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Modeling the tunability of the dual-feedback genetic oscillator
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Oscillatory gene circuits are ubiquitous to biology and are involved in fundamental processes of cell
cycle, circadian rhythms, and developmental systems. The synthesis of small, non-natural oscillatory genetic
circuits has been increasingly used to test the fundamental principles of genetic network dynamics. While the
“repressilator” was used to first demonstrate the proof of principle, a more recently developed dual-feedback,
fast, tunable genetic oscillator has demonstrated a greater degree of robustness and control over oscillatory
behavior by combining positive- and negative-feedback loops. This oscillator, combining lacI (negative-) and
araC (positive-) feedback loops, was, however, modeled using multiple layers of differential equations to capture
the molecular complexity of regulation, in order to explain the experimentally measured oscillations. In the
search for design principles of such minimal oscillatory circuits, we have developed a reduced model of this
dual-feedback loop oscillator consisting of just six differential equations, two of which are delay differential
equations. The delay term is optimized, as the only free parameter, to fit the experimental dynamics of the
oscillator period and amplitude tunability by the two inducers isopropyl β-D-1-thiogalactopyranoside (IPTG)
and arabinose. We proceed to use our reduced and experimentally validated model to redesign the network by
comparing the effect of asymmetry in gene expression at the level of (a) DNA copy numbers and the rates of
(b) mRNA translation and (c) degradation, since experimental and theoretical work had predicted a need for an
asymmetry in the copy numbers of activator (araC) and repressor (lacI) genes encoded on plasmids. We confirm
that the minimal period of the oscillator is sensitive to DNA copy number asymmetry, and can demonstrate that
while the asymmetry in the translation rate has an identical effect as the plasmid copy numbers, modulating
the asymmetry in mRNA degradation can improve the tunability of the period and amplitude of the oscillator.
Thus, our model predicts control at the level of translation can be used to redesign such networks, for improved
tunability, while at the same time making the network robust to replication “noise” and the effects of the host
cell cycle. Thus, our model predicts experimentally testable principles to redesign a potentially more robust
oscillatory genetic network.

DOI: 10.1103/PhysRevE.101.012417

I. INTRODUCTION

The ubiquity of oscillatory genetic networks suggests a
central role in biology, resulting in extensive experimental
and theoretical studies as seen in the case of cell cycle
clocks [1–5], circadian rhythms [6,7], and developmental
clocks in embryogenesis [8–10]. These oscillatory networks
appear to have been selected for tunability and robustness
as a part of the general “homeostatic” mechanisms of such
physiological processes critical to living systems. However,
understanding the design principles of such networks raises
challenges due to their complexity. Increasingly, the synthetic
biology of small genetic networks has become an important
alternative approach to gaining a fundamental understanding
of the principles of gene regulation driving such oscillators
using small and relatively tractable genetic networks, such
as single gene negative-feedback systems [11], the three-
component “repressilator” [12], and cell-free two- and three-
stage gene cascades [13]. Based on theoretical studies of
naturally occurring genetic oscillators, they have been broadly
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classified into either negative-feedback loops or coupled
positive and negative loops [5]. Indeed, comparative modeling
has demonstrated that while a minimal negative-feedback loop
network can produce oscillations, robustness and tunability
are improved by the addition of a positive-feedback loop,
which could explain the evolutionary selection of increasingly
complex networks [14].

A canonical example of a synthetic dual-feedback loop—
positive and negative—oscillator that has rapidly become
a standard model is the araC and lacI genetic oscillator
with expression determined by a dual input plac/ara−1 pro-
moter [15]. The genes are regulated by their own protein
products (feedback)—activation by the AraC protein in the
presence of arabinose (positive feedback) and repression
by the LacI protein in the absence of isopropyl β-D-1-
thiogalactopyranoside (IPTG) (negative feedback). A model
with 27 coupled ordinary differential equations (ODEs) was
developed to match the experimental findings [15], since a
simple minimal model of dual-feedback loops by the same
authors had previously failed to reproduce the oscillatory
response of the system to parameter changes [16]. The many
intermediate reactions in the model, such as the relatively
slower rate of mRNA production, protein folding, protein
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multimerization, and promoter binding, play an important role
in the experimental validation of this model. While explicit
models of detailed molecular mechanisms are physically more
realistic than minimal models, they also lead to an “explosion”
in the number of parameters and variables. One solution is to
use delay differential equations as seen for the lac operon [17],
to simplify the model in a manner that captures the essential
nature of the process, while reproducing the measurable dy-
namics of the system.

In the search for the general design principles of genetic
oscillators, alongside topology, delays and “noise” have also
been seen to play an important role, with noise acting either
constructively or destructively [18]. The explicit use of delay
differential equations for modeling genetic networks is seen
in oscillator models of the cell cycle [5] and somitogenesis
clock [9] and lac operon dynamics [17]. Indeed, a cell-free
extract-based study of the lac-ara dual-feedback oscillator has
demonstrated that protein translation can serve as a bottle-
neck in the dynamics of the oscillator [13]. The separation
of timescales seen in experiment and the utility of delays
in oscillatory network models together suggest that such an
approach could help reduce the model complexity of the lac-
ara oscillator.

