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Wing kinematic and aerodynamic compensations for unilateral wing damage in a small phorid fly
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To investigate the way in which very small insects compensate for unilateral wing damage, we measured the
wing kinematics of a very small insect, a phorid fly (Megaselia scalaris), with 16.7% wing area loss in the outer
part of the left wing and a normal counterpart, and we computed the aerodynamic forces and power expenditures
of the phorid flies. Our major findings are the following. The phorid fly compensates for unilateral wing damage
by increasing the stroke amplitude and the deviation angle of the damaged wing (the large deviation angle gives
the wing a deep U-shaped wing path), unlike the medium and large insects studied previously, which compensate
for the unilateral wing damage mainly by increasing the stroke amplitude of the damaged wing. The increased
stroke amplitude and the deep U-shaped wing path give the damaged wing a larger wing velocity during its flap-
ping motion and a rapid downward acceleration in the beginning of the upstroke, which enable the damaged wing
to generate the required vertical force for weight support. However, the larger wing velocity of the damaged wing
also generates larger horizontal and side forces, increasing the resultant aerodynamic force of the damaged wing.
Due to the larger aerodynamic force and the smaller wing area, the wing loading of the damaged wing is 25%
larger than that of the wings of the normal phorid fly; this may greatly shorten the life of the damaged wing.
Furthermore, because the damaged wing has much larger angular velocity and produces larger aerodynamic
moment compared with the intact wing of the damaged phorid fly, the aerodynamic power consumed by the
damaged wing is 38% larger than that by the intact wing, i.e., the energy distribution between the damaged and
intact wings is highly asymmetrical; this may greatly increase the muscle wastage of the damaged side.
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I. INTRODUCTION

Insects are the smallest fliers in the world and have excel-
lent flight performance. They can adjust the wing kinematics
to achieve hovering, forward flight, climbing flight, and amaz-
ing maneuvering, even with damaged wings [1–9]. The wings
of insects are prone to damage because of attacks, predation,
and collisions with the environment [1]. Different from birds
or bats [10,11], insects cannot renew damaged wings, hence
they must compensate for the damaged wings by adjusting
the wing kinematics during flight.

Loss of wing area is the most direct problem that wing-
damaged insects face. In the case of identical damage of
both wings, the compensation in flight is often associated
with increased wingbeat frequency, flapping amplitude, and
angle of attack of both wings [1–4], which is similar to
the adjustment in the vertically ascending flight of normal
insects [12]. For asymmetrical damage, which may be more
common in the wild, insects should produce enough vertical
force to support their weight while minimizing the torque
produced from asymmetrical forces to maintain a balanced
flight [5–8]. The kinematic compensation for this situation is
more complicated, and both intact and damaged wings need
to be adjusted [6].

The compensational strategies for asymmetrical wing dam-
age are varied among different species of insects. Hawkmoths
[5] compensate for unilateral wing damage through a remark-
able increase in stroke amplitude on the damaged wing and
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an increase in the overall wingbeat frequency. Fruit flies [6]
with unilateral damage adjust not only the stroke amplitude
and wingbeat frequency, but also the timing of stroke reversal
and the rolling angle of the body. A study about damselflies
[7] indicates that even if one of the hindwings is removed, the
insects can also fly and maneuver by adjusting the wingbeat
frequency, flapping amplitudes, angle of attacks, and stroke
plane angles of the remaining three wings.

Previous studies on kinematic and aerodynamic compensa-
tions for wing damage were performed on medium and large
insects (wing length R ≈ 5−50 mm). Recent studies have
shown that the flapping mode and force production mecha-
nism of very small insects (R ≈ 0.5−4 mm) are very different
from those of their larger counterparts [13,14]: Medium and
large insects in normal hovering flight stroke the wings back
and forth in an approximately horizontal plane, referred to
as upstroke and downstroke, respectively [12–14]. But for
very small insects, because of the very low Reynolds number
(Re) or very large viscosity effect, flapping in the same
way as their larger counterparts cannot produce sufficient lift
[15–17]. It has been found that for small insects, as the size
or Re decreases, the upstroke wing motion becomes more
downward-curved (a U-shaped upstroke), which results in a
stronger vertical force [13,14]. This indicates that very small
insects may have different strategies to compensate for wing
damage. In addition, previous works measured the oxygen
consumption rates or CO2 production rates to estimate the
energy expenditures of insects with damaged wings [2,9], but
it is not yet known how the insects distribute energy to the
damaged wing and the normal wing.
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FIG. 1. Wing planforms of the phorid fly with a damaged left
wing. R′, wing length of the damaged left wing; R, wing length of
the intact right wing.

In the present paper, we study the problem of kinematic and
aerodynamic compensations for wing damage in a very small
insect, namely the phorid fly Megaselia scalaris. Average-
sized insects have a wing length around 5 mm [18], while very
small insects have a wing length ranging from approximately
0.5 to 4 mm. The wing length of the phorid fly is approxi-
mately 1.3 mm, so we can consider that it is a representative
very small insect. We used three high-speed cameras to mea-
sure the wing kinematics of a phorid fly with natural damage
on the left wing. Based on the measured wing kinematics,
we numerically solved the Navier-Stokes equations to obtain
the aerodynamic forces acting on and the flows around the
phorid fly. For comparison, we did the same to an intact
phorid fly with almost the same morphological parameters and
under the same flight conditions. We compared the flapping
kinematics, aerodynamic forces, and power consumptions of
these phorid flies to evaluate the kinematic and aerodynamic
compensations for the unilateral wing damage, and through
analyzing the flows around the wings of the wing-damaged
phorid fly, the force production mechanism and energy dis-
tribution between the damaged and intact wings were also
investigated.

