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A fundamental trade-off in biological systems is whether they consume resources to perform biological
functions or save resources. Bacteria need to reliably and rapidly respond to input signals by using limited cellular
resources. However, excessive resource consumption will become a burden for bacteria growth. To investigate
the relationship between functional effectiveness and resource cost, we study the ubiquitous bifunctional enzyme
circuit, which is robust to fluctuations in protein concentration and responds quickly to signal changes. We show
that trade-off relationships exist between functional effectiveness and protein cost. Expressing more proteins
of the circuit increases concentration robustness and response speed but affects bacterial growth. In particular,
our study reveals a general relationship between free-energy dissipation rate, response speed, and concentration
robustness. The dissipation of free energy plays an important role in the concentration robustness and response
speed. High robustness can only be achieved with a large amount of free-energy consumption and protein cost.
In addition, the noise of the output increases with increasing protein cost, while the noise of the response time
decreases with increasing protein cost. We also calculate the trade-off relationships in the EnvZ-OmpR system
and the nitrogen assimilation system, which both have the bifunctional enzyme. Similar results indicate that these
relationships are mainly derived from the specific feature of the bifunctional enzyme circuits and are not relevant
to the details of the models. According to the trade-off relationships, bacteria take a compromise solution that
reliably performs biological functions at a reasonable cost.
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I. INTRODUCTION

Biochemical systems consist of a variety of biological
molecules, including proteins, as well as various energy
molecules, such as ATP and GTP. These systems need to
reliably perform their biological functions, which is of great
importance to the survival of the organism. The production
of these biomolecules requires cellular materials as well as
energy resources; in particular, the expression of proteins will
occupy limited ribosomes. Overexpression of proteins will
become a burden for cell growth. Previous experiments show
that the expression of useless proteins decreases the growth
rate of bacteria, which reduces the fitness of bacteria [1,2].
A cost function is introduced to characterize the extent of
the use of cellular resources, which is an increasing function
of protein expression levels [3]. Therefore, the reduction of
biological fitness due to the consumption of resources, energy,
and ribosomes in the protein expression can be represented
by the protein expression levels. Reducing the protein cost
or effectively performing functions is a fundamental trade-off
in biological systems [4,5]. From the perspective of thermo-
dynamics, biochemical systems are generally far away from
the chemical equilibrium and require chemical free energy
to perform functions. The trade-offs between biological func-
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tions and free-energy cost have been found in the proofread-
ing mechanism [6], cellular computation [7], and regulatory
system, including sensory [8–11] and oscillations [12–14].
However, the relationship between protein cost, free-energy
cost, and functional effectiveness has not been fully investi-
gated. In some biological systems, the relationship between
the biological function and the amount of protein involved
in the process is clear. For example, more ribosomes will
provide more translational capacity during protein synthesis.
However, in the sensing or signal regulatory systems, we
do not know very well the effect of the different expression
levels of the regulatory proteins, and the interplay between
free-energy cost and protein expression levels is vague.

It is well known that sensing and regulatory systems need
to accurately and rapidly sense environmental signals. How-
ever, fluctuations in molecular concentrations in the intra-
cellular environment are inevitable. How these fluctuations
affect information processing and how biological systems deal
with such effects are important issues. It has been found that,
in many sensing and regulatory systems, although the con-
centrations of the participating proteins fluctuate, the output
signal at steady state does not change much. This kind of
robustness, which is the insensitivity of the output signal to
concentration fluctuations, is called concentration robustness
[15,16]. A number of studies have been done on the robustness
of bacterial chemotaxis [17–19] and other regulatory sys-
tems [20,21]. Concentration robustness of the two-component
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system with bifunctional sensor kinase has also been studied
theoretically and experimentally [22–24]. One of the most
famous examples is the EnvZ-OmpR system, which is an
osmotic-stress signaling system in bacteria. Many studies
have investigated the relationship between concentration ro-
bustness and network structure of the EnvZ-OmpR system
[25–27]. The bifunctional enzyme EnvZ has been found to be
crucial for concentration robustness, and the specific structure
has been identified in the biochemical reaction networks
[15]. However, these studies focus on the structure of the
network and ignore the impact of protein cost and free-energy
cost.

Two types of functional effectiveness are considered in this
article. The first one is how protein concentration fluctuations
and internal noise of chemical reactions affect the fidelity of
signal transduction. The second one is how fast the output
signal responds to input signal changes. We consider two
costs: protein cost and free-energy cost. The protein cost
corresponds to the sum of all the various cellular resources
required to express the proteins that make up the system,
including energy and matter. It can be represented by the
protein expression levels. The free-energy cost is the free
energy consumed by the biological system in performing
its function. We use a simple model with concentration
robustness to investigate the relationship between biologi-
cal functional effectiveness and costs. We found that both
concentration robustness and response speed increase with
increasing protein cost. This suggests that there is a trade-off
between functional effectiveness and resource economy. We
also revealed a general relationship between the free-energy
dissipation rate, response speed, and concentration robustness.
Only the system with high protein cost and free-energy cost
can achieve high robustness. Moreover, the internal noise is
also affected by the protein cost. The fluctuation of the output
increases as the protein cost increases, but the fluctuation of
the response time decreases as the protein cost increases. We
also studied the EnvZ-OmpR system and the nitrogen assim-
ilation system of E. Coli by numerical simulation. In these
two different models, we got similar trade-off relationships,
which implies that these trade-offs are based on the basic
bifunctional feature of the circuit and are not affected by the
network details. Furthermore, from the relationships between
functional effectiveness and protein cost, we found that there
is an appropriate region for protein cost in which relatively
low protein cost could provide sufficiently high performance.
This means that the system is both effective and economical
in this region.

II. RESULTS

A. A simple model of the bifunctional enzyme circuit
can provide concentration robustness

In this work, we focus on the biological circuit with a
bifunctional enzyme. A key feature of this circuit is the bi-
functional enzyme, which has a paradoxical effect. It activates
and inhibits the regulatory protein [see Fig. 1(a)]. This par-
ticular feature is crucial for many biological functions, such
as concentration robustness and ultrasensitivity in sensory
systems, pattern formation, temporal pulses, and fold-change
detection [24,27–30].

FIG. 1. The schematic diagram of the circuit with a bifunctional
enzyme and its chemical reactions. (a) A schematic diagram of the
system with a bifunctional enzyme. X activates protein Y and also
inactivates Y. (b) A sketch map of the EnvZ-OmpR system of E.
coli. EnvZ is a membrane-bound sensor kinase and bifunctional.
The activated OmpR (OmpRp) is regulated by EnvZ and regulates
related gene expression. (c) This is a simple model of the circuit with
a bifunctional enzyme. X is the bifunctional enzyme and Y is the
regulator protein. X phosphorylates itself to Xp and then transfers
the phosphoryl group to Y. The phosphorylated form of Y (Yp)
is dephosphorylated by X . The external input changes the rate of
autophosphorylation of X . (d) Biochemical reactions of the simple
model. The level of ATP, ADP, and Pi is assumed to be fixed. So
k1, k−1, and k−3 include the concentration of ATP, ADP, and Pi,
respectively (k1 = k10[ATP], k−1 = k−10[ADP], and k−3 = k−30[Pi]).