Here, we describe a reduced model of the lactose-arabinose
dual-feedback loop oscillator, that was first developed by
Stricker et al. [15]. Our model consists of a system of six dif-
ferential equations, two of which are delay differential equa-
tions (DDEs), that take into account the canonical components
of gene expression: DNA promoter states, RNA expression,
and protein translation and stability. We introduce two delay
terms, in order to account for the time taken by the intermedi-
ate states eliminated in the simplification, and fit them to the
experimental dynamics reported for the oscillatory behavior.
We then use this validated, simplified model to test the role of
DNA copy number asymmetry of the positive- and negative-
feedback loops, based on the original design of the circuit. We
use this model to test whether varying the asymmetry between
the ribosome binding site (RBS) efficiency of the activator
and repressor would affect the behavior of the oscillator in
the same way as controlling the plasmid copy number ratios.
We explore experimentally testable approaches to improv-
ing the tunability of the oscillator by varying the mRNA
degradation rates. Our simplified, experimentally validated
model therefore enables us to improve our understanding of
the network, and allows us to test potential approaches to
rationally redesign the network.

II. MODEL

We have modeled the oscillator based on the coupled
dynamics of (a) DNA transcription to RNA based on promoter
state dynamics, (b) translation of RNA to protein, and (c)
protein folding (Fig. 1).

A. Model derivation

We have derived the model equations by simplifying the
detailed reaction kinetics of (a) promoter dynamics deter-
mined by protein binding, (b) RNA transcription, (c) trans-
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FIG. 1. Model of the lacI-araC tunable genetic oscillator. The
schematic represents a kinetic model of the transcriptional regulation
of gene expression of araC (green/light-gray) and lacI (red/dark-
gray) genes by a dual-feedback loop of activation (arrowhead) by
dimers of AraC proteins (green/light-gray circles) and repression
(bar end) by tetramers of LacI proteins (red/dark-gray circles). The
model explicitly includes mRNA transcription, protein translation,
and folding and modulation of gene expression by arabinose and
IPTG.

lation of mRNA, and (d) protein folding and (e) protein multi-
merization based on the previous work by Stricker et al. [15],
with modifications aimed at reducing the complexity of the
model. The promoter reactions in the araC-lacI oscillatory
system are as follows,

Pa/r
0, j + A2

ka−−⇀↽−− Pa/r
1, j ,

k−a

Pa/r
i,0 + R4

2kr−⇀↽− Pa/r
i,1 ,

k−r

Pa/r
i,1 + R4

kr−−⇀↽−− Pa/r
i,2 ,

2k−r

where A2 represents AraC protein dimers, R4 represents LacI
protein tetramers, respectively, Pa/r

i, j represent the states of
promoters on the activator/repressor plasmids with i ∈ (0, 1)
number of AraC dimers (A2) bound and j ∈ (0, 1, 2) the
number of LacI tetramers (R4) bound, and kr and ka are
the forward and k−r and k−a and backward rates of A2 and
R4 binding to the promoters, as has been described before.
However, we further simplify this by assuming that the protein
binding to the promoters is in equilibrium. Thus we can
express the reactions in terms of equilibrium constants, the
ratio of forward and backward rates, as k1 = ka/k−a, k′

2 =
2kr/k−r , and k′′

2 = kr/2k−r . By substituting kr/k−r = k2, the
equilibrium constants of the repressor binding reactions are
k′

2 = 2k2 and k′′
2 = k2/2.

The mRNA transcription reactions are

Pa/r
0,0

ba−→ Pa/r
0,0 + ma/r,

Pa/r
1,0

αba−→ Pa/r
0,1 + ma/r,

where ma/r represents the number of mRNA molecules of
araC/lacI genes. When the promoter is not bound to either
regulator, neither A2 nor R4, it attains the state Pa/r

0,0 and the
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mRNA transcription of the activator and repressor (ma/r) pro-
ceeds at a basal rate ba. The promoter bound to the AraC dimer
is denoted by the state Pa/r

1,0 , and results in the transcription
induction rate by increasing transcription by a factor of α

greater than the basal rate. There is a complete absence of
transcription, when the promoter is bound by either one or
two lacI tetramers, i.e., the promoter is in either the Pa/r

i,1

or Pa/r
i,2 state, respectively. Given that promoter looping by

protein-DNA binding during LacI-induced repression is rapid,
we have assumed that that looped DNA is in equilibrium
with the state prior to looping. This simplification allows us
to reduce the number of promoter states, as compared to the
original model by Stricker et al. [15].

The resulting reactions representing mRNA translation and
protein folding are

ma
σa−→ ma + Au f , mr

σr−→ mr + Ru f ,

Au f
k f−→ A1, Ru f

k f−→ R1.

Au f and Ru f are the unfolded activator and repressor proteins
while A1 and R1 are the respective monomers, while σa/r is the
RBS efficiency of the activator/repressor and k f is the folding
rate of the proteins. These proteins are, however, transcrip-
tionally active only in the form of dimers and tetramers, which
involve the following reactions,

2A1

ka′
d−⇀↽−

ka′
−d

A2, 4R1

kr
d−⇀↽−

kr
−d

2R2

kr′
t−⇀↽−

kr′−t

R4,

where A2 is the dimeric AraC protein and R2 and R4 are the
di- and tetrameric forms of the repressor protein. Based on
the high forward rates of dimer (R2) formation reported by
Stricker et al. [15], we ignore the repressor dimer intermedi-
ates. Additionally, given that the activator dimer and repressor
tetramer forward rates are two orders of magnitude faster as
compared to the backward rates, i.e., ka′

d � ka′
−d and kr′

t � kr′
−t ,

respectively [15], we simplify the protein production as

2Au f

ka
d−⇀↽−

ka
−d

A2, 4Ru f

kr
t−⇀↽−

kr−t

R4,

where the prefactors account for monomer equivalents of the
multimers and ka

d and ka
−d and kr

t and kr
−t are the effective

forward and backward rates of the activator dimer and repres-
sor tetramer formation, respectively. Degradation reactions of
mRNA and proteins are given by

ma
km

a−→φ, mr
km

r−→ φ, Au f
ka−→ φ,

Ru f
kR−→ φ, A2

kA−→ φ, R4
kR−→ φ,

where km
a/r represents the respective mRNA degradation rates

and kA/R of the respective proteins. This set of chemical mass-
balance relations allows us to put together a combination of
constitutive relations and differential equations to describe the
oscillator dynamics.