II. MATERIALS AND METHODS

A. Wing kinematics measurement

Among the adult phorid flies (Megaselia scalaris) obtained
from the Laboratory of Urban Integrated Pest Management
and Ecological Security, Shenyang University, a small phorid
fly with natural wing area loss in the outer part of the left wing
was found and chosen as the subject of the current study. The
planforms of the damaged wing and the intact wing of this
phorid fly are shown in Fig. 1. To compare with the wing-
damaged phorid fly, a normal phorid fly was selected from the
same group, which has similar morphological parameters to
the wing-damaged one.

We studied the steady, low-speed flights of the phorid flies
using three synchronized high-speed cameras (i-SPEED 716,
iX Cameras, Essex, UK) which were mounted on an optical
table (Fig. 2). To satisfy the need for time and space fidelity,

FIG. 2. Sketch showing the experimental measuring apparatus.

the cameras’ speeds were set to 9000 frames per second
(resolution 1400 × 1008 pixels) with the shutter speed set to
10 μs. Then each wing-beat cycle contains about 30 snap-
shots. Each camera was equipped with a 60 mm micro-Nikkor
lens to satisfy the need for the filming area (approximately
1.5 × 1.5 × 1.5 cm3). The camera view was backlit using a
50 W integrated light emitting diode (LED; luminous flux,
4000 lm; wavelength, 632 nm). During the experiment, the
phorid flies were transferred into a transparent 6 × 6 × 6 cm3

flight chamber. The synchronized cameras were manually
triggered when the insect was observed to fly steadily in the
filming area. The ambient temperature was kept at 25−27 ◦C
and relative humidity was 50−60%.

The insects were anaesthetized immediately after flight
recording, and then the total mass of each phorid fly was
measured by a laboratory balance within an accuracy of ±0.01
mg (BT25S, Sartorius AG, Göettingen, Germany). The wing
shape was captured using a microscope equipped with an
electronic eyepiece (display resolution: 2048 × 1536). The
body shape was reconstructed from the video sequences, and
the body cross sections were simplified as ellipses [19].

After all the morphological parameters were obtained, we
manually measured the body and wing kinematics frame by
frame using a stereo-vision-based method [20,21]. The basic
idea was to adjust the positions and orientations of the models
of the body and wings, separately, until their projections
overlapped with their counterparts on recorded snapshots in
all three views. A coordinate system (X , Y , Z) with the
origin at the wing root was used to describe the wing motion
[Fig. 3(a)]. The X -axis points horizontally backwards, the
Y -axis points vertically upwards, and the Z-axis points to the
left of the insect. The inclination angle of the stroke plane
about the horizontal is denoted as β. For a flat-plate wing, the
stroke angle (φ), the pitch angle (ψ ), and the deviation angle
(θ ) can determine the orientation of the wing [Fig. 3(a)]. A
detailed description of this method can be found in our group’s
previous works [21,22]. Recent studies showed that very small
insects appeared to have large spanwise bending on the wings
[13,14]. The wing bending of this small phorid fly could also
be clearly observed, thus spanwise bending was taken into ac-
count to better match the model projections and the displayed
frames, as was done in Refs. [13,14] for very small insects.
Based on the observations, it was assumed that maximum
bending displacement (dm) was at 40% of the wing length
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FIG. 3. Kinematic definition: (a) coordinate system (X , Y , Z) with origin at the wing root and Euler angles defining the wing kinematics;
(b) definition of the spanwise bending.

from the wing root [Fig. 3(b)]. The bending distribution along
the wingspan is approximated as follows: Let r represent the
spanwise distance. The bending distribution between r/R = 0
and 0.4 is a quadratic curve, and so is that between r/R =
0.4 and 1 [Fig. 3(b)]. Therefore, the bending distribution is
determined by one parameter, dm, which is determined in the
process of matching the model image and the displayed frame.
From the picture of the wing shown in Fig. 1, it is seen that the
wing veins are much thicker between r/R = 0 and r/R ≈ 0.4.
This is most possibly the reason why the maximum bending
is at r/R ≈ 0.4. For the damaged wing, the wing area loss
is at the outer part of the wing (between r/R ≈ 0.8 and
r/R = 1), and the part between r/R = 0 and r/R ≈ 0.4 where
wing veins are thick is not affected. Therefore, the maximum
bending also appears at r/R ≈ 0.4.

In a previous paper of our group [22], an error analysis of
the method of wing-kinematics measurement was performed.
It was shown that the primary errors of the method were due
to wing deformation (spanwise twist and chordwise camber
deformations) and discretization. The wing deformation er-
rors and discretization errors were estimated on the whole by
applying the method to a computer-generated virtual hoverfly,
the twist and camber deformations of which were known. It
was shown that errors in the positional and elevation angles
were within 3◦ and that in the pitch angle was within 4◦. In
the present study, because the wing size of the phorid fly is
much smaller than that of the hoverfly, the twist and camber
deformations are smaller, and the errors can be smaller than
the above values. It should be noted that when the left and
right wings have asymmetric motions, as in the case of MSd,
the Euler angles are different between the two wings, and thus
the relative errors will be a little different between the two
wings.

As mentioned earlier, we only found one phorid fly with
natural wing area loss. Therefore, only this fly and another
normal fly of the same size and weight are considered in the
present work. The wing area loss is at the outer part of the
wing: This part of the wing is important in aerodynamic force
and moment generation, and our study can provide a good
example of wing kinematic and aerodynamic compensations
for wing damage in very small insects.

B. Aerodynamic force computation

We conducted a three-dimensional flow simulation to study
the aerodynamics during the flapping flights of phorid flies.