A well-studied system is the osmoregulation EnvZ-OmpR
system of E. Coli. EnvZ is a membrane-bound sensor kinase.
It can phosphorylate itself and then transfers the phosphoryl
group to OmpR, an unphosphorylated response regulator.
The bifunctional component EnvZ can dephosphorylate the
phosphorylated OmpR [see Fig. 1(b)]. Here, we present a
simple model based on the features of the EnvZ-OmpR sys-
tem. In Fig. 1(c), the bifunctional enzyme and the regulator
protein are denoted by X and Y, respectively. X phosphory-
lates itself to the phosphorylated form Xp and then transfers
the phosphoryl group to Y. The phosphorylated form of Y
represented by Yp is dephosphorylated by X . We assume that
these reactions are first-order reactions. The external input
changes the autophosphorylation rate k10 of X , so we use
this rate to represent the input signal. The phosphorylated
form of Y (Yp), which is the output of this simple model,
regulates the expression of relevant genes. In addition, other
molecules such as ATP, ADP, and Pi are also involved in
the chemical reactions, and their concentrations affect the
reaction rates. Instead of explicitly writing concentrations of
these molecules, we combine them with the reaction rates to
get effective reaction rates (k1, k−1, and k−3) [see Fig. 1(d)].
The chemical kinetics of the simple model can be described
by the following equations:

d[X ]

dt
= k−1[Xp] + k2[Xp][Y ] − k1[X ] − k−2[X ][Yp],

d[Xp]

dt
= k1[X ] + k−2[X ][Yp] − k−1[Xp] − k2[Xp][Y ],
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d[Y ]

dt
= k−2[X ][Yp] + k3[X ][Yp] − k2[Xp][Y ] − k−3[X ][Y ],

d[Yp]

dt
= k2[Xp][Y ] + k−3[X ][Y ] − k−2[X ][Yp] − k3[X ][Yp],

(1)

where [X ] and [Y ] are the concentrations of X and Y, and
[Xp] and [Yp] are the concentrations of Xp and Yp. The total
concentrations of X and Y satisfy [Xt ] = [X ] + [Xp] and
[Yt ] = [Y ] + [Yp]. In the chemical reactions, we introduce the
reverse reactions of the signal transduction process because
the free-energy dissipation of biochemical reactions is limited.
Here, we use forward fluxes to represent the transduction pro-
cess of the signal, and backward fluxes represent the reverse
reactions of the transduction process. k±i denote the forward
and backward reaction rates of the ith reaction.

It is known that biological systems need to dissipate en-
ergy to perform functions [6,8,12,31]. In the simple model,
ATP is needed to drive the system away from equilibrium.
We introduce γ to represent the reversibility of the signal
transduction process, which is the ratio of forward fluxes to
backward fluxes:

γ ≡ k1k2k3

k−1k−2k−3
= k10k2k3[ATP]

k−10k−2k−30[ADP][Pi]
.

When the system is in the equilibrium state, γ is equal to 1.
When γ > 1, the forward fluxes are greater than the backward
fluxes, which means that the system is transmitting signals
from the input to the output and in a nonequilibrium state.

B. Trade-off between concentration robustness and protein cost

We first investigate how concentration robustness depends
on protein cost. We assume that the time scale of this chemical
reaction system is much smaller than that of expressing pro-
teins X and Y. Therefore, we only consider the steady state
of this system. Since the reverse reaction rates are smaller
than the forward reaction rates in the simple model, the
parameters in our model are restricted by ki � k−i. Under
the physiological condition of E. Coli, the natural logarithm
of γ is about 18kBT (ln γ ≈ 18kBT ), which is equal to the
chemical free energy released by hydrolysis of one ATP
molecule [32]. For the sake of brevity, we set the thermal
energy unit kBT = 1. When the input signal is fixed, starting
from the chemical kinetic equations (1), we derive the stable
steady-state solution of the output, which is

[Yp] = α − √
β

2(k2k−3 + k2k3)
,

where α is (k2k3 + 2k2k−3)[YT ] + (k1k2 + k−1k−3 +
k−1k−2 + k−1k3), and β is α2 − 4(k2k−3 + k2k3){(k1k2 +
k−1k−3)[YT ] + k2k−3[YT ]2}. For the sake of simplicity, we
assume that reverse reaction rates k−1, k−2, and k−3 have the
same value. Then k−1v = k−i = 3

√
(k1vk2k3)/γ (i = 2, 3) and

v is the unit of volume. Reaction rates (k1, k2, and k3), protein
cost ([Yt ] and [Xt ]), and γ determine the dynamics of the
chemical kinetic equations (1). The steady-state solution of
the output clearly shows that the output [Yp] is related to [Yt ]
without being affected by [Xt ]. The relationship between [Yp]
and [Yt ] depends on γ . If γ = 1, which means the system is

FIG. 2. The output [Yp] as a function of protein cost [Yt ] and the
relationship between robustness and [Yt ] at different γ . (a) In the
same external input, [Yp] increases with [Yt ] linearly for small γ .

When γ is large, [Yp] grows with [Yt ] linearly and then reaches a
plateau. (b) Robustness is a step function of [Yt ] for large γ . The
system will have high robustness at large [Yt ]. However, robustness
is relatively low when γ is 0.

in chemical equilibrium, the output [Yp] is linear with [Yt ]. As
γ becomes larger, the output [Yp] increases significantly as
[Yt ] increases when [Yt ] is small, but it does not change much
when [Yt ] exceeds a certain value [see Fig. 2(a)]. If γ tends
to infinity, reverse reaction rates k−i (i = 1, 2, 3) will be 0.
Then we get a simple solution:

[Yp] =
{

[Yt ], [Yt ] < k1/k3,

k1/k3, [Yt ] � k1/k3,

which is derived in Appendix A. It shows that [Yt ] has a
threshold k1/k3. When [Yt ] is less than the threshold, the out-
put [Yp] will be equal to [Yt ], and when [Yt ] is greater than the
threshold, the output [Yp] will be constant. When γ is a finite
value, the change of [Yp] smoothly turns from the linear region
to the constant region. The larger γ becomes, the smaller
and the sharper the transition region will be. This threshold
phenomenon also exists in other models, such as the receptor-
ligand binding model and the Goldbeter-Koshland model [33].
In these models, the threshold phenomenon occurs only when
parameters are at certain extreme conditions. For example, the
affinity needs to be very high for the threshold phenomenon
to occur in the receptor-ligand binding model. This extreme
condition corresponds to the large γ in the simple model.