At the level of DNA, the promoters of the activator and
repressor (Pa/r) can be found in one of six states. The state not
bound by any protein is P0,0 and we assume promoter states

bound to proteins are at equilibrium, based on similar approx-
imations made in gene-expression models previously [16,19],
based on measured reaction rates. The remaining promoter
states related to their equilibrium rate constants then are

P1,0 = k1A2P0,0, P0,1 = 2k2R4P0,0,

P0,2 = k2

2
R4P0,1 = k2

2
R4(2k2R4P0,0) = k2

2R2
4P0,0,

P1,1 = (k1A2)P0,1 = 2k1A2k2R4P0,0,

P1,2 = (k1A2)P0,2 = k1A2k2
2R2

4P0,0, (1)

based on the mass balance of promoters with A2 and R4.
However, since the plasmid copy number n is constant for a
given scenario, the total number of all promoter states is also
constant, allowing us to impose a conservation condition,

n =
∑
i, j

Pi, j = P0,0 + k2R4P0,0 + (k2R4)2P0,0 + k1A2P0,0

+ (k1A2)(2k2R4)P0,0 + (k1A2)(k2R4)2P0,0

= [1 + k1A2][1 + 2k2R4 + (k2R4)2]P0,0

= [1 + k1A2][1 + k2R4]2P0,0. (2)

Therefore, we describe the dynamics of the system in terms of
mRNA and proteins. The production of mRNA of the activator
(ma) and repressor (mr) are described, as in previous work, by
the differential equations

dma

dt
= nab

(
Pa

0,0 + αPa
1,0

) − km
a ma,

dmr

dt
= nrb

(
Pr

0,0 + αPr
1,0

) − km
r mr . (3)

Since we assume the promoter states are in equilibrium, we
can rewrite P1,0 in terms of P0,0 using Eq. (1), and then P0,0

in terms of n [Eq. (2)]. Substituting these values in Eq. (3),
the mRNA dynamics are then represented by the following
differential equations,

dma

dt
= na

b(1 + αk1A2)

(1 + k1A2)(1 + k2R4)2
− km

a ma,

dmr

dt
= nr

b(1 + αk1A2)

(1 + k1A2)(1 + k2R4)2
− km

r mr . (4)

The translation of mRNA results in the production of nascent
unfolded proteins, the dynamics of which can be described by

dAu f

dt
= σama − k f Au f − kAAu f ,

dRu f

dt
= σrmr − k f Ru f − kRRu f . (5)

In both these equations, the first term represents production by
translation, while the second and third terms represent deple-
tion of proteins due to folding and degradation, respectively.
Unfolded proteins form monomers (A1 and R1) in a manner
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TABLE I. The values of parameters used in the model are based on either previous reports [15], or are varied.

Parameter Value Description Reference

b 0.36 min−1 Basal transcription rate [15]
α 20 Transcription activation [15]
na 50 araC DNA copy number [15]
nr 25 and varied lacI DNA copy number [15] and this study
ka

m 0.54 min−1 Degradation rate of araC mRNA [15]
kr

m 0.54 min−1 and varied Degradation rate of lacI mRNA [15] and this study
σA 90 min−1 RBS efficiency of araC [15]
σR 90 min−1 and varied RBS efficiency of lacI [15] and this study
k f 0.9 min−1 Rate of folding of proteins [15]
γ0 1080 min−1 Maximal degradation [15]

dependent on the rate of protein folding (k f ), while the active
forms of the proteins are dimers of the activator (A2) and
tetramers of the repressor (R4). The total folded activator (At )
and repressor (Rt ) can be written as

dAt

dt
= k f Au f − kAAt ,

dRt

dt
= k f Ru f − kRRt , (6)

where At = A1 + 2A2 and Rt = R1 + 2R2 + 4R4 and R2 rep-
resents the dimeric form of the repressor. We assume protein
multimerization is at equilibrium. Monomers of the activator
and repressor as well as repressor dimers are negligible at
equilibrium, and the activator is expected to be largely found
in the form of dimers (A2) and the repressor in the tetrameric
form (R4).

This results from the two orders of magnitude faster for-
ward rates of dimer/tetramer formation as compared to the
backward rate, i.e., for the activator ka

d � ka
−d and for the

repressor, kr
d � kr

−d and kr
t � kr

−t , based on a previous report
by Stricker et al. [15]. Thus, our equilibrium assumption
allows us to avoid the addition of a differential equation to ex-
plicitly model the dynamics of dimer and tetramer formation
involving higher-order terms, as described previously [20].
The total proteins then are approximated by At ≈ 2A2 for the
activator and Rt ≈ 4R4 for repressor proteins, which allows us
to write the equilibrium concentrations of activator dimers and
repressor tetramers as fractions of total protein concentration
as follows,

A2 = At/2, R4 = Rt/4. (7)

The fractional terms are due to the stoichiometry of
monomers. Their dynamics are then defined by substituting
Eq. (7) in Eq. (6), resulting in the following differential
equations,

dA2

dt
= (1/2)k f Au f − kRA2,

dR4

dt
= (1/4)k f Ru f − kRR4. (8)

To account for the time taken by the proteins to fold and
multimerize, we assume two time delays until equilibrium is
achieved: τ1 for the activator dimer (A2) and τ2 for the repres-
sor tetramer (R4) formation. These delays are relative to the
rate of the rest of the reactions in the network. Additionally,
based on the reported equality of the activator dimerization

and repressor tetramerization rates, i.e., ka
d = kr

t (Table I), and
the twofold difference in multimer size between dimers and
tetramers, we consider the delay for tetramer formation to be
twice that of the delay in the dimer, i.e., τ2 = 2τ1. This is
akin to an approach used recently to model the dual-negative
ara/lac oscillator [21]. The equality assumed between di-
and tetramerization rates respectively of the activator and
repressor, based on Stricker et al., could be tested in the
future.