The governing equations of the flows around the insects are
the incompressible Navier-Stokes equations. Let us use c, U ,
and c/U as the reference length, speed, and time, respectively,
to nondimensionalize the Navier-Stokes equations (c is the
mean chord-length and U is defined as U = 2� f r2, where �

is the stroke amplitude and is equal to the maximum stroke
angle minus the minimum stroke angle, f is the wingbeat
frequency, and r2 is the radius of gyration of the wing). It
is noted that the reference length and speed for the wing-
damaged phorid fly are c and U of its intact wing. The
nondimensionalized forms of the equations are

∇ · u = 0, (1)

∂u
∂τ

+ u · ∇u = −∇p +
(

1

Re

)
∇2u, (2)

where u is the nondimensional fluid velocity field, τ is the
nondimensional time, p is the nondimensional fluid pressure,
Re is the Reynolds number (Re = cU/ν, where ν is the
kinematic viscosity of the air; here, Re of the normal phorid
fly is 40), and ∇ and ∇2 are the gradient and Laplacian
operators. The equations were numerically solved using a
three-dimensional unsteady flow solver based on the method
of artificial compressibility developed by Rogers et al. [23].
A detailed description of the flow solver can be found in pre-
vious studies of our group, and the validity of the flow solver
has been well demonstrated [13,24,25]. As for the boundary
conditions, at the far-field inflow boundary, the velocity com-
ponents are specified according to the constant inflow velocity
while pressure is extrapolated from the interior; at the far-field
outflow boundary, pressure is set equal to the inflow pressure,
and the velocity is extrapolated from the interior. On the wing
surfaces, impermeable wall and no-slip boundary conditions
are applied, and the pressure on the boundary is obtained
through the normal component of the momentum equation.

Since the left and right wings were asymmetrical and
had relative movements, moving overset grids were used in
this study (Fig. 4). As was shown in previous studies, the
effect of body-wing interaction on the aerodynamic force was
negligibly small [26,27]. Therefore, only two wing models
were considered. The thickness of each wing model is 3% of
the local chord length. The thickness of the wing of a phorid
fly is not known. In the literature on flow computation and
flow measurement, some researchers used a value between
1% and 3% for the ratio between the model-wing thickness
and the wing chord length (e.g., Refs. [24,26,28]), and many
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FIG. 4. (a) Portions of the computational grid system of the
wing-damaged phorid fly. (b) Time courses of the force coefficients
and contour plots of nondimensional spanwise component of vortic-
ity at the span location r2 for the right wing of the normal phorid
fly (solid and broken lines indicate positive and negative vorticity,
respectively; the magnitude of the nondimensional vorticity at the
outer contour is 2, and the contour interval is 2), calculated with three
grid systems.

researchers did not give this parameter in their paper (e.g.,
Refs. [29,30]). The reason for this may be that people believe
that for low Re and separated flow on an insect’s flapping
wing, the flow is not very sensitive to the thickness of the
wing. In a recent paper of our group [31], three thickness
ratios (1%, 3%, and 5%) were considered in computations
on a flapping wing, and the results showed that the forces
computed by the three wing models are almost the same
(differences in mean force coefficients are less than 2.5%).
Therefore, we think that a 3% thickness ratio for the model
wing of the phorid fly can be a reasonable choice.

Each of the wings had a body-fitted curvilinear grid of O-H
type, and the background was a Cartesian grid that extended
to the far-field boundary of the domain [Fig. 4(a)]. For the
wing grids, dynamically deforming grids are used to treat the
time-varying bending deformation. A procedure of combining
the method of the modified trans-finite interpolation and the
method of solving the Poisson equation was used to generate
the dynamically deforming grids. A more detailed description
of the procedure can be found in Ref. [32].

To ensure that the flow calculations were grid-independent,
a grid resolution test was conducted using the wing models
and wing kinematics of a normal phorid fly. Three grid
systems were considered. For grid system 1, the wing grid
had dimensions 43 × 61 × 43 in the normal direction, around

the wing, and in the spanwise direction, respectively (the
first-layer grid thickness was 0.0015c); the background grid
had dimensions 81 × 81 × 81 in the X , Y , and Z directions,
respectively. For grid system 2, the corresponding grid di-
mensions were 65 × 91 × 65 and 121 × 121 × 121 (0.001c).
For grid system 3, the corresponding grid dimensions were
96 × 135 × 96 and 181 × 181 × 181 (0.000 67c). For all
three grid systems, the grid points of the wings were clustered
densely toward the wing surface and toward the wake, and
the grid points of the background grid were concentrated in
the near field of the wings. The nondimensional time step
was equal to T /440 (nondimensionalized by c/U ). As shown
in Fig. 4(b), there is almost no difference between the force
coefficients calculated by the three grid systems; there is a
small difference in the vorticity contour plots between grid
system 2 and grid system 1, but almost no difference in
vorticity contour plots between grid system 2 and grid system
3. This indicates that very good solution accuracy is achieved
when grid system 2 or 3 is used. Here grid system 2 was
used (for the damaged wing, due to the shorter wing length,
fewer points were in the spanwise direction: the wing grid was
changed to 65 × 91 × 59).

III. RESULTS AND DISCUSSION

Based on our observations, we found that phorid flies do
not perform hover flight and that they commonly perform
low-speed forward flight. Therefore, this type of flight is
focused on in this study. The phorid fly with natural damage
on the left wing is denoted as MSd. The normal phorid fly
used to compare with MSd is denoted as MSn. These two
phorid flies playing low-speed forward flight with almost the
same advance ratio J (the ratio between forward flight speed
and average wingtip flapping speed) were filmed; their video
sequences are shown in Fig. 5 (the original video sequences

FIG. 5. Video sequences of MSn and MSd.
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TABLE I. Morphological parameters.

m R(R′) c S(S′) Lr Lb l h
ID (mg) (mm) (mm) (mm2) r2/R (mm) (mm) (mm) (mm)

MSn 0.26 1.33 0.45 0.60 0.58 0.56 1.82 0.35 0.23
MSd 0.26 1.34 (1.07) 0.45 0.60 (0.50) 0.58 0.58 1.84 0.35 0.23

of MSn and MSd are presented as supplemental movie 1 and
movie 2, respectively; see the Supplemental Material [33]).

