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Roundabout model with on-ramp queues: Exact results and scaling approximations
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This paper introduces a general model of a single-lane roundabout, represented as a circular lattice that
consists of L cells, with Markovian traffic dynamics. Vehicles enter the roundabout via on-ramp queues that
have stochastic arrival processes, remain on the roundabout a random number of cells, and depart via off-ramps.
Importantly, the model does not oversimplify the dynamics of traffic on roundabouts, while various performance-
related quantities (such as delay and queue length) allow an analytical characterization. In particular, we present
an explicit expression for the marginal stationary distribution of each cell on the lattice. Moreover, we derive
results that give insight on the dependencies between parts of the roundabout, and on the queue distribution.
Finally, we find scaling limits that allow, for every partition of the roundabout in segments, to approximate
(i) the joint distribution of the occupation of these segments by a multivariate Gaussian distribution, and (ii)
the joint distribution of their total queue lengths by a collection of independent Poisson random variables. To
verify the scaling limit statements, we develop a way to empirically assess convergence in distribution of random
variables.
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I. INTRODUCTION

Over the past decades, a broad class of models has been
proposed to better understand and control traffic streams in
road traffic networks. This has led to mathematical models
that help shed light on the properties of the underlying traffic
dynamics. In particular, these models allow for studying the
influence of the model’s parameters, which in turn allows for
developing effective design and control rules. For reviews on
traffic flow theory, see, e.g., [1,2], and for cellular automata
models used in this area, see [3]. In the literature on traffic
flows, most mathematical analyses are done for road segments
and several forms of intersection traffic control, i.e., signalized
intersections and unsignalized intersections with or without
priorities.

Roundabouts are a type of intersection that is notoriously
hard to analyze mathematically. Fouladvand et al. [4] studied
the delay experienced by traffic in roundabouts in relation to
their geometry by simulating a stochastic cellular automata
model. Wang and Ruskin [5], Wang and Liu [6], and Belz
et al. [7] studied the capacity of cellular automata roundabout
models incorporating the traffic behavior of individual cars
in a more sophisticated manner. In these models, the analy-
sis focuses on the relationship between the circulating flow
and the capacity of an entry road at the roundabout. The
conclusions are primarily based on simulation results, and
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hence do not provide explicit insight into, e.g., the way the
system parameters affect the capacity or delay.

In addition, there are a number of analytical papers study-
ing the relationship between circulating flow and capacity at
an entry road. For example, Flannery et al. [8,9] have obtained
an analytical approximation of this relationship based on
earlier work for unsignalized intersections by Tanner [10] and
Heidemann and Wegmann [11]. For these results, vehicles
are assumed to be separated by i.i.d. distributed gaps, so
that on-ramps can be modeled as M/G/1 queues. However,
this approach studies queues in isolation, and ignores the
interaction of on-ramps being connected to a circular ring.
Finally, in a recent paper, Foulaadvand et al. [12] derived exact
stationary densities for the occupation of a roundabout, with
traffic motion modeled by the totally asymmetric exclusion
process, but, importantly, without queueing at the entry roads.

Summarizing, many studies are based on simulation mod-
els or regression analyses (Ref. [13], Chap. 21), thus not pro-
viding direct insight into the impact of the model parameters.
On the other hand, analytical studies tend to study parts of
the roundabout in isolation, ignoring characteristic geometric
properties of roundabouts. The primary contribution of this
paper is a single-lane roundabout model that (i) is still analyt-
ically tractable, and (ii) still contains the detailed geometric
properties of the underlying system. More specifically, we set
up a model in which we succeed in deriving (a) an exact
marginal stationary distribution for the occupation of the
roundabout; (b) results on the dependencies between parts of
the roundabout, and on the queue distribution; and (c) scaling
limits for the occupation of the roundabout and the states of
the queues. Our results lead to a better understanding of traffic
dynamics in roundabouts, and, in particular, of the effects of
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model parameters on performance. As a consequence, our
findings have evident application potential when setting up
procedures for design and control. A second main contribution
relates to the verification of properties (b) and (c) above,
for which we rely on simulation: we develop a procedure to
statistically assess convergence in distribution.

The outline of the paper is as follows. In Sec. II, we
introduce the model. In Sec. III, we identify the exact marginal
stationary distribution for the occupation of the roundabout,
and we discuss why it is difficult to derive further analytic
results. Our methods, which are used in later sections, are
explained in Sec. IV. Section V contains results on intrinsic
model properties, whereas in Secs. VI and VII we study
scaling results.

II. MODEL DESCRIPTION

The model we consider is a road traffic model for a round-
about with (on-ramp) queues at the points of entrance into the
roundabout. The exit point of a car from the roundabout is
random and depends on its point of entry. The roundabout is
modeled as a stretch of road consisting of L cells numbered
1, . . . , L, which we assume to be arranged in a circle, so that
cell 1 is adjacent to cell L. Making use of this circularity, we
will also use the index L + i to refer to cell i, for 1 � i � L,
to simplify notation. Each cell can contain at most one car,
and to keep track of the cars in the roundabout, we attach the
state space {0, 1, . . . , L} to each cell: state 0 indicates that a
cell is vacant, and a state j ∈ {1, . . . , L} indicates that the cell
is occupied by a car that entered the roundabout at cell j. For
ease of reference, we will also say that a cell is occupied by a
car of type j if the state of the cell is j.