Thus, the delay considered in our equations represents the
time taken for A2 and R4 to reach equilibrium, which we
use as a term to determine mRNA production. We combine
these simplifications together to arrive at a minimal model
that includes regulation of mRNA transcription, protein trans-
lation and folding, and multimerization that feeds back to
transcription.

B. Model description

Transcription is modeled in terms of the dynamics of
two mRNA species, encoding the araC activator (ma) and
lacI repressor (mr) and regulated by the feedback from the
activator protein dimers and repressor protein tetramers. For
simplicity, the protein complexes are referred to as A in place
of A2 and R in place of R4. The general equation of mRNA
copies (mx) for the activator (x = a) and repressor (x = r) is

ṁx = nxb(1 + αk1A(τ1))

[1 + k1A(τ1)][1 + k2R(τ2)]2
− kx

mmx, (9)

where

x ∈ {a, r}.

The two parts of the right-hand side of the equation represent
the production and degradation terms. The delay terms τ1

and τ2 are introduced to account for the time taken for
monomeric proteins (A1 and R1) to fold and form dimers
and tetramers at equilibrium, respectively. By assuming A
and R are in equilibrium with their monomers, we achieve a
simplification of the model. The terms A(τ1) ≡ A(t − τ1) and
R(τ2) ≡ R(t − τ2) represent the equivalence of the number of
protein multimers, where t is current time. The copy numbers
of the genes encoding araC and lacI, na and nr , respectively,
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act as multiplication factors. Based on the reported copy
number differences of the genes in the original experiment
by Stricker et al. [15], we initially assume an asymmetry in
the plasmid copy numbers, i.e., na �= nr . The transcription
rate is determined by the basal transcription rate b, in the
absence of an activator or repressor binding to the promoter.
The multiplicative increase in transcription rate when the
activator (A) is bound is given by α and the degradation
rates of the activator and repressor mRNA are ka

m and ka
m,

respectively. The terms k1 and k2 represent the equilibrium
binding constants of A2 and R4 to the promoter, respectively,
for a given inducer concentration, i.e., arabinose and IPTG. In
contrast to the previous work [15], we considering the binding
and unbinding of the activator and repressor to the promoter
to be at equilibrium.

The equilibrium binding constant of AraC binding to the
promoter is by k1, which depends on the concentrations of the
inducers arabinose (ara) and IPTG as

k1 =kmin
1 +(

kmax
1 −kmin

1

) [ara]2

(μ2+[ara]2)

ν2

(ν2+[IPTG]2)
. (10)

The range of activator binding to the promoter is set by
kmin

1 = 0 molecules−1, kmax
1 = 1 molecules−1, and μ = 2.5%

[in weight/volume percent (w/v%)] and ν = 1.8 mM are
scaling parameters, as before [15]. The lacI-promoter binding
is determined by k2 as follows,

k2 = kmin
2 + (

kmax
2 − kmin

2

) λ2

λ2 + [IPTG]2
, (11)

where the repressor binding range is determined by kmin
2 =

0.01 molecules−1, kmax
2 = 0.2 molecules−1, and λ = 0.035

mM is a scaling parameter. We model gene-expression induc-
tion resulting from the presence of the sugars (arabinose and
IPTG) that bind the activator and repressor proteins with a
second-order dependence of both k1 and k2 on [ara], [IPTG],
μ, ν, and λ to represent cooperativity of the reaction.

The mRNAs are translated into unfolded proteins Au f and
Ru f , the monomeric activator and repressor, respectively. The
dynamics of translation of the unfolded protein species (Xu f )
is given by the general expression

Ẋu f = σxmx − k f Xu f − kX Xu f , (12)

where

X ∈ {A, R}, and x ∈ {a, r},
where σx is the translation rate of x that corresponds to Au f and
Ru f . This is also referred to as the ribosome binding site (RBS)
efficiency in the synthetic biology literature [22]. The folding
rate k f is constant and common to both proteins, while the
degradation rate of the unfolded protein kX is variable due the
ssrA tag that results in rapid degradation [15] by proteolysis
mediated by ClpXp [23]. To account for the fact that the
number of ClpXp molecules available to degrade proteins is
limiting, the degradation rate for repressor is given as

kR = γ0

c0 + �P
, (13)

while that for the activator is given as

kA = χ kR. (14)

Here, γ0 is the maximal degradation rate, c0 = 0.1 is the
concentration of proteins at which the rate of ClpXp is half
maximal, and χ = 2.5 represents the differential degradation
of two proteins, i.e., the activator is degraded faster than
the repressor. The total copy number of all proteins in this
system thus inversely determines the degradation rate. The
total proteins are �P = Au f + Ru f + At + Rt , based on the
equilibrium assumption summarized in Eq. (7), based on
which we simplify the model and exclude the dynamics of
the folded monomers A1 and R1 [Eq. (5)].