A. Morphological parameters

The morphological parameters of the two phorid flies are
given in Table I. Parameters in Table I include the total mass
of an insect (m), wing length (R) (R′ denotes the wing length
of the damaged wing), mean chord-length of the wing (c),
wing area (S) (S′ denotes the wing area of the damaged wing),
radius of gyration of the wing (r2), distance between two wing
roots (Lr ), body length (Lb), distance between the wing-base
axis and the center of mass (l), and distance between the
wing-base axis and the body axis (h). It is seen that the
morphological parameters of MSn and MSd are very similar,
except that MSd has 16.7% wing area loss in the outer part of
the left wing (Fig. 1). We use MSn to represent the undamaged
status of MSd.

B. Wing kinematic compensation

Figure 6 shows the measured Euler angles and the maxi-
mum bending displacements of the wings of MSn and MSd.
Based on the data in Fig. 6, stroke diagrams showing the
flapping motions are plotted in Fig. 7, and the kinematic

FIG. 6. Measured Euler angles and the maximum bending dis-
placements of (a)–(d) the left wings and (a*)–(b*) right wings of
MSn and MSd (mean ± s.d.; n = 8 wingbeats).

parameters are given in Table II (in addition to the parameters
mentioned above, χ , the angle between the body axis and the
horizontal plane, and γ , the rolling angle of the body, are also
included in the table).

As seen in Fig. 7, for the normal phorid fly, MSn, the two
wings have approximately symmetric flapping modes: each
wing has a U-shaped upstroke wing path and a relatively
planar downstroke wing path [Fig. 7(a)], similar to the other
very small insects studied in Refs. [13,14]. However, for the

FIG. 7. Stroke diagrams show the wing motions of (a) MSn and
(b) MSd. The curves indicate the wing paths at 0.58R from the wing
roots; black dots on the bodies define the wing-root location; black
lines in side view indicate the orientation of the wing at various times
in one stroke cycle, with dots marking the leading edge; colored
arrows in side view represent the velocities of the wing at 0.58R
from the wing roots; colored arrows in top view indicate the flapping
directions.
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TABLE II. Kinematic parameters.

� (deg)

ID J f (Hz) Left wing Right wing β (deg) χ (deg) γ (deg)

MSn 0.23 332.17 154.44 154.69 6.79 37.24 0.20
MSd 0.20 308.54 188.58 143.87 0.61 42.43 0.10

phorid fly with the left wing damaged, MSd, to compensate
for the wing area loss, the upstroke motion of the damaged
left wing becomes more downward-curved compared to that
of the intact left wing of MSn [Fig. 7(b)], giving a deeper
U-shaped wing path. Moreover, the stroke amplitude � of
the damaged left wing increases greatly, reaching the 180◦
limit. In addition to adjusting the kinematics of the damaged
left wing, MSd also adjusts its intact right wing: it slightly
decreases the stroke amplitude and increases the depth of the
downstroke U-shaped wing path [Fig. 7(b)].

For the damaged wing of MSd, in the upstroke, the large
� and the deep U-shaped wing path significantly increase
the traveling distance, and thus increase the wing velocity
(see the arrows in the side views of Fig. 7); in addition, in
the beginning of the upstroke, the damaged wing accelerates
downward with a large angle of attack (see the orientation
of the wing section in the side views of Fig. 7). In the
downstroke, the large � increases the wing velocity.

It is expected that the larger wing velocity during its
flapping motion and the rapid downward acceleration with
large angle of attack in the beginning of the upstroke will help
the damaged wing generate the required aerodynamic force.
The location of the total force of the damaged left wing will
be different from the normal case, and hence its moment will
be different from the normal case. Thus, it is expected that
the kinematic adjustment of the intact right wing is associated
with the balance of the moment. The problem of aerodynamic
force generation and the balance of the forces and moments
will be discussed in the next section.

Previous studies [5,6] indicated that medium and large
insects, such as fruit flies and hawkmoths, compensate for
unilateral wing damage mainly by increasing the stroke am-
plitude of the damaged wing, but here the results shows that
for the very small insect phorid fly, in addition to the stroke
amplitude, the deviation angle (or the depth of the U-shaped
wing path) is also greatly increased for the compensation of
the loss of the wing area.

C. Aerodynamic forces and moments

Using the kinematics measured above, the aerodynamic
forces and moments acting on the phorid flies were computed
using the flow solver described in Sec. II. For the phorid flies
moving forward at J ≈ 0.2 (Table II), the constant flight speed
was given at the inflow boundary (see Sec. II), as was done in
similar CFD studies on insect flight (e.g., Refs. [34,35]). As
shown in Fig. 8, we use Fx, Fy, and Fz to denote the x, y, and z
components of the aerodynamic force of a wing, respectively,
and Mx, My, and Mz to denote the x, y, and z components of
the moment of a wing about the center of mass, respectively.

In addition, we refer to the forces in the x, y, and z directions
as vertical, horizontal, and side forces, respectively.