To quantify the concentration robustness of the simple
model, we introduce

R([Yt ], γ ) ≡ 1 − ∂[Yp]([Yt ], γ )

∂[Yt ]
.

This quantity indicates the degree of change in output when
the molecular concentration changes, which characterizes the
robustness of the output to changes of molecular concen-
tration [Yt ]. If the robustness is large, a change in [Yt ] will
result in a small change in the output [Yp]. In contrast, small
robustness implies that the output is sensitive to [Yt ] variation.
As shown in Fig. 2(b), the robustness is equal to 0.5 when
the system is in chemical equilibrium (ln γ = 0). However, if
ln γ � 1, the robustness jumps at the threshold [Yt ] = k1/k3.
When [Yt ] is less than the threshold, the output of the system is
sensitive to changes of [Yt ]. If [Yt ] is greater than the threshold,
the output of the system is not sensitive to the change of
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FIG. 3. A schematic diagram of the response time of the simple
model and the relationship between response time and protein cost.
(a) The input signal (dashed line) has a transition from 10 to
50 s−1 at time 20 s. Then output [Yp] shifts from a steady state
to a poststimulus state. Response time is the time of output [Yp]
from [Yp0] to [Yp0] + 1

2 [�Y ′]. (b) and (c) The relationship between
response time and protein cost. Response time decreases with [Xt ],
which has a slope of −1 in dual logarithm coordinate. Response time
also decreases with [Yt ]. The dashed lines are the analytical results.
Other lines are the simulation results solved by Runge-Kutta methods
in different �k1.

[Yt ], that is, the system is robust to the fluctuation of concen-
tration [Yt ]. Under the physiological condition of biological
systems (ln γ ≈ 18), robustness increases significantly with
[Yt ] and then raises slowly. The threshold phenomenon will be
weakened when the system is in the physiological condition.
The relationship between functional effectiveness and protein
cost presents a trade-off phenomenon. Although a larger [Yt ]
leads to higher concentration robustness, resulting in higher
fidelity of information processing, a higher protein expression
level requires more cellular resources. The biological system
faces a trade-off between concentration robustness and protein
cost [Yt ], which not only ensures the functional effectiveness
but also makes the resource use economical. It can be seen
from Fig. 2(b) that the system is effective and economical
when [Yt ] takes a value larger than the threshold but still
close to the threshold. Compared with [Yt ], the steady state
of output [Yp] does not change with [Xt ]. This means that
the output of the system is always robust to [Xt ] variation.
The absolute concentration robustness to [Xt ] variation is an
intrinsic property of this simple model.

C. Trade-off between response time and protein cost

Another important function of sensing and regulatory sys-
tems is to respond quickly to changes in the input signal.
A fast response can help the system quickly adjust its state.
Therefore, we investigate the relationship between response
speed and protein cost. When the input signal has a steplike
variation, e.g., k′

1 = k1 + �k1, the output [Yp] will change
from the previous steady state [Yp0] to the poststimulus steady
state: [Y ′

p] = [Yp0] + [�Y ′] [see Fig. 3(a)]. We define the
response time as the time of output [Yp] from [Yp0] to [Yp0] +
1
2 [�Y ′]. Linearization of the ordinary differential equations

(1) near the previous steady state yields

d

dt
[�X ] = −{k2([Yt ] − [Yp]) + k1 + k−2[Yp] + k−1}[�X ]

−{k2([Xt ] − [X ]) + k−2[X ]}[�Yp] − �k1[X ],

d

dt
[�Yp] = −{k2([Yt ] − [Yp]) + (k3 + k−2)[Yp]

− k−3([Yt ] − [YP])}[�X ] − {k2([Xt ] − [X ])

+ (k−2 + k3)[X ] + k−3[X ]}[�Yp].

Due to the conservation of proteins, only two ordinary dif-
ferential equations in (1) are independent. So we only need to
write equations for [�X ] and [�Yp]. For the sake of simplicity,
after omitting the small reverse reactions and setting k2 = k3,
the solution of these differential equations is

[�Yp] ≈ �k1

k3

[
1 − exp

(
−k3t

2
G

)]
,

where G= [Xt ]+ [Yt ]−
√

[Xt ]2+ 2(2k1/k3− [Yt ])[Xt ]+ [Yt ]2.
When [�Yp] is equal to 1

2 [�Y ′], which is �k1/(2k3), t =
2 ln 2

k3
G−1. As shown in Fig. 3(b), the simulation results show

that the logarithm of response time has a negative linear cor-
relation with the logarithm of [Xt ]. This result can be obtained
from the analytical result with a reasonable approximation.
Under the condition of [Xt ] � [Yt ], G can be approximated as
2[Xt ]. Then

t = ln 2

k3
[Xt ]

−1. (2)

The slope of the function between [Xt ] and t in double loga-
rithmic coordinates is −1, which is consistent with the slope
of the simulation results. Under the nonextreme condition
[Xt ] < [Yt ], the response time will also be affected by [Yt ].
As shown in Fig. 3(c), the response time also decreases with
[Yt ]. However, the scale of response time that varied with
[Yt ] is much smaller than the scale that varied with [Xt ]. This
indicates that the response time is mainly affected by [Xt ]. The
analytical results are located below the simulated results. The
reason is that the response time increases with �k1 and our
analytical results are approximate results when �k1 is very
small.

Figures 3(b) and 3(c) show that the response time decreases
with [Xt ] and [Yt ]. It suggests that there is a trade-off between
response time and protein cost. The more protein the cell
expresses, the shorter the response time of this system will be.
In actual biological systems, such as the EnvZ-OmpR system
and the nitrogen assimilation system, the concentration of
bifunctional enzyme ([Xt ]) is far less than the concentration
of another protein ([Yt ]) [22,34]. This means that the approx-
imately linear relationship between [Xt ] and t in double log-
arithmic coordinates is present in actual biological systems.
The more interesting phenomenon is that [Xt ] is the main
factor affecting the response time under the constraint of the
actual biological system ([Xt ] � [Yt ]). [Yt ] is the main factor
affecting concentration robustness. [Xt ] and [Yt ] play different
roles in regulating the system functions. This suggests that the
biological system can adjust the concentration robustness and
response speed by regulating [Xt ] and [Yt ], respectively. This
may be a design principle, i.e., the biological system evolves
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FIG. 4. Relationship between response time and protein cost at
different γ . When γ changes from 105 to 1050, there is no obvious
change in the relationships between response time and protein cost
([Xt ] or [Yt ]). These curves are almost overlapping.

into controlling functions by regulating the concentration of
the functionally coupled protein and removing the coupling
between functions and other proteins.