Based on the equilibrium assumption, the dynamics of the
activator dimers (A) and repressor tetramers (R) can therefore
be generalized from Eq. (8) as

Ẋ = 1

pX
k f Xu f − kX X. (15)

where

X ∈ {A, R},
where k f is the folding rate, Xu f represents the unfolded
protein, and the proportionality constants pA = 2 and pR =
4 account for the dimerization and tetramerization of the
activator and repressor, respectively [Eqs. (7) and (8)]. As a
consequence, at any time point, the dimers are half (1/pA)
the number of monomers, and tetramers are 1/4th (1/pR) the
number of monomers at the same time.

The simplifications resulting from the assumed equilib-
rium in protein folding, dimerization, and tetramerization as
well as promoter binding are accounted for in our equations
by explicit delays. Such an approach of using delays to
account for intermediate processes (typically transcription)
without explicitly modeling them has been used successfully
used to model negative-feedback oscillators [24] and the lac
operon [25].

This allows us to arrive at six equations [Eqs. (9), (12),
and (15) for the activator and repressor] that fully describe the
system.

III. RESULTS

A. Minimal model with parametrized delay, reproducing
experimental oscillatory dynamics

The model parameters are taken from previous reports
(Table I), leaving two free parameters, the delay terms τ1 and
τ2 for the activator and repressor, respectively. We factorize
the delay to only one free parameter, since τ2 = 2τ1 as dis-
cussed in the section entitled “Model derivation.” The one
free parameter τ1 is estimated to be of the order of minutes
and numerically estimated by simulating for a range of values
of τ1 (0–5 min in 0.25-min intervals) using the period of
oscillations as a measure to compare the deviation between
simulation and experiment [15] with inducers [IPTG] = 2
mM and 0.7% arabinose. We find τ1 of 1.25 min to be optimal,
since it minimizes the difference between the simulation
and experiment and results in sustained oscillations of araC
and lacI at the level of both mRNA and protein complexes
[Fig. 2(a)]. Our simulations result in the same period and
amplitude to those reported by solving the detailed model
described by Stricker et al. [15].
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FIG. 2. (a) The number of molecules of araC mRNA (dot-
ted blue/dark-gray line) and protein dimers (solid blue/dark-gray
line) and lacI mRNA (dotted red/light-gray line) and protein
tetramers (solid red/light-gray line) are plotted as a function of
time for the minimal model. Here, na = 50, nr = 25, [ara] =
0.7%, and [IPTG] = 2 mM. (b) The period of oscillations pre-
dicted by the model (�) is compared to experimental data from
Stricker et al. [15] (•) for increasing inducer concentrations of (left)
IPTG ([arabinose] = 0.7%) and (right) arabinose ([IPTG] = 2 mM).
(c) The phase diagram plots the effect of a systematic change in IPTG
and arabinose concentrations on the oscillatory (left) period and
(right) amplitude. Color/gray bars represent the respective scales.

The so-called “degrade-and-fire” (DF) behavior of the
oscillator observed [24] is consistent with the mechanism
of a basal mRNA transcription rate (b) producing low con-
centrations of protein, that are constantly degraded by pro-
teolysis, determined by γ0 and c0. Since the production of
AraC dimers is faster than the LacI tetramers, the activator
protein induces network expression, initially at a slow rate,
and then at increasing rates via the positive-feedback loop
(“fire”). The repressor protein concentration is, however, also
gradually increasing, and once it reaches a threshold required
for promoter repression, the negative-feedback loop begins to
inhibit transcription. This negative feedback reduces mRNA
levels, and combined with the mRNA degradation rates ka

m and
kr

m, turns the network off (“degrade”). The basal transcription
rate then once more induces the cycle, resulting in oscillations.

In addition, the time period of oscillations responds dif-
ferently to increasing concentrations of IPTG as compared
to arabinose, consistent with experimental reports [Fig. 2(b)].
While increasing the IPTG concentration up to 1 mM

increases the period, higher values decrease the period (while
arabinose is held constant at 0.7%), as a result of the inhibitory
effect of high concentrations of IPTG on araC binding to the
promoter [Eq. (10)], based on previous reports. On the other
hand, increasing arabinose concentrations from 0% to 3%
with constant IPTG (2 mM) results in saturation-type behavior
of the oscillatory period [Fig. 2(b)]. The agreement between
our reduced model and previously reported experimentally
determined values [15], both in terms of the period and am-
plitude of oscillations [Fig. 2(c)], suggests that it successfully
captures the essential dynamics of the system, despite the
multiple simplifying assumptions.

Since the model developed previously by Stricker
et al. [15] required an asymmetry in activator and repressor
molecules to produce oscillations, we proceeded to test the
sensitivity of the model to both the extent of asymmetry and
whether DNA asymmetry can be mimicked by translational
asymmetry.