The time courses of Fx, Fy, and Fz for the wings of MSd are
shown in Fig. 9. It is observed that the Fy (the vertical force)
curves of the two wings of MSd are similar to each other, each
of which has a large peak in the upstroke and a relatively lower
peak in the downstroke [Fig. 9(a)]. The cycle-mean vertical
forces of the damaged left wing and the intact right wing
are almost the same, i.e., 1.32 × 10−6 and 1.35 × 10−6 N,
respectively. The cycle-mean vertical force produced by the
two wings is 2.67 × 10−6 N. Based on the data in Table I,
the weight of the phorid fly is 2.55 × 10−6 N. The difference
between vertical force and weight is less than 5%. We see that
the vertical force produced can support the weight. As seen in
Fig. 9(b), the Fx (the horizontal force) produced by the dam-
aged left wing is larger than that produced by the intact right
wing at the midportions of the upstroke and the downstroke,
but in a whole stroke cycle, the large Fx of the damaged left
wing in the upstroke cancels out Fx in the downstroke because
they have opposite signs. As a result, the cycle-mean Fx of
the damaged left wing is only 0.03 × 10−6 N, approximately
zero. The upstroke and downstroke Fx of the intact right wing
also cancel each other out, and the cycle-mean Fx of the
intact right wing is only 0.06 × 10−6 N, also approximately
zero. Thus, the cycle-mean horizontal force of the two wings
is approximately zero. As seen in Fig. 9(c), in most of the

FIG. 8. Diagram used to define the forces and moments. Fx , Fy,
and Fz denote the x, y, and z components of the aerodynamic force
of a wing, respectively; Mx , My, and Mz denote the x, y, and z
components of the moment of a wing about the center of mass,
respectively; V is the total vertical force of the two wings. The
direction of the axes in coordinate system (x, y, z) is the same as that
in coordinate system (X , Y , Z).
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FIG. 9. Time courses of the computed forces (a) Fy, (b) Fx , and
(c) Fz of the damaged left wing and the intact right wing of MSd.

stroke cycle, the magnitude of Fz of the damaged left wing
is a little larger than that of the intact right wing, but it can
be shown that the cycle mean side force of the two wings
is 0.08 × 10−6 N, also approximately zero. We thus see that
the force balance condition for steady flight is met with good
accuracy.

As seen above, the damaged wing can produce the required
vertical force after the kinematic adjustment. As mentioned
earlier, this is expected to be associated with the larger wing
velocity during the downstroke and upstroke and the rapid
downward acceleration with a large angle of attack in the
beginning of the upstroke. To see this more clearly, the time
courses of the wing velocities at 0.58R from the wing roots
are plotted in Fig. 10. It is seen that the maximum velocity

FIG. 10. Time courses of the wing velocities at 0.58R from the
wing roots.

FIG. 11. Contour of nondimensional spanwise component of
vorticity of the two wings in the section at 0.58R from the wing
roots. The vorticity is nondimensionalized by U/c; the counterclock-
wise and clockwise vorticity are denoted as solid and dashed lines,
respectively; the magnitude of the nondimensional vorticity at the
outer contour is 2, and the contour interval is 2.

of the damaged wing is about 1.5 times that of the intact
wing in both the upstroke and downstroke, and the slope of
the velocity curve, i.e., the acceleration of the damaged wing
at t/T = 0.1−0.18 (the beginning of the upstroke), is much
larger than that of the intact wing. To explain the effect on
the vertical force, vorticity fields are plotted for the period in
which a large aerodynamic force is produced.

Figure 11 shows the vorticity contours of the two wings.
During the midportions of the upstroke and downstroke, the
leading-edge vortex (LEV) attaches and moves with the wing,
indicating that the force production mechanism is the delayed-
stall mechanism [24,28–30,36–40]. Figure 12 gives an overall
picture of the vortical structure of the wings. For each wing,
an attached LEV, a tip vortex and a root vortex leaving from
the two ends of the wing, and a starting vortex in the wake
form a “vortex ring.” As the attached LEV moves forward
with the wing, the “vortex ring” expands in size, giving the
increased distance between the LEV and the starting vortex.
From vorticity dynamics theory, the aerodynamic force on
a body moving in an incompressible viscous flow is equal
to the time rate of change in the first moment of vorticity
[17,41,42]. Because the attached LEV and the starting vortex
carry vorticities with opposite revolving directions, when the
distance between the LEV and the starting vortex increases,
a time rate of change in the first moment of vorticity will be
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FIG. 12. Isovorticity surface plots and pressure distributions at
section 0.58R for MSd during one stroke cycle. The vorticity is
nondimensionalized by U/c and the magnitude of the nondimen-
sional vorticity is 2. TV denotes tip vortex, RV denotes root vortex,
and SV denotes starting vortex. The nondimensional pressure, CP, is
defined as (p − p∞)/0.5ρU 2, where ρ is the fluid density.

generated. As shown in Fig. 12, although the “vortex ring”
of the damaged wing is narrower in the spanwise direction, it
expands faster in the direction of the motion, which increases
the time rate of change in the first moment of vorticity, or
the aerodynamic force of the damaged wing. To illustrate
this point further, we computed and examined the time rate
of change of the first moment of vorticity. Figures 13(a) and
13(b) show the time courses of the vertical component of the
nondimensional total first moment of vorticity (γy) for the left
and the right wings of MSd, respectively. The short lines on
the γy-curve are the tangent lines of the curve, the slope of
which represents the time rate of change of γy or the vertical
force coefficient. During the periods of t/T ≈ 0.10−0.30
and t/T ≈ 0.60−0.80, the magnitude of γy of the wings
continually increases, which is associated with the increased
distance between the LEV and the starting vortex (Fig. 12). It

FIG. 13. Time courses of the vertical component of the nondi-
mensional total first moment of vorticity (γy ), nondimensionalized
by UcS, for the damaged left wing (a) and the intact right wing (b) of
MSd, and the corresponding vertical forces (c) and (d).

