



YANDONG HUANG et al. PHYSICAL REVIEW E 101, 012418 (2020)

FIG. 3. For the stochastic dimer channel, (a) the mean open time
τO (squares) and closed time τC (circles), (b) the open probability
of channel PO, (c) ξO (square) and ξC (circle), and (d) � (square)
against the ligand concentration L with numerical simulation, as well
as the theoretical analysis (solid line). For a single subunit, � in (d)
is plotted with theoretical analysis (green dashed line) and numerical
simulation (circle).

For each subunit with only a single open state, the distribu-
tions of the open and closed times satisfy

fOC (tO, tC ) = fO(tO) fC (tC ), (9)

where fO(tO), fC (tC ), fOC (tO, tC ) are the distributions of
open time tO, closed time tC , and time tO + tC for the stochastic
subunit, respectively. It follows immediately that the covari-
ance is zero and the cross correlation is also identically zero.

Now we consider the properties of the channel defined
in Eq. (8). With the matrix theory [38,39], the channel open
probability PO and the probability flux J are given by

PO = w2
A + 2wA(1 − wA), J = 4k4wA(1 − wA), (10)

where wA = k1k3L/(k2k4Z ) is the probability for each subunit
in the open state with the normalization factor

Z = 1 + k1/k2 + k1k3L/(k2k4). (11)

Then, putting the transition rate matrix into Eq. (7), finally we
have

� = − �2

4k4ABC
,

〈
τ 2

O

〉 = Ck4(4k4A + 5�1) + k3L�1D

2k4
4AC

,

〈
τ 2

C

〉 = A2(A2 + �1 + 2�2) + �2
2

2�2
1AB

, (12)

with �1 = k1k3L, �2 = k2k3L, A = k1 + k2, B = k3L +
A, C = k4 + A, and D = k1 + k4.

As an example, we let k1 = 0.2, k2 = 0.1, k3 = k4 = 1.0,
and vary L. The analytic results for variables τO, τC , PO,
ξO, ξC , and � against L are given in Figs. 3(a)–3(d) with solid
lines, respectively. For such a simple model, although each
subunit has an uncorrelated gating kinetics, the channel shows

a weak ACC behavior between the adjacent open and closed
durations.

One can directly simulate the stochastic dynamics of the
toy model also. With the Markovian simulation, the stochastic
open and closed states can be obtained for the channel. As a
result, one can calculate the mean open time τO, mean close
time τC , and the open probability PO, as well as the cross
correlation � as a function of L. The simulation results are
given in Figs. 3(a)–3(d) with symbols.

Now we discuss the origination of the ACC in such channel
systems. Actually, the two-subunit model has six channel
states, given as

(13)

As a result, there are three different closed states and three
different open states in the channel. The two open states C1O
and C2O connect to the two closed states C1C2 and C2C2,
respectively. Two or more routes between the open states
and closed states indicate that the transition matrix between
open and closed states is asymmetric, and so fOC (tO, tC ) �=
fO(tO) fC (tC ), resulting in a memory effect of nonzero covari-
ance between the adjacent open and closed durations. Thus
a non-Markovian channel is constructed from independent
Markovian subunits.

If the open state of channel is defined as only two subunits
are in the open state, then there is not any correlation (data not
shown). If the subunit has only one closed state and one open
state, the two-subunit channel will not show any correlation
no matter whether the open state of the channel is defined
as at least one subunit in the open state or as both subunits
in the open state (data not shown). The reason for these
models giving no correlation is the zero covariance between
the adjacent open and closed durations of the channel.

This discussion indicates that a nonzero covariance be-
tween the adjacent open and closed durations is a necessary
condition for ACC. It requires two or more asymmetry routes
between the open and closed states. Accordingly, a general
model for ACC is a channel that consists of N independent
subunits with each subunit having more than one closed state
and at least one open state. In addition, the open state of the
channel is defined as M out of N subunits in the open state
with N > M > 0. In such a model, an asymmetry transition
matrix will be defined between the open and closed time
durations, resembling the situation of IP3R channel models
as discussed above.

Next, we discuss how the transition rates can affect the
appearance of ACC. As displayed in Fig. 4(a), the cross
correlation is calculated as a function of k1 with k2 = k1 for
different values of k3 with k4 = k3 and L = 1. One can see
that ACC is most evident when k3 and k4 are about 10 times as
large as k1 and k2. As to the extreme situations, where k3 and
k4 � k1 and k2, or k3 and k4 � k1 and k2, ACC disappears.