B. Effect of gene copy number asymmetry on oscillations

In previous experimental and theoretical work where the
lac-ara oscillator was first developed [15], the genes encoding
the activator and repressor were expressed from two differ-
ent plasmids that were maintained in cells at different copy
numbers. The gene copy number of DNA molecules encoding
the activator was 50 and the repressor was 25, a ratio of
na : nr = 2 : 1. Our model uses the same values in order to
reproduce experimental data (Fig. 2). However, both cell to
cell variability due to molecular states, as well the differences
in the stage of division, could result in variations in plasmid
copy numbers. Additionally, the cell-cell variability in the
plasmid copy number due to the imprecision or “noise” in
the copy number control of the plasmids cannot be ruled out.
To investigate this, we have examined the effect of varying
the asymmetry of the DNA copies of the activator (na) and
repressor (nr) on the oscillatory dynamics. We find that when
the activator gene copies are twofold in excess of or equal to
those of the repressor, the oscillations are rapid and the am-
plitudes comparable. However, a twofold excess of repressor
copies results in a small increase in the period of oscillation
of both the activator protein A [Fig. 3(a)] and repressor R
[Fig. 3(b)]. Indeed, the copy number asymmetry, ρC = (na −
nr )/(na + nr ), appears to drive the increased amplitude of that
gene, i.e., if the asymmetry involves an excess of lacI DNA
copy numbers, then a higher amplitude of the corresponding
repressor protein R as compared to the activator A is observed,
and vice versa.

A systematic scan across ρC ranging from−0.4 to 0.4
(repressor DNA in excess to activator DNA in excess) demon-
strates a continuous decrease in period, i.e., increase in os-
cillation frequency [Fig. 3(c)], while the repressor amplitude
reduces and the activator amplitude increases [Fig. 3(d)].
This would suggest that at some higher factor of asymmetry
(ρC < −0.4), the oscillator period would become very large
and not allow for “rapid” oscillations, within a generation of
the bacterium (∼50 min [26]). Indeed, it suggests that a DNA
copy number asymmetry ensures fast oscillations.

Based on these results, we proceed to explore the redesign
of the circuit by assuming that both genes are on the same
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FIG. 3. Effect of relative DNA copy number asymmetry on os-
cillations. (a), (b) The effect of the gene copy number ratio of the
activator na (araC) and repressor nr (lacI) on the (a) activator dimer
and (b) repressor tetramer concentration is plotted as a function of
time. Individual plots signify na : nr 2:1 (solid), 1:1 (dashed), and
1:2 (dotted). (c), (d) The effects of the copy number asymmetry
(ρC) and ratio na : nr on (c) the oscillatory period and (d) amplitude
of the activator (
) and repressor (•) are plotted. [IPTG] = 2 mM,
[Arabinose] = 0.7%, na = 50, and nr = 19–150.

plasmid (i.e., na = nr), with the aim of minimizing cell-cell
variability in oscillatory behavior due to plasmid DNA copy
number variability. However, given our result demonstrating
the need for asymmetry in gene copy numbers to ensure rapid
oscillations, we proceeded to ask if the asymmetry of mRNA
translation could replace the asymmetry in the DNA copy
number.

C. DNA copy number and RBS efficiency have an equivalent
effect on protein oscillations

We aimed to address the question of whether a symmetric
DNA copy number ratio (ρC) can be replaced with an equiv-
alent mRNA translation asymmetry. In order to achieve this,
we tested whether the asymmetry in the ribosome binding site
(RBS) affinity ρR = (σa − σr )/(σa + σr ) could achieve the
same effect. This is also motivated by quantitative evidence
of the tunability of protein translation through RBS modula-
tion [22]. We therefore attempted to derive an expression for
protein translation in terms of the transcription and translation
terms. We start from the transcription rate equation for the
mRNA production of the activator (ma) and repressor (mr)
expressed in terms of the general equation for mx as

ṁx = nxg
(
Aτ1 , Rτ2

) − kx
mmx, x ∈ {a, r}, (16)

where g(Aτ1 , Rτ2 ) is the nonlinear term in Eq. (9) and kx
m

stands for the degradation rates ka
m and kr

m of the activator
and repressor, respectively. We now use the integrating factor
method to write the functional form of the solution,

mx = e−kx
mt

∫
nxg

(
Aτ1 , Rτ2

)
ekx

mt dt . (17)

FIG. 4. Simulations of RBS efficiency asymmetry. Oscillations
in the concentration of (a) AraC dimers and (b) LacI tetramers are
obtained even when the copy number ratio (na : nr) is kept fixed
at 1:1 and the RBS efficiency ratio (σa : σr) is varied; simulations
were run for constant IPTG and arabinose input of 2 mM and 0.7%,
respectively. For the same IPTG and arabinose concentration, the
dependence of (c) time period and (d) amplitude on the copy number
ratio is shown. It can be seen that this produces exactly the same
effect as keeping the RBS efficiency constant and changing the copy
number.

Substituting this in the protein translation equation that results
in an unfolded protein (Xu f ) from mRNA [Eq. (5)], we obtain

Ẋu f = σx

(
e−kx

mt
∫

nxg
(
Aτ1 , Rτ2

)
ekx

mt dt

)
− k f Xu f − kX Xu f .

(18)

Since nx is a constant, it is taken out of the integration,
resulting in the expression for the rate of unfolded protein
formation,

Ẋu f = (σxnx )

(
e−kx

mt
∫

g
(
Aτ1 , Rτ2

)
ekx

mt dt

)
− k f Xu f − kX Xu f .

(19)

This expression has a multiplicative factor consisting of two
constants nx and σx, demonstrating the exact equivalence
of the DNA copy number and RBS efficiency. This is also
confirmed by numerical simulation (Fig. 4).

Thus, we can demonstrate that transcriptional asymmetry
can be replaced by translational asymmetry, while reproduc-
ing the oscillatory dynamics reported before. However, one of
the goals of redesigning the network based on the principles
of gene transcription and translation also involves expanding
the tunability range of the system. With this in mind, we
proceeded to test the role of degradation rates on the oscillator.