is seen that the slope of the γy-curve of the damaged left wing
is similar to that of the intact right wing [see the slope of the
short lines in Figs. 13(a) and 13(b)]. This indicates that the
damaged left wing, which has a narrower “vortex ring” but
a larger expanding velocity (Fig. 12), can generate the same
time rate of change of the first moment of vorticity as the intact
right wing, which has a wider “vortex ring” but a smaller
expanding velocity (Fig. 12), explaining why the damaged left
wing produces approximately the same vertical force as the
intact right wing. The vertical forces calculated by taking the
time derivative of the vorticity moment and those calculated
in the usual way of integrating the pressure and viscous stress
on the wing surface are plotted in Figs. 13(c) and 13(d) for
the left and right wings, respectively (the result obtained from
the time rate of change of the total first moment of vorticity
and that obtained from the pressure and viscous stress on the
wing surface are almost the same, as they should be). In the
above computation of the vorticity moments, because of the
asymmetrical left and right wings, separate flow simulations
were done for each of the left and right wings. In addition,
the results plotted in Fig. 13 are those of the first stroke cycle;
this is because the vorticity in the wake after a few cycles will
move far away from the wing, and the vorticity there is not
accurate enough for the calculation (the grids are dispersive
in the far field). Our computational results showed that for the
forward flight of the very small phorid fly, the aerodynamic
force of the first stroke cycle is approximately the same as
that of the later stroke cycles; therefore, the results of the first
stroke cycle are used here.

It is of interest to examine the pressure distributions on
the surfaces of the intact and damaged wings. Figure 12 also
includes the pressure distributions in the section at 0.58R
from the wing roots. It is seen that during the midportions
of the upstroke and downstroke, the attached LEV gives a
large suction at the leading edge, and the force produced is
dominated by the negative CP on the upper surface of the
wing. To produce the required aerodynamic force, the suction
of the damaged wing at section 0.58R is much larger than that
of the intact wing. This is expected because the wing velocity
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FIG. 14. Contributions of lift and drag to the vertical force of
the left and right wings of MSd in one stroke cycle. The orange
background indicates where the drag has a larger contribution to the
vertical force for the damaged wing, and purple indicates where the
lift has a larger contribution.

of the damaged wing is much larger than that of the intact
wing.

To investigate the effect of large downward acceleration
with a large angle of attack in the beginning of the upstroke,
the contributions of lift and drag of the wings to the vertical
force are plotted in Fig. 14, where the lift and drag are the
two components of the total aerodynamic force, which are
perpendicular and parallel to the wing velocity, respectively. It
is seen that during most periods, lift makes more of a contribu-
tion to the vertical force for both wings, but in the beginning
of the upstroke, the drag of the damaged wing makes more
of a contribution to its vertical force. This indicates that in
the beginning of the upstroke, the damaged wing generates
more upward drag through accelerating downward with a
large angle of attack, which makes a large contribution to
the weight-supporting vertical force. The effect of the large
downward acceleration can also be seen from the pressure
distributions in Fig. 12. At t/T = 0.16 and 0.20 (Fig. 12),
a significant part of the force of the damaged wing comes
from the positive CP on the lower surface of the wing. As the
wing accelerates downward, it smashes on the air, producing
pressure on the lower surface. This helps the damaged wing
produce more aerodynamic force.

The damaged wing can produce the required vertical force
via the increased wing velocity in the upstroke and down-
stroke and the large wing acceleration in the beginning of
the upstroke. As mentioned earlier, the large wing velocity
and the large acceleration of the damaged wing come from
the increased stroke amplitude and deviation angle. It is of
interest to see the respective effect of the stroke amplitude and
the deviation angle on the force production. For this purpose,
we conducted two additional computations: In one case, the
stroke amplitude of the damaged wing was decreased to that
of the normal wing of MSn; in the other case, the amplitude of

FIG. 15. Respective effect of changes in the deviation and the
stroke amplitude on the vertical force of the damaged wing.

the deviation angle of the damaged wing was decreased to that
of the normal wing of MSn. The results are shown in Fig. 15.
It is seen that both of the compensational changes in φ and θ

are very important for the force production. In the beginning
of the upstroke (t/T ≈ 0−0.17), the change in φ has little
effect on Fy, while the change in θ significantly decreases Fy,
indicating that the vertical force produced in the beginning of
the upstroke is mainly affected by the change in θ . This is
expected because the deep U-shaped wing path is produced
by the large deviation angle, which gives the damaged wing
a large downward acceleration. In the rest of the stroke cycle
(t/T ≈ 0.17−1), the vertical force is affected by the changes
in both φ and θ , because both changes affect the wing velocity.
But it should be noted (Fig. 15) that in the midportion of the
downstroke (t/T ≈ 0.65−0.85), the change in φ has a larger
effect on Fy than the change in θ .

In the above, we have discussed the aerodynamic forces
and force balance. If an insect wants to maintain a stable
flight, not only does weight-supporting vertical force need to
be produced, but also the moment about the center of mass
should be zero. The time courses of Mx, My, and Mz for each
of the wings are given in Fig. 15.

As shown in Fig. 16, the magnitude of Mx of the damaged
left wing is approximately the same as that of the intact right
wing, but their signs are opposite, thus the Mx of the two
wings can cancel each other out. This is also true for My.
The Mz’s of the two wings have both similar magnitudes
and signs, but they change their signs at the middle of the
upstroke and the downstroke, which can cancel themselves
out in one stroke cycle. Based on the data in Fig. 16, the
cycle-mean moments of each wing of MSd are calculated
(Table III), Mx,m, My,m, and Mz,m denoting the mean values of
Mx, My, and Mz, respectively. Adding up the data of the two
wings in Table III, the moments of the wing-damaged phorid
fly about the x-axis, y-axis, and z-axis are all close to zero,
namely 0.08 × 10−9, −0.07 × 10−9, and 0.01 × 10−9 N m,
respectively. This indicates that the zero-moment condition
for stable flight is also met with good accuracy. It is noted
that if a normal insect flies in a balanced condition, due
to the symmetrical kinematics of the two wings, the Mz of
each wing needs to cancel itself out in one stroke cycle. But
for a damaged phorid fly, after kinematic adjustments, the
magnitude of the Mz of the damaged left wing is larger than
that of the balanced condition, which needs to be balanced by
the intact right wing. This explains why the intact wing also
needs to adjust the wing kinematics.
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FIG. 16. Time courses of the computed moments (a) Mx , (b) My,
and (c) Mz of the damaged left wing and the intact right wing of MSd.