The parameter γ plays an important role in concentration
robustness. Does the γ also have a large impact on the
response time? We change γ by adjusting the reverse reaction
rates, and we calculate how the response time varies with the

protein concentrations [Xt ] and [Yt ]. As shown in Fig. 4, these
relations do not have significant changes. This indicates that
the variation of γ does not influence the response time.

D. Energy-speed-robustness trade-off relation for bifunctional
enzyme circuits with concentration robustness

Free-energy dissipation is important for many biological
processes. We can compute the free-energy dissipation rate:

.

W =
∑

i

(J+
i − J−

i ) ln
J+

i

J−
i

,

where J+
i and J−

i are the rates of ith forward and backward
reaction fluxes [35,36]. In our model, the free-energy dissipa-
tion rate at steady state is expressed as

.

W = [Xt ]ξ (k3[Yp] − k−3[Y ]) ln γ ,

where ξ = [X ]/[Xt ]. The steady-state values of ξ , [Yp], and
[Y ] are determined by [Yt ] and γ . The free-energy dissipation
rate is linear with [Xt ] at fixed Yt and γ , which means the
system dissipates more free energy at higher [Xt ]. However,
the relationship between the free-energy dissipation rate and
[Yt ] changes with γ . As shown in Fig. 5(a), when ln γ is small,

FIG. 5. The relationship between the free-energy dissipation rate and concentration robustness. (a) The relationship between the free-
energy dissipation rate

.

W and [Yt ] changes with γ . When γ is small,
.

W increases with [Yt ] slowly. But for large γ ,
.

W is near 0 when
[Yt ] < k1/k3 and then gradually increases with [Yt ]. The squares and circles are the solutions of Eq. (3). (b) The relationship between the
free-energy dissipation rate

.

W and robustness at different [Yt ]. Lines are simulation results and others are analytical results. As [Yt ] and R
becomes larger, the simulation and analytical results are more consistent. (c) and (d) Contour plots of the free-energy dissipation rate and
robustness in (ln γ , [Yt ]) space. The system has low robustness and a small free-energy dissipation rate if γ or [Yt ] is low. At the high level of
γ and [Yt ], robustness is close to 1 and

.

W is very large. Enough protein [Yt ] and free-energy dissipation rate are necessary for the system to be
robust. At large γ , the system has two states that have high robustness and low robustness. [Yth] = k1/k3 = 1 μM is the boundary of these two
states.
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the dissipation rate gradually grows with [Yt ]. As ln γ in-
creases, a threshold equal to the transition point k1/k3 appears.
Below the threshold, the system almost does not dissipate
energy. When [Yt ] exceeds the threshold, the dissipation rate
increases with [Yt ]. Under the assumption of ki � k−i, the
terms with k−i in ξ (k3[Yp] − k−3[Y ]) could be omitted, and
the free-energy dissipation rate can be approximated as (see
details in Appendix B)

.

W =
{

0, [Yt ] < [Yth],
k1[Xt ] ln γ

[Yt ]−k1/k3

k1/k2+([Yt ]−k1/k3 ) , [Yt ] � [Yth], (3)

where [Yth] is the threshold value k1/k3 at infinitely large γ . If
the parameter k2 = k3, Eq. (3) has a simpler form:

.

W =
{

0, [Yt ] < [Yth],
k1[Xt ] ln γ ([Yt ]−[Yth])

[Yt ]
, [Yt ] � [Yth]. (4)

When [Yt ] � [Yth], we can approximately write
.

W =
k1[Xt ] ln γ . This indicates that

.

W increases with γ loga-
rithmically in the region of high [Yt ]. γ varies in different
physiological conditions because of different energy-bearing
biomolecules, such as ATP, GTP, and SAM, or variations of
their concentrations. The logarithmic dependence of the free-
energy dissipation rate on γ suggests that an energy-bearing
molecule with large energy (e.g., ATP) or high concentration
leads to a large free-energy dissipation rate.

Concentration robustness and response time are closely
related to the free-energy dissipation rate because they are all
related to protein cost or γ . When [Yt ] is larger than the thresh-
old, concentration robustness increases with γ and approaches
a constant as [Yt ] becomes larger and larger. When [Yt ] is large
enough, concentration robustness can be approximated as (see
details in Appendix C)

R = k3

k3 + 3
√

(k1vk2k3)/γ
, (5)

which means concentration robustness is only related to re-
action rates and γ . Moreover, as shown in Eq. (2), response
time is determined by [Xt ] and k3. Response time and the free-
energy dissipation rate are related by [Xt ] rather than γ , while
concentration robustness and the free-energy dissipation rate
are related through γ . Combined with Eqs. (2), (3), and (5),
we can get the energy-speed-robustness relation (see details in
Appendix C)

.

W = ln 2
[Yth]([Yt ] − k1/k3)

k1/k2 + ([Yt ] − k1/k3)
ω

[
ln φ + 3 ln

(
R

1 − R

)]
,

(6)
where ω is the response speed t−1 and φ is k1vk2/k2

3 . If we
assume k2 = k3, the relation will be

.

W = ln 2
[Yth]([Yt ] − [Yth])

[Yt ]
ω

[
ln([Yth]v) + 3 ln

(
R

1 − R

)]
,

(7)
where [Yth] represents the threshold value k1/k3, and v is the
unit of volume. When [Yt ] � [Yth],

.

W = ln 2[Yth]ω

[
ln([Yth]v) + 3 ln

(
R

1 − R

)]
. (8)

The above equations are good approximations when [Yt ] and
γ are relatively large. When [Yt ] is larger than the threshold

value, concentration robustness increases with γ from 0.5 to 1
[see Fig. 2(b)]. Then ln(R/1 − R) also increases with γ from
0 to infinity. As shown in Fig. 5(b), the analytical results of
Eqs. (7) and (8) are in good agreement with the numerical sim-
ulation results at large [Yt ] and γ , where curves have a large
slope and R. The simple energy-speed-robustness relation
clearly shows that more functional effectiveness needs a larger
free-energy dissipation rate. This is a fundamental trade-off
relation in circuits with concentration robustness. It is also
interesting to note that the energy-speed-robustness relation
is similar to the energy-speed-accuracy trade-off relation in
sensory adaptation [8].

The energy-speed-robustness trade-off relation is valid at
large [Yt ] and γ . We further investigate the relationship be-
tween robustness and energy dissipation rate in the condition
of small [Yt ] and γ . In parameter space (ln γ , [Yt ]), these two
quantities are strongly correlated [see Figs. 5(c) and 5(d)].
In the upper right corner of the parameter space, high con-
centration robustness is accompanied by a large free-energy
dissipation rate. Moreover, they have an identical threshold,
i.e., [Yth] = k1/k3, at a relatively large ln γ . This boundary
separates the robust and sensitive regimes, which correspond
to the dissipative and nondissipative states, respectively. Both
large ln γ and [Yt ] are necessary conditions for the system
to maintain a dissipative and robust state. Robustness is
enhanced with a large free-energy dissipation rate in the ro-
bust regime [Yt ] > k1/k3. This is qualitatively consistent with
Eq. (6) and the energy-accuracy trade-off in the proofreading
process and sensory adaptation system [6,8].