D. Expanding the tunability of the oscillator based on mRNA
degradation rate asymmetry

Since the production of RNA functions as a simple mul-
tiplicative factor of the DNA copy number, in the search for
additional levels to modify the tunability of the network, we
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Network tunability of the oscillator with asymmetry in the gene copies and mRNA degradation. (a) The schematic represents
the asymmetry of the activator and repressor that we test in terms of the copy numbers na and nr (ρC), and the mRNA degradation rates ka

and kr (ρD), respectively, while σa/r represent the respective rate of mRNA translation to unfolded proteins. (b)–(f) The tunability of the
oscillator measured by the amplitude (A) in 104 molecules plotted against the period (T ) in minutes. (b) The effect of varying concentration
of the inducers IPTG and arabinose (color/gray matrix) for a constant DNA copy number asymmetry of ρC = 0.33 (na = 50, nr = 25) seen in
experiment results in points that overlap one another, while (c) and (d) modifying ρC together with either increasing (c) arabinose for a constant
[IPTG] = 2 mM or (d) IPTG for a constant [arabinose] = 0.7% results in a wider range of A and T . (e), (f) A similar scan of parameters is
performed for ρD changes in response to increasing (e) [IPTG] or (f) [arabinose]. The colors in the plots indicate parameter value inputs:
[IPTG] = 0–30 mM in steps of 2 mM, [arabinose] = 0%–3% in steps of 0.3%, (3)ρC and ρD = −0.5 to +0.5 in steps of 0.05 (please refer to
the online figure for more details).

tested whether the degradation rate would potentially affect
the dynamics any differently. This is motivated in part by the
development of experimental tools that allow mRNA degra-
dation rate control [27,28], and the reported role of mRNA
degradation rates in modulating mean expression levels [28].
The degradation rate asymmetry ρD = (ka

m − kr
m)/(ka

m + kr
m)

is therefore compared to the DNA copy number asymmetry
for the effect on oscillations [Fig. 5(a)].

In experiments by Stricker et al. [15], the gene (i.e., DNA)
copy numbers of the activator (na) were 50 and those of
the repressor (nr) 25. When we simulated oscillations with
this copy number asymmetry, ρC = (na

m − nr
m)/(na

m + nr
m) of

0.33, we found increasing IPTG concentration resulted in an
almost linear decrease in the period of oscillations (higher
frequency) and amplitude, while increasing the arabinose
concentration resulted in proportionately increasing the period
and amplitude [Fig. 5(b)]. Changing both IPTG and arabinose
simultaneously (diagonal along the color map of inducers)
results in an intermediate value of period and amplitude that

follows the same trend. This suggests that for a given DNA
copy number asymmetry, the oscillatory period and amplitude
are coupled. Thus, when the plasmid DNA copy number
asymmetry ρC = (na − nr )/(na + nr ) was varied, the ampli-
tude and period of oscillations resulted in a widened “fan”
for higher concentrations of both arabinose [Fig. 5(c)] and
IPTG [Fig. 5(d)]. This suggests that copy number asymmetry
can be used to modulate the oscillator, so it explores a wider
range of amplitude and period. In experimental terms, the
likely scenario is, however, that a given ρC is used, due to the
nature of the plasmids. In such a case, the system responds to
inducer titration with linear increases in both period as well
as amplitude. On the other hand, with an mRNA degradation
rate asymmetry ρD = (ka

m − kr
m)/(ka

m + kr
m) with less stable

repressor mRNA, varying arabinose [Fig. 5(e)] and IPTG
[Fig. 5(f)] demonstrates a large change in amplitude, for a
relatively narrow period (20–40 min). This is only seen when
the degradation rate asymmetry ρD < 0, indicative of a faster
degradation of the repressor mRNA. At higher ρD values
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the oscillator appears to respond to inducer concentrations,
similarly to the effect of ρC .

This suggests that engineering a system with the activator
and repressor genes on the same plasmid, and with faster
degradation rates for the repressor (i.e., kr

m > ka
m), could allow

independent tunability of the period and amplitude. This
would appear to suggest that while the experimental system
based on two plasmids can produce fast, tunable oscillations
in proteins, their robustness to cell to cell variability can
be improved by expressing the proteins at the same level
(symmetric RBS efficiency) and including an asymmetry in
the degradation rates of mRNAs.

IV. DISCUSSION

We have successfully developed a minimal model of the
dual-feedback loop tunable genetic oscillator, which still
maintains sufficient detail to explore the regulation of the
system at the levels of the canonical central dogma—DNA,
RNA, and protein. We have optimized a single free parameter,
the delay term to obtain oscillatory dynamics that match
the whole range of experimental values. Using this minimal
model, we explore the role of asymmetry of the activator
and repressor, in terms of DNA copy numbers and the
production and degradation rates of mRNA. We find that
while rapid oscillations can be produced when a twofold
excess of activator genes is present, this asymmetry is
mathematically identical to mRNA production rates. On the
other hand, mRNA degradation rate asymmetry results in a
wider tunability of the oscillator. Thus, with this simplified
model of a canonical synthetic genetic oscillator, we predict
a more robust design of the oscillator, capable of exploring a
wider range of frequency and amplitudes.

While attempts to simplifying the lac-ara dual-feedback os-
cillator have been made, they have ignored the role of mRNA,
modeling only the DNA and protein components [21,29]. As
a result, the ability to explore novel network design is limited.
In their work, multiple parameters are fit to experimental
data, which could result in artifacts. In our work, we have
maintained identical parameters to the published model and
experimental work of Stricker et al. [15], as well as used ex-
perimentally tested ranges of inducers (IPTG and arabinose),
while leaving only one free parameter, the delay term. We
have thus developed a simplification of this model oscillatory
network.