The main characteristics of the evolution of our stochastic
system are the following. To model how cars get into the
roundabout, we assume that there is an on-ramp queue in front
of each cell i. At every time step, a new car arrives at the
queue of cell i with probability pi ∈ [0, 1]. From this queue,
in every time step, a single car can move into the roundabout,
but only when cell i is empty. If cell i is occupied by a car
of type j at a specific moment in time, then with probability
qi j ∈ [0, 1] the car will leave the roundabout in the next time
step (and otherwise it moves to the next cell). The fact that
the probability qi j depends on j reflects that, in general, the
position where a car leaves the roundabout can depend on
where it entered. Note that by setting pi = 0 or qi j = 0 we
can remove on-ramps and off-ramps from the system, and thus
flexibly model their position.

Now that we have sketched the main principles behind our
model, we proceed by providing a more precise account of the
dynamics. A key feature of the model is that the update rules
(given in detail below) are local, meaning that at each time
step, we can consider what happens at each of the cells of the
model independently, and then update all the local states in
parallel (in accordance with the cellular automata paradigm).
Thus it suffices to describe what happens at a single cell
and the corresponding queue. We distinguish between the
following cases:

Case 1: Cell i and queue i are both empty. In this case, if
no new car arrives at cell i (which happens with probability
1 − pi), then cell i + 1 and queue i will both be empty at the

next time step. Otherwise, the newly arrived car immediately
enters the roundabout and moves on to cell i + 1, meaning that
cell i + 1 will be in state i at the next time step, and queue i
will still be empty.

Case 2: Cell i is empty and queue i is not empty. In this
case, the first car waiting in queue i enters the roundabout and
moves on to cell i + 1. Thus, cell i + 1 will be in state i at the
next time step, and the length of queue i will either decrease
by 1 (if no new car arrives at cell i), or otherwise stay the
same.

Case 3: Cell i is occupied by a car of type j. In this case,
queue i is blocked, and hence its length will stay the same if no
new car arrives at cell i, or otherwise grow by 1. Meanwhile,
the car of type j can decide to leave the roundabout (which
it does with probability qi j), in which case cell i + 1 will be
empty at the next time step, or the car decides to drive on, in
which case cell i + 1 will be in state j at the next time step.

III. PRELIMINARIES

The model under consideration is a discrete-time Markov
chain, the state of which is a vector describing the state of each
cell and the length of each queue. We will denote the Markov
chain by X = {Xt : t ∈ Z+}. It is not difficult to see that X is
irreducible and aperiodic, since with positive probability, by
choosing the right events, we can empty the system in a finite
number of steps, keep it in the empty state for an arbitrary
number of steps, and then send it to any state we like in a
finite number of steps.

We say that the model is stable if the Markov chain
X is positive recurrent, and hence has a unique stationary
distribution. As our first result, we will now show that, under
the assumption of stability, the marginal stationary probability
πi j that a given cell i is in state j is given by

πi j =

⎧⎪⎪⎨⎪⎪⎩
p j

∏i+L−1
�= j+1 q̄� j

1−∏L
�=1 q̄� j

if 1 � i � j � L,

p j
∏i−1

�= j+1 q̄� j

1−∏L
�=1 q̄� j

if 1 � j < i � L,

(1)

where q̄� j := 1 − q� j , and

πi0 = 1 −
L∑

j=1

πi j, 1 � i � L. (2)

Proposition III.1 (Marginal stationary distribution). If the
model is stable, then the marginal stationary probability that
cell i is in state j is given by (1) and (2).

Proof. Assume that the model is stable, and first consider
the case in which i and j satisfy 1 � j < i � L. Then the
probability that a car that enters the roundabout at cell j will
leave at cell i (potentially after first completing n � 0 full
circles in the roundabout) is given by

qi j

i−1∏
�= j+1

q̄� j

∞∑
n=0

(
L∏

�=1

q̄� j

)n

= qi j
∏i−1

�= j+1 q̄� j

1 − ∏L
�=1 q̄� j

.
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We conclude that this expression multiplied by p j is the rate
at which cars arrive that are of type j, and that intend to leave
the roundabout at cell i. But if the model is stable, then the rate
at which such cars leave the system must be equal to πi jqi j ,
where πi j denotes the marginal stationary probability that cell
i contains a car of type j. This proves (1) when j < i. The
proof in the case 1 � i � j � L is similar.

Even though we now have an exact expression for the
marginal stationary distribution of the cells, the full joint
stationary distribution of the Markov chain X cannot be found.
In particular, the stationary distribution will not be the product
distribution of the marginals of the cells and queues. Indeed,
consider the event in which queue i and cell i + 1 are both
empty for some i ∈ {