E. Protein cost affects noise of output and response time

The process of gene expression is stochastic [37]. The
fluctuation of protein expression levels may affect biological
system functions. In Sec. II B, we studied how the average of
the output varies with protein levels. However, the fidelity of
signal transduction is also inevitably reduced by the internal
noise of chemical reactions, which may depend on the amount
of protein in the signal transduction system. Here, we further
investigate how the amount of protein affects the internal noise
in the simple model. The previous study has discussed how
free-energy dissipation affects function and noise [38]. And a
stochastic study has been used to compare the differences be-
tween monofunctional and bifunctional two-component sys-
tems and study the relationship between system output noise
and external stimulus [39]. In this section, we use the chemical
master equation to investigate how protein cost affects the
output noise and the response time noise.

The chemical master equation of the simple model is
shown in Appendix D. When the noise is relatively small, the
linear noise approximation is useful to study the stochastic
behavior at steady state [40]. The master equation can be
approximated as a linear Fokker-Planck equation, and the
stationary distribution is a multivariate Gaussian distribution.
The covariance matrix of variable fluctuations C is determined
by the Lyapunov matrix equation AC + CAT + D = 0. A is
the Jacobian matrix and D is the diffusion matrix (D ≡ BBT ).
The variance of output NYp is shown in Appendix D. The
Fano factor is viewed as a kind of noise-to-signal ratio, which
is defined as Fx = σ 2

x /μx for variable x. σ 2
x and μx are the
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FIG. 6. Relationships between the noise of output and protein
costs. (a) and (b) Variance and Fano factor of output increase with NYt

and reach a peak at large NYt . The solid lines represent the threshold
at different k1. (c) The coefficient of variation changes with NYt . They
are close to the value of 1/

√
NYth of each input k1 (solid lines). NYth is

the protein number of NYp at the threshold. (d) More NXt will slightly
reduce variance and the Fano factor of output. In (a), (b), and (c),
the number of NXt is 100. In (d), the number of NYt is 1500. The unit
of abscissa is the protein number. The dashed lines are obtained from
the linear noise approximation, and others are the Gillespie algorithm
results.

variance and mean value of random variable x, respectively.
The stochastic behavior of output could be described by the
variance and Fano factor.

We also simulated the simple model by the Gillespie
algorithm and got the distribution of output NYp at steady state.
The Gillespie algorithm is a well-known stochastic simulation
algorithm (SSA) to generate the stochastic trajectory of the
signal transduction process (see details in Sec. IV B) [41].
Moreover, the response time could be calculated as the first
passage time by setting a threshold in output NYp [42].

As shown in Figs. 6(a) and 6(b), the output variance and
Fano factor are relatively low when protein number NYt is
low. When NYt gradually exceeds the threshold NYth (NYth =
k1V/k3), the variance and Fano factor increase with NYt and
reach a plateau. The output NYp and threshold are affected
by the input k1. We further investigate how the variance and
Fano factor change with input k1. The variance decreases
with input k1 at the low level of NYt and increases with
input k1 at the high level of NYt . But the Fano factor always
decreases with input k1. Moreover, as the input k1 increases,
the Fano factor curve becomes steeper and steeper. When
protein number NYt is large, the Fano factor under different
input signals approaches 1, which is the Fano factor of the
Poisson process. It is consistent with the results of [43,44],
which show that the quasistationary distribution of the output
approaches a Poisson distribution in the case of large numbers
of molecules. When the protein number NYt is small, the
system output exhibits sub-Fano behavior. This is because
the steady-state value of the output NYp is very close to NYt

[see Fig. 2(a) and Appendix A]. The output fluctuates around
the steady-state value and the fluctuation is approximately

FIG. 7. Relationship between response time noise and protein
cost. The logarithm of variance and Fano factor of response time
has a linear relation with the logarithm of NXt . This is similar to the
relation between the average response time and [Xt ]. In (a) and (b),
the number of NYt is 10 000. In (c) and (d), the number of NXt is 500.
The unit of abscissa is the protein number.

the order of magnitude of the distance between steady-state
value NYp and NYt . Therefore, sub-Fano behavior will appear
when NYt is small. It must be noted that the fluctuations of
NYt itself are not considered here. Below the threshold, the
fluctuation of NYt has a great influence on the fluctuation of
the output, while above the threshold the fluctuation of NYt

has a small effect on the fluctuation of the output. This also
shows that the average value and fluctuation of the output
are both robust to concentration fluctuations at large NYt . To
compare the relative variability of the output at different input
k1, the coefficient of variation is used. As shown in Fig. 6(c),
the coefficient of variation of output NYp decreases with input
signal k1. It fluctuates with the increase of NYt but is always
smaller than 1/

√
NYth unless NYt is very small. It suggests that

the relative variability of the output is large when the input
signal is small. Compared with NYt , the output noise does not
change significantly with NXt [see Fig. 6(d)].

The relationship between the average response time and
protein cost has been shown in Sec. II C. In Fig. 7, the variance
and Fano factor of the response time also have a negative
linear relationship with NXt in dual logarithm coordinate,
which is similar to the relationship between the average
response time and [Xt ]. This result implies that expressing
more protein X will reduce the noise of the response time.
It is consistent with the result in [45], which suggests that
the variance of response time decreases with the number of
receptors. NYt does not have a linear relationship with the
variance and the Fano factor of the response time. However,
the magnitudes of variance and the Fano factor vary little
with NYt . It suggests NYt does not have an obvious effect on
the noise of the response time.

In conclusion, protein cost has a large impact on the output
and response time, affecting not only their average value but
also their noise. Consistent with the previous results regarding
different roles of proteins in functions, protein cost NYt mainly
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FIG. 8. A sketch map of the modified Shinar model of the EnvZ-
OmpR system and relationships between functional effectiveness and
protein cost. (a) and (b) The modified Shinar model [24] of the EnvZ-
OmpR system. E and O represent EnvZ and OmpR, respectively.
E · ATP is the enzyme that dephosphorylates Op. (c) and (d) The
relationship between robustness and [OmpRt ] (response time and
[EnvZt ]) is similar to Fig. 2(b) [Fig. 3(b)]. The appropriate region
represents high functional effectiveness and relatively low protein
cost. Black squares are the protein expression levels in E. Coli [22].

affects the variance and Fano factor of the output, and NXt

mainly affects the variance and Fano factor of the response
time. More NXt will reduce the variance of the response time,
while more NYt will increase the variance of the output, and
the Fano factor approaches 1 at large NYt .