The above results show that the damaged wing of the small
phorid fly can produce the required vertical force through
using a larger wing velocity during its flapping motion and
a rapid downward acceleration at a large angle of attack in
the beginning of the upstroke. However, to compensate for
the area loss in the left wing, the stroke amplitude of the
damaged left wing has already reached the 180◦ limit, and the
U-shaped upstroke wing path is very deep, also approaching
its limit. That is, although the wing-damaged phorid fly can
now achieve a stable flight, there is not much room for the
fly to further adjust its wing kinematics for maneuvers, which
may affect the performance of escape, predation, competition,
etc. The mortality possibility of the wing-damaged phorid fly
is greatly increased.

Furthermore, as discussed above, the magnitude of the
instantaneous vertical force (Fy) of the damaged left wing is
approximately equal to that of the intact right wing, while
the magnitudes of the instantaneous horizontal (Fx ) and side
(Fz ) forces of the damaged left wing are larger than their
counterparts of the intact right wing. Thus, it is expected that
the damaged wing endures larger aerodynamic force than that
in the normal case. To see this, we compare the resultant aero-
dynamic force (denoted as F ) of the wing-damaged phorid

TABLE III. Aerodynamic moments.

Mx,m My,m Mz,m

ID (μN mm) (μN mm) (μN mm)

Left wing (damaged) −1.22 −0.02 −0.16
MSd Right wing (intact) 1.30 −0.05 0.17

FIG. 17. Time courses of the resultant aerodynamic force of (a)
the left wings and (b) the right wings of MSn and MSd.

fly (MSd) with that of the normal phorid fly (MSn). F is
computed as

F =
√

Fx
2 + Fy

2 + Fz
2. (3)

Figure 17 shows the time course of the resultant aerodynamic
force for each wing of MSn and MSd. It is seen that the peak
value in the force-curve of the damaged left wing of MSd is
31% larger than that of the corresponding wing of MSn (the
cycle-mean aerodynamic force produced by the damaged left
wing of MSd is 4.5% larger than that of the corresponding
wing of MSn). Due to the larger aerodynamic force and the
smaller wing area, the cycle-mean wing loading (cycle-mean
aerodynamic force divided by wing area) of the damaged left
wing of MSd is 25% larger than that of the corresponding
wing of MSn (the cycle-mean wing loading of the damaged
left wing of MSd is 4.5 N/m2, but that of the left wing of
MSn is only 3.6 N/m2). The very large wing loading on the
damaged wing may greatly shorten the life of the damaged
wing.

D. Power consumption

The energy expenditure is a crucial parameter to quan-
tify the flight performance of the wing-damaged insect. As
mentioned earlier, previous studies measured the metabolic
costs (oxygen consumption rates or CO2 production rates) to
estimate the energy expenditures of the wing-damaged insects
[2,9], but it is not known how the insects distribute the energy
to the damaged wing and the normal wing. Here, to investigate
the energy distribution between the damaged and intact wings,
we computed the power consumption of each wing of the
normal phorid fly (MSn) and the wing-damaged phorid fly
(MSd), based on the aerodynamic force and the kinematic
data above. The mechanical power (P) of a flapping wing
consists of two parts, namely the aerodynamic power (Pa)
and the inertial power (Pi). Pa is produced by the wing-stroke
muscles to overcome the aerodynamic moment (Ma), and it
can be calculated by

Pa = Ma · �, (4)

where � is the angular velocity of the wing. The inertial
power is produced by the wing-stroke muscles to overcome
the inertial moment (Mi), and it can be calculated by

Pi = Mi · �. (5)

The aerodynamic power Pa can be calculated readily as
Ma and � of each wing are known. However, the calculation
of the inertial power Pi is not so straightforward, because
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FIG. 18. Time courses of the mechanical power P, aerodynamic
power Pa, and inertial power Pi of the right wing of MSn.

the mass (mw ) and the radius of gyration (r2,m) of the
wing required for computing Mi are unknown for phorid
flies.

We deal with this problem in the following way. The wing-
to-body mass ratio (mw/m) and the nondimensional radius of
gyration (r2,m/R) for a larger fly species, Drosophila virilis,
are known [43]: mw/m = 0.24% and r2,m/R = 0.48. It has
been found that r2,m/R in dipterans typically lies at 0.4–0.5R
[19] and that the wing-to-body mass ratio (mw/m) tends to
decreases as the wing size decreases: wing mass is mostly
contributed by the wing veins [18], and the number of wing
veins is reduced as the wing size decreases [44,45]. As a
result, if we take the values of mw/m and r2,m/R of the fruit
fly as those of our phorid flies, an overestimated Mi for the
phorid flies is obtained. Figure 18 plots the time courses of
P, Pa, and Pi of the right wing of MSn calculated using such
an overestimated Mi. As seen in the figure, even if the inertial
moment is overestimated here, the contribution of Pi is much
smaller than Pa, and the curve of P is approximately the same
as that of Pa; moreover, the difference between P and Pa,
caused by Pi, is positive in the first half of an upstroke (t/T ≈
0−0.25) or downstroke (t/T ≈ 0.5−0.75 and is negative in
the next half of an upstroke (t/T ≈ 0.25−0.5) or downstroke
(t/T ≈ 0.75−1). This indicates that for the small insect, the
effect of inertial power on the power consumption (the cycle-
mean mechanical power) is very small. Commonly, when
researchers consider power consumption, they compute two
limiting cases and the real power consumption lies between
the values of the two limiting cases [46,47]. One limiting case
is 100% elastic energy storage (the negative inertial work can
be completely stored in an elastic element and later released
to do positive work). In this case, the cycle-mean mechanical
power (Pm) simply equals the cycle-mean aerodynamic power
(Pa,m). The other limiting case is 0% elastic energy storage
(no negative inertial power can be stored for later use). Using
the data in Fig. 18, the cycle-mean mechanical power in the
case of 100% elastic energy storage is 3.50 × 10−6 W and that
in the case of 0% elastic energy storage is 3.52 × 10−6 W;
the difference is less than 1%. Since the two limiting values
are approximately the same, any one of the limiting cases is
a good approximation of the real case. Here we adopt the
case of 100% elastic energy storage, computing the power
consumption only by aerodynamic power (positive inertial
power and negative inertial power cancel out). That is, in the
following, we take the aerodynamic power as the total power
consumption of the wing.