In addition, we consider another situation where the two
subunits are not identical. We fix k3(1) = 1.0 in the first
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FIG. 4. (a) The cross correlation with theoretical calculations
(line) and numerical simulations (symbol) as a function of k1(=k2)
with different values of k3 = k4 at L = 1. (b) The cross correla-
tion via k3(2) of the second subunit of the channel with the first
subunits fixed at k3(1) = 1.0 with L = 0.5 (solid navy square) and
L = 5 (solid pink circle). (c) The power spectra of the time se-
ries of the channel state. Linear fitting with slopes of −0.55 and
−1.56 are obtained for the low-frequency range and high-frequency
range, respectively. The total number of points of the time series
is 1 000 000 and the interval between two data points is 0.01 s.
(d) The rescaled range analysis as a function of the length n of
the subseries (black solid square) with Hurst exponent obtained by
a linear fitting (red solid line). The total number of points of the
time series is 50 000 000 and the interval between two data points is
0.5 s. For both (c),(d), L = 10.

subunit and change k3(2) in the second subunit. Simulation
results in Fig. 4(b) show that ACCs are found for two identical
subunits at L = 5 and for two different subunits at L = 0.5.
Thus, the channel with two different subunits can generate
ACC also.

The ACC behavior discussed here shows a short time
memory between the open (or closed) state and the following
closed (or open) state in the channel. Another interesting
question is if there is a long-range memory for the open and
closed durations of the channel. As a result, we calculate
the power spectra of the time series of the channel state
[Fig. 4(c)]. Linear fitting with slopes of −0.55 and −1.56
are obtained for the low-frequency and high-frequency range,
respectively. The long-term process is also discussed with the
rescaled range analysis [Fig. 4(d)]. With a linear fitting, the
Hurst exponent H = 0.57 and H = 0.5 are obtained for small
length and large length n, respectively. These results show
a persistent correlation for a short term of time series and a
Wiener process for a long term of time series.

V. CONCLUSION

In summary, we show in this paper that a non-Markovian
behavior, the ACC between the adjacent open and closed
durations of channel, can be observed in a type of Markovian
channel. In detail, a weak ACC can be found in a multimeric

channel if the open state of the channel is defined as at least
M out of N subunits (N > M > 0) are in the open state,
where the subunit has at least one open state and more than
one closed state. Actually by considering the detailed chan-
nel states, the transition pathways among multiple open and
closed states are complex. Thus, the channel gives an asym-
metry transition matrix between the open and closed states.
As a result, although the subunit shows a Markovian gating
dynamics between the adjacent open and closed durations, the
channel can show a weak ACC between the adjacent open
and closed durations, presenting a non-Markovian memory
behavior.

It has been suggested that a non-Markovian time series
can be generated dynamically from complex systems [5,6,9–
11,13,14]. Our study indicates that there is a simple way
to construct non-Markovian binary data. With several sets
of binary Markovian time series generated by independent
subunits, a simple sum of these time series can generate
binary data with a threshold procedure. This binary time series
may show a non-Markovian memory behavior of negative
correlation between the adjacent open and closed durations.
A general equation, i.e., Eq. (7), is given for the calculation of
the cross correlation based on the matrix theory. Accordingly,
a correlation can occur when the covariance between the
adjacent open and closed durations is nonzero.

The weak ACC between the adjacent open and closed du-
rations indicates a short time memory of the Markovian mul-
timeric channel. As a confirmation, both the power spectrum
and rescaled range analysis also reveal a weak correlation for
short-time kinetics. However, at the long timescale there is
no memory process for the open and closing dynamics of the
stochastic channel.

Our simulation predicts that a weak ACC may appear
for the IP3R channel with patch clamp recording at constant
Ca2+ concentration and IP3 concentration. The RyR channels
[40,41], large-conductance voltage-activated K+ BK channels
[42,43], and the thermosensitive transient receptor potential
TRP channels [44,45] have a similar tetrameric structure as
the IP3R channel. It is not clear if these types of biological
channels indeed present an ACC gating dynamics, which is
an interesting question to be validated in experiment.

A further important question is what the physiological
significance of ACC could be if a biological channel shows
an ACC gating dynamics. It has been pointed out that differ-
ent channel dynamics, including the inactivation termination
mechanism or stochastic attrition, may significantly change
the correlation relationships between puff or spark ampli-
tudes, durations, rising times, and interpuff intervals [20–22].
We suggest that the weak negative correlation behavior at the
single-channel level may have an effect on the correlation
dynamics for puffs and sparks at the clustered channel level.
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