F. EnvZ-OmpR system and nitrogen assimilation system
have similar trade-offs

The circuits with a bifunctional enzyme have been found
in many biological systems. It carries out crucial functions
in sensing environmental signals and regulating metabolism
signals [24,28–30]. Are our results based on the simple model
still valid in these biological systems with the similar fea-
ture? Do the details of the system affect the behavior of the
system? We choose the EnvZ-OmpR system and the nitrogen
assimilation system to discuss these issues. The EnvZ-OmpR
system and the nitrogen assimilation system have similar
bifunctional enzyme circuits, and both have concentration
robustness [24,29]. We want to know if these systems have
similar relationships between functions and protein cost.

1. The modified Shinar model of the EnvZ-OmpR system

The Shinar model of the EnvZ-OmpR system has more
complex biochemical details than our simple model [24].
EnvZ and OmpR can combine with other molecules, such
as ATP, so this model involves many intermediate protein
complexes. The phosphorylated OmpR is dephosphorylated
by EnvZ-ATP, which is crucial to cause absolute concen-
tration robustness [15] [see Figs. 8(a) and 8(b)]. Here, we
included small reverse reactions in this model to investigate
the relationship between functions and protein cost. Because

of the small reverse reactions, the modified Shinar model does
not have absolute concentration robustness. The concentration
robustness is determined by the molecular concentration and
free-energy cost. By numerically solving the biochemical
reaction kinetic equations described in Fig. 8(b), we obtain the
relationships between functions and protein costs, as shown in
Figs. 8(c) and 8(d), which are very similar to what we obtained
in the simple model. It indicates that these relationships are
not influenced by the details of the model. It can be seen
from Fig. 8(c) that as the OmpR concentration increases, the
concentration robustness of the system increases, but when
the OmpR concentration exceeds a certain value, the benefit
of adding OmpR is no longer obvious. Figure 8(d) shows that
as the concentration of EnvZ increases, the response speed of
the system becomes faster, and similarly when EnvZ exceeds
a certain value, the increase of response speed is no longer
obvious with the increase of EnvZ. Since the expression of
these proteins requires cellular resources, achieving sufficient
biological functional effectiveness at the least possible protein
cost has an evolutionary advantage. From Figs. 8(c) and 8(d),
it is obvious that the system is both economical and effective
in the appropriate region, that is, the system can obtain high
functional effectiveness while the protein cost is relatively
low. From [22], we know that the concentrations of EnvZ and
OmpR are about 0.1 and 3.5 μM, respectively. Using black
squares to display these values in Figs. 8(c) and 8(d), we find
that they fall in the appropriate region. This seems to indicate
that the expression levels of EnvZ and OmpR are optimized
in evolution based on the trade-off between function and cost.
If the protein cost is lower than the appropriate region, the
biological system will lose a lot of concentration robustness
and response speed. If the cost of protein exceeds these
regions too much, it will waste a lot of protein and bring little
benefit to the system.

2. Nitrogen assimilation system

We want to know if similar relationships exist in other
regulatory systems with a bifunctional enzyme. We consider
the nitrogen assimilation system, which can regulate the ratio
of glutamine and α-ketoglutarate robustly. In the nitrogen
assimilation system, glutamine synthetase (GS) converts glu-
tamate and ammonia to glutamine. GS has two states: GS
modified with the adenyl and unmodified GS. Adenylyltrans-
ferase (AT/AR) is the bifunctional enzyme, which adenylates
or deadenylates glutamine synthetase [see Figs. 9(a) and 9(b)].
Thus, the two states of glutamine synthetase can be converted
into each other under the catalysis of the same enzyme. To
avoid waste, even if the concentrations of enzyme GS and
AT/AR fluctuate, a fixed ratio should be maintained between
the substrate (α-ketoglutarate) and product (glutamine). This
concentration robustness makes the ratio of glutamine and α-
ketoglutarate insensitive to the fluctuations of the AT/AR and
GS concentrations. We use a simple model from [29] to ex-
amine the effects of fluctuations of GS and AT/AR on system
concentration robustness and response speed. By numerically
solving the biochemical reaction kinetic equation described
in Fig. 9(b), we obtained the relationship between robustness
and GS concentration [see Fig. 9(c)] and the relationship
between response time and AT/AR concentration [see
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FIG. 9. A sketch map of the nitrogen assimilation system and re-
lationships between functional effectiveness and protein cost. (a) and
(b) AT/AR (abbreviated as AT) is the bifunctional enzyme. Reaction
parameters Va and Vr are regulated by α-ketoglutarate (KG) and
glutamine (Q). The output is the steady-state level of GSo, which
regulates the ratio of the substrate (KG) to the product (Q). (c) and
(d) When [GSt ] is small, the robustness-[GSt ] relation in the nitrogen
assimilation system is a little different from the relation in the
EnvZ-OmpR system. But at large [GSt ], the relationship between
robustness and [GSt ] is similar to Fig. 2(b). The speed-[ATt ] relation
is also linear in the dual logarithm coordinates.

Fig. 9(d)], which are similar to the relationships in the simple
model. In double logarithmic coordinates, the response time
also has a negative linear relationship with the AT/AR con-
centration. It suggests that these trade-offs between functional
effectiveness and protein cost are based on the feature of
the circuit with bifunctional enzyme and do not depend on
specific parameters and details of the network.

III. DISCUSSION

Previous research has focused on the relationship between
function and free-energy cost. For example, the proofreading
process, which was first proposed by Hopfield [46], has a
trade-off between free-energy cost and accuracy [6]. Lan
et al. [8] found an energy-speed-accuracy trade-off in the
sensory adaptation system. Both studies have shown that
energy cost can improve the performance of the biological
system. In this work, we also reveal a general relation be-
tween energy dissipation rate, response speed, and concen-
tration robustness. Both high robustness and fast response
speed need a high-energy dissipation rate. In addition, we
also consider another kind of cost, namely the protein cost.
Evolutionary experiments have demonstrated that the level of
protein is optimized [3]. Therefore, cells need to use protein
resources economically and effectively to achieve the desired
biological functions, especially in the case of limited cellular
resources. Our results revealed the general relationship be-
tween functional effectiveness (concentration robustness and
responding speed) and protein cost in the circuits with a

bifunctional enzyme. Our results showed that concentration
robustness is independent of the bifunctional protein cost,
which is an intrinsic property of the bifunctional circuits.
When the system is far from equilibrium, the relationship
between concentration robustness and regulatory protein cost
has two different regimes: a sensitive regime and a robust
regime. Enough regulatory protein cost is needed for the
system to be robust. However, the response time is mainly
affected by the bifunctional protein cost and decreases as
the level of bifunctional protein increases. Different protein
costs control the different parts of the system performance,
not only the concentration robustness and response speed
but also the variances of output and response speed. This
feature, in which the concentration robustness and response
speed are controlled by different protein costs, helps the
biological system achieve its desired functional effectiveness
by separately adjusting the corresponding protein expression
levels. For example, if the system needs faster response speed,
it only needs to increase the expression of the bifunctional
protein, while the robustness does not change. This may be
a design principle behind the evolution of the bifunctional
circuits.