FIG. 19. Time courses of the aerodynamic power of (a) the left
wings and (b) the right wings of MSn and MSd.

The time histories of the computed aerodynamic power for
each wing of MSn and MSd are shown in Fig. 19. Pa,m of
each wing and the mass-specific power (P∗), which is defined
as the total Pa,m of an insect divided by the mass of the insect,
are given in Table IV.

From the data in Table IV, it is seen that the normal phorid
fly (MSn) and the wing-damaged phorid fly (MSd) have
almost the same power expenditure, 7.09 × 10−6 and 7.05 ×
10−6 W, respectively; because MSd and MSn have same mass
on weight, their mass-specific power is approximately the
same. That is, the flight of the wing-damaged phorid fly does
not consume more power than that of a normal phorid fly.
This conclusion is similar to that obtained for bumblebees
with symmetric wing damage, using the method of measuring
the metabolic costs (measuring the CO2 production rate) [2].
When the metabolic-costs approach is used, the total energy
consumed by the two wings can be obtained, but it is not
known how the energy is distributed to each of the wings.
With our computational approach, energy consumed by each
of the wings can be readily calculated. The results are given
in Table IV. As can be seen from the table, the distribution
of the aerodynamic power between the damaged wing and the
intact wing is highly asymmetrical: the aerodynamic power
consumed by the damaged wing of MSd is 4.09 × 10−6 W,
which is 38% larger than that by the intact wing of MSd
(2.96 × 10−6 W).

Let us look at how the highly asymmetrical aerodynamic
power occurs. As seen from Eq. (4), the power is the inner
product of the aerodynamic moment and the angular velocity,
i.e., it depends on the magnitude of � and the component of
Ma in the direction of �. From the data in Sec. III B, it is seen
that the damaged left wing has a larger � than the intact right
wing. The component of Ma in the direction of �, denoted
as MP (MP = Ma · �/|�|), for each of the two wings of MSd
is plotted in Fig. 20. It is seen that in the midportions of the
upstroke and the downstroke, where the angular velocity of
the damaged wing is very large, the MP of the damaged wing
is also larger than that of the intact wing. This explains why
the aerodynamic power consumed by the damaged wing is

TABLE IV. Aerodynamic power.

Pa,m (10−6 W)

ID Left wing Right wing P∗ (W/kg)

MSn 3.59 3.50 27.27
MSd 4.09 2.96 27.12
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FIG. 20. Time course of MP, the component of Ma in the direc-
tion of �, of the damaged left wing compared with that of the intact
right wing.

far more than that consumed by the intact wing. The fact that
the phorid fly with a damaged wing needs to provide highly
asymmetrical energy may greatly increase the muscle wastage
of the damaged side.

A point is noted from the above results: Each wing of
the normal phorid fly (MSn) consumes about 3.5 μW power
(Table IV), while the intact wing of the wing-damaged phorid
fly (MSd) consumes less power, about 3.0 μW (Table IV).
This is a bit counterintuitive; if the wing kinematics used
by the intact wing of MSd is more efficient, why does MSn
not use this wing kinematics instead of the natural wing
kinematics? A possible explanation is as follows: MSn is in
a balanced level forward flight with natural wing kinematics.
When other wing kinematics is used, the forces and moments
will not be in balance.

IV. CONCLUSION

To compensate for the unilateral wing damage (16.7%
wing area loss in the outer part of the left wing), the very small

insect phorid fly (Megaselia scalaris) greatly increases the
stroke amplitude and the deviation angle of the damaged wing
(the large deviation angle gives the wing a deep U-shaped
wing path), unlike the medium and large insects studied
previously, which compensate for unilateral wing damage
mainly by increasing the stroke amplitude of the damaged
wing. The increased stroke amplitude and the deep U-shaped
wing path give the damaged wing a larger wing velocity
during its flapping motion, and in addition, the deep U-
shaped wing path gives the damaged wing a rapid downward
acceleration in the beginning of the upstroke. These enable
the damaged wing to generate the required vertical force for
weight support. However, the larger wing velocity of the dam-
aged wing also generates larger horizontal and side forces.
Although the larger horizontal and side forces of the damaged
wing do not affect the force balance because these forces
cancel themselves out in the stroke cycle, they increase the
resultant aerodynamic force on the damaged wing. Due to the
larger aerodynamic force and the smaller wing area, the wing
loading of the damaged wing is 25% larger than that of the
wings of the normal phorid fly, which may greatly shorten the
life of the damaged wing. Furthermore, because the damaged
wing has a much larger angular velocity and produces a larger
aerodynamic moment compared with the intact wing of the
damaged phorid fly, the aerodynamic power consumed by the
damaged wing is 38% larger than that consumed by the intact
wing, i.e., the energy distribution between the damaged wing
and the intact wing is highly asymmetrical, which may greatly
increase the muscle wastage of the damaged side.
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