A redesign of the dual-feedback oscillators has been re-
cently proposed in terms of a new activator for the protease
that degrades the proteins [29]. Our findings of copy number,
translational efficiency, and mRNA degradation rate asym-
metry suggest we can achieve semi-independent independent
tunability of the amplitude and time period by changing the
IPTG or arabinose concentrations. This approach is naturally
also simpler in design and potentially easier to implement
experimentally.

While we have explored the role of asymmetry in oscilla-
tory dynamics, it is clear from our simulations that the copy
number and translation symmetry can also result in oscilla-
tions. This is consistent with the results of a model of where
a dual-feedback oscillator with symmetric components can
still oscillate as described by Maeda et al. [14]. In addition,
while the protein oscillations of asymmetry in copy number
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FIG. 6. The dynamics of lacI transcripts for symmetric and
asymmetric models. The dynamics of lacI mRNA are plotted for (i)
an asymmetric DNA copy number ratio na : nr = 2 : 1 (dashed line,
closely spaced), (ii) RBS asymmetry of σa : σr = 2 : 1 (solid line),
and (iii) symmetric copy number and RBS efficiency na : nr = σa :
σr = 1 : 1 (dashed line, widely spaced).

(ρC) and RBS efficiency (ρR) are equivalent, the mRNA
transcripts differ (Fig. 6). In addition, a comparison of genetic
oscillator designs suggests that symmetric gene networks
while used in models are unlikely to be natural [18]. Indeed,
the assumption of many standard genetic oscillator models
such as the “repressilator” model is that mRNA degradation
rates are comparable for the component genes [12]. Indeed,
recent work has demonstrated the possibility to achieve fine-
tuned control over protein levels through mRNA degradation
rate modulation, simply by varying the length of the polyA
tail [30]. Here, by exploring the possible differences in copy
numbers, RBS efficiency, and mRNA stability of the two-
component network, we have explored more biologically real-
istic properties of networks, and find the effects of asymmetry
depend on the level in the information flow at which they are
implemented—DNA, RNA, or protein.

The role of stochasticity in genetic networks, especially
when small numbers of proteins regulate the process, are
known to be important. Indeed, based on previous work
demonstrating the effect of stochasticity on this oscillatory
system [15], we tested the effect of one source of experimental
stochasticity, namely, the initial value of protein concentra-
tions. We find the model oscillatory period and amplitude
to be insensitive to fluctuations in the initial values (Fig. 7).
The variability in the initial values is potentially likely due
to potential asymmetry in the distribution of LacI and AraC
proteins at division, as predicted for low copy number pro-
teins [31]. A stochastic differential equation model of our
reduced model could in the future help further explore alter-
native sources of variability that might originate from intrinsic
cell-cell variabilities in proteins extrinsic to our model.

The role of the host cell machinery in determining the
aspects of the genetic oscillator dynamics has been explored
previously, showing that negative-feedback loop oscillators
such as circadian oscillators can phase lock to the cell cy-
cle [32], which natural oscillators avoid by using protein phos-
phorylation, asynchronous replication, and “noise” [33]. This
would suggest the robustness of the lac-ara oscillator seen
in experiments could be the combined result of the positive-
feedback loop as well as the noise coming from replication
asynchrony and copy number variability [15]. Experiments
with the oscillator genes localized on the same plasmid, to
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FIG. 7. Effect of initial values of the activator and repressor
protein. The period (•) and amplitude (�) of the minimal oscillator
model (based on delay differential equations) for varying initial
concentrations, i.e., at t = 0, of the (a) activator (A) and (b) repressor
(R) are plotted. Here, all other key parameters are kept constant: The
ratio of plasmids na : nr is 2:1 (similar to the Stricker model) and the
concentrations of the inducers are 2 mM IPTG and 0.7% arabinose
with symmetric translation rates (ta : tr = 1 : 1).

separate the effects due to copy number variability and other
sources of noise, could potentially answer some of these
questions.
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APPENDIX: NUMERICAL SIMULATIONS AND ANALYSIS

In summary, we have reduced the mathematical model
given by Ref. [15], with more than 30 equations, to a sim-
plified model having only six differential equations, two of
which are delay differential equations. We use two delay
terms, τ1 (activator) and τ2 (repressor), and relate them as
τ2 = 2τ1. This is based on the fact that activator proteins bind
to DNA after dimerization, a one-step process, but the re-
pressor binds after tetramerization, involving two intermediate
steps. Since the rate constants for all these reactions have the
same value according to previous reports [15], and promoter
binding is much faster than multimerization, we argue that
the delay due to two consecutive reactions is twice that of a
single reaction. This model was simulated using PYTHON 3.6
and for the purpose of solving delay differential equations,
the PyDDE package was used. To solve a delay differential
equation numerically, the solver needs to be given initial data
of all the variables between time 0 < t < 2τ . To get around
this problem, we solve the equations as simple ODEs between
0 < t < 2τ and as DDEs when t > 2τ

A custom written peak-finding algorithm was used for
estimation of the time period and amplitude. This algorithm
involved comparing the concentration value at each time
point with that of some time before and some time after the
particular point. If y(t ) denotes the time series of protein
concentrations, for any time t , we check if

y(t0) > y(t0 − s) and y(t0) > y(t0 + s). (A1)

If the above condition is satisfied for all s ∈ {δt, 2δt, 30δt},
then we consider t0 to be a “peak.” Our calculations were run
with δt values of 0.2 min. The period and amplitude can be
found by averaging the time difference between consecutive
peaks and the values of y(t0), respectively.
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