These relationships between functional effectiveness and
protein cost lead to an interesting question. What is the
appropriate expression level of the relevant protein to perform
a function? Comparing with free-energy cost, molecular con-
centration is easily regulated. Changes in ATP concentration
will affect other functions of the cell. However, regulation of
the relevant molecular concentration will only affect the per-
formance of that function. In the small timescale, molecular
concentration could be regulated to a desirable level by a reg-
ulatory factor. From an evolutionary standpoint, the molecular
expression level will be changed with DNA sequences of gene
regulatory regions in a few hundred generations [3]. It is easy
to evolve the protein level to an appropriate region. From the
functional effectiveness and protein cost relationships, we can
get another important piece of information. The system will
get more performance at a higher protein cost, but when the
performance is near optimal, further increases in protein cost
will bring less benefit to biological system performance [47].
It is uneconomical to increase the protein cost for a small
increase in performance. Moreover, a low protein expression
level leads to a large loss of functional effectiveness. So we
proposed that there is an economic and effective protein cost
region between these two extreme conditions.

An important result of our article is that trade-off rela-
tions of our simple model based on bifunctional circuits are
universal. Although different biological systems, such as the
EnvZ-OmpR system and the nitrogen assimilation system,
have similar circuits with a bifunctional enzyme, the bio-
chemical reactions of these two systems have different de-
tails. Interestingly, the trade-off relationship calculated from
these two systems, which have different parameters and net-
work structures, are consistent with the results of the simple
model. This suggests that the trade-off relationship between
functional effectiveness and protein cost is universal. It may
depend on the basic bifunctional feature of the circuit. Finding
the general relationship between functional effectiveness and
protein cost in more biological systems would be an interest-
ing topic.
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Interestingly, the energy-speed-accuracy relation in sen-
sory adaptation [8] has a similar form with our energy-speed-
robustness relation in circuits with concentration robustness.
The adaptation speed and the response speed in these two sys-
tems are linear with the free-energy dissipation rate. Further-
more, both adaptation error and concentration robustness have
the natural logarithm relation with the free-energy dissipation
rate. It is interesting to find more relationships between energy
and performance in other systems. There may be a universal
relationship between a specific function, speed, and energy
dissipation rate in many biological systems.

IV. METHODS

A. Numerical simulation parameters

In the simple model, the steady-state level of output [Yp]
is obtained by integrated the differential equations (1) in
the fourth-order Runge-Kutta method. The forward reaction
rate k1 is 10 s−1 if k1 is not explicitly stated. k2 and k3

are 10 μM−1 s−1. Reverse reaction rates k−1, k−2, and k−3

are set to the same value and estimated from γ . k−1v =
k−i = 3

√
(k1vk2k3)/γ (i = 2, 3) and v is the unit of volume.

Parameters in the Shinar model of the EnvZ-OmpR sys-
tem are the same as in [24], which are [ATP] = 1000 μM
[48], Pi = 1000 μM, [ADP] = 50 μM [49], u1 = u2 =
u3 = 100 μM−1 s−1, u−1 = 6000 s−1 [50], u−2 = 200 s−1

[51], u−3 = 200 s−1, v1 = v2 = v3 = 10 s−1, v−1 = v−2 =
0.01 μM−1 s−1, and v−3 = 0.01 μM−2 s−1. The reverse re-
action rates v−1, v−2, and v−3 are obtained from γ ≈ 109.
Parameters of the nitrogen assimilation system model are
kon1 = kon2 = kon3 = kon4 = 100 μM−1 s−1, kon−1 = kon−2 =
kon−3 = kon−4 = 50 s−1, Va = Vr = 3 s−1, and V−a = V−r =
0.1 μM−2 s−1. Concentration of KG is 1 μM.

B. Stochastic simulation method

To get variances of output and response time, we use
the Monte Carlo (Gillespie algorithm [41]) simulation. The
Gillespie algorithm, developed by Daniel T. Gillespie in the
1970s, is well known as an effective stochastic simulation
algorithm. The reaction probability density function P(τ, μ)
is calculated, where τ is the time when the next chemical
reaction occurs and μ represents which chemical reaction
occurs. Then the molecular number of relevant species will be
renewed. In this way, we obtain statistically correct trajecto-
ries of the chemical system time evolution. It is also effective
for calculating the Fano factor and response time. We use the
mean first passage time (MFPT) to describe the response time
of the system [42,52]. It theoretically represents the time it
takes, on average, to reach a boundary the first time. This
threshold value is the average of the mean value of output
before and after input change in the steady state. Finally, we
obtain the MFPT by averaging the results, which is repeatedly
calculated 200 000 times. All simulation parameters were
presented in Sec. IV A, and γ is 106.
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APPENDIX A: DERIVATION OF THE STEADY STATE
OF [Yp] AT INFINITELY LARGE γ

The stable steady-state solution of the output is expressed
as

[Yp] = α − √
β

2(k2k−3 + k2k3)
,

where α is (k2k3 + 2k2k−3)[YT ] + (k1k2 + k−1k−3 +
k−1k−2 + k−1k3) and β is α2 − 4(k2k−3 + k2k3){(k1k2 +
k−1k−3)[YT ] + k2k−3[YT ]2}. When γ is infinite, the reverse
reaction rates k−i (i = 1, 2, 3) turn out to be 0. Ignoring
items with reverse reaction rates in α and β, α becomes
k2k3[Yt ] + k1k2 and

√
β is |k2k3[Yt ] − k1k2|. If [Yt ] � k1/k3,√

β becomes k2k3[Yt ] − k1k2, and if [Yt ] is less than k1/k3,√
β is k1k2 − k2k3[Yt ]. Therefore, k1/k3 is a threshold for [Yt ].

At the infinite large γ ,

[Yp] =
{

[Yt ], [Yt ] < k1/k3,

k1/k3, [Yt ] � k1/k3.

In the condition of large γ and small [Yt ], the steady-state
output can be approximated as

[Yp] ≈ [Yt ] − k−1k3

k2(k3 + k−3)

[Yt ]

k1/k3 − [Yt ]
.

The last term is small when reverse reaction rates and [Yt ] are
small.

APPENDIX B: DERIVATION OF EQ. (3)

The free-energy dissipation rate is
∑

i(J
+
i − J−

i ) ln J+
i

J−
i

.

In the simple model, there are three pairs of fluxes: J+
1 −

J−
1 = k1[X ] − k−1[Xp], J+

2 − J−
2 = k2[Xp][Y ] − k−2[X ][Yp],

and J+
3 − J−

3 = k3[X ][Yp] − k−3[X ][Y ]. At the steady state,
these three pairs of fluxes are equal. Therefore, the
free-energy dissipation rate of the simple model at
the steady state is

.

W = (J+
3 − J−

3 ) ln γ = (k3ξ [Xt ][Yp] −
k−3ξ [Xt ][Y ]) ln γ , where ξ = [X ]/[Xt ]. The steady-state so-
lution ξ of chemical kinetic equations (1) is

ξ = k−1 + k2[Yt ] − k2[Yp]

k−1 + k1 + k−2[Yp] + k2([Yt ] − [Yp])
.

Under the approximation of ki � k−i (i = 1, 2, 3), terms in
k3ξ [Yp] − k−3ξ [Y ] with reverse reaction rates could be omit-
ted, which is

k3ξ [Yp] − k−3ξ [Y ] = k3
k2([Yt ] − [Yp])

k1 + k2([Yt ] − [Yp])
[Yp].

As shown in Appendix A, [Yp] can be approximated as a piece-
wise function under the condition of small reverse reaction
rates. Therefore, the free-energy dissipation rate is

.

W =
{

0, [Yt ] < k1/k3,

[Xt ] ln γ
k1k2([Yt ]−k1/k3 )

k1+k2([Yt ]−k1/k3 ) , [Yt ] � k1/k3.

012409-10



TRADE-OFFS BETWEEN EFFECTIVENESS AND COST IN … PHYSICAL REVIEW E 101, 012409 (2020)

If we assume k2 = k3, it will be

.

W =
{

0, [Yt ] < [Yth],
k1[Xt ] ln γ ([Yt ]−[Yth])

[Yt ]
, [Yt ] � [Yth],

where [Yth] is the threshold value k1/k3 at infinitely large γ .

APPENDIX C: DERIVATION OF THE
ENERGY-SPEED-ROBUSTNESS RELATION

The concentration robustness is

R([Yt ], γ ) ≡ 1 − ∂[Yp]([Yt ], γ )

∂[Yt ]
=

k2k3 + β ′

2
√

β

2(k2k−3 + k2k3)

and

β ′/
√

β = 2k2
2k2

3[Yt ] + θ√
k2

2k2
3[Yt ]2 + θ [Yt ] + ρ

,

where θ is 2(−k1k2
2k3 + k2k2

3k−1 + k2k3k−1k−3 + k2k3k−1k−2

+ 2k2k−1k−2k−3) and ρ is (k1k2 + k3k−1 + k−1k−3 +

k−1k−2)2. If [Yt ] is large, β ′/
√

β can be approximated as
2k2k3. Then the concentration robustness is k3/(k3 + k−3)
at large [Yt ]. Because the reverse reaction rate k−3 =

3
√

k1vk2k3/γ , R is k3/(k3 + 3
√

k1vk2k3/γ ) and ln γ will
be ln φ + 3 ln[R/(1 − R)], where φ is k1vk2/k2

3 . Moreover, if
we assume k2 = k3, φ will become [Yth]v.

From Eq. (2), protein cost [Xt ] is ω ln 2/k3. ω is the
response speed t−1. Then we can get the energy-speed-
robustness relation

.

W = ln 2
[Yth]([Yt ] − k1/k3)

k1/k2 + ([Yt ] − k1/k3)
ω

[
ln φ + 3 ln

(
R

1 − R

)]
.

To obtain the above relation, the protein cost [Yt ] and γ should
be relatively large.

APPENDIX D: CHEMICAL MASTER EQUATION
AND LINEAR NOISE APPROXIMATION

FOR THE SIMPLE MODEL

Biochemical reactions of the simple model can be de-
scribed by the chemical master equation, which is

dP
(
NYp, NX

)
dt

= k1(NX + 1)P
(
NYp, NX + 1

) − k1NX P
(
NYp, NX

)

+ k2

(
NYt − NYp + 1

)(
NXt − NX + 1

)
V

P
(
NYp − 1, NX − 1

) − k2

(
NYt − NYp

)(
NXt − NX

)
V

P
(
NYp, NX

)

+ k3

(
NYp + 1

)
NX

V
P
(
NYp + 1, NX

) − k3
NYpNX

V
P
(
NYp, NX

)
+ k−1

(
NXt − NX + 1

)
P
(
NYp, NX − 1

) − k−1
(
NXt − NX

)
P
(
NYp, NX

)
+ k−2

(
NYp + 1

)
(NX + 1)

V
P
(
NYp + 1, NX + 1

) − k−2
NYpNX

V
P
(
NYp, NX

)

+ k−3

(
NYt − NYp + 1

)
NX

V
P
(
NYp − 1, NX

) − k−3

(
NYt − NYp

)
NX

V
P
(
NYp, NX

)
.

N represents the number of protein and V is the system volume. From the master equation, we can get the Jacobian matrix

A =
[

−k1 − k−1 − k2[Y ] − k−2[Yp], −k2[Xp] − k−2[X ]

(k−3 − k2)[Y ] − (k−2 + k3)[Yp], −k2[Xp] − (k−2 + k3 + k−3)[X ]

]

and the diffusion matrix

D =
[

J+
1 + J−

1 + J+
2 + J−

2 , J+
2 + J−

2

J+
2 + J−

2 , J+
2 + J−

2 + J+
3 + J−

3

]
,

where J+
i and J−

i are the rates of ith forward and backward reaction fluxes. The rates of reaction fluxes are

J+
1 = k1[X ], J−

1 = k−1[Xp],

J+
2 = k2[Xp] [Y ], J−

2 = k−2[X ] [Yp],

J+
3 = k3[X ] [Yp], J−

3 = k−3[X ] [Y ].

The concentration of molecule with a bar represents the steady-state value of its concentration.
From the Lyapunov matrix equation AC + CAT + D = 0, we can get the variance of output concentration [Yp]:

C22 = A2
21D11 − (

A12A21 − A2
11 − A11A22

)
D22 − 2A11A21D12

2A22
(
A12A21 − A2

11 − A11A22
) + 2A11A12A21

.
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Then the variance of output NYp is C22V . V is the volume of an
E. Coli cell, which is about V = 10−15 L [22]. The molecular
concentration 1 μM corresponds to the molecular number

naV × 10−6 ≈ 600, where na is Avogadro’s number. For nu-
merical simplicity, we set 1 μM corresponding to the molec-
ular number 1000. Then, the volume is about 1.67 × 10−15 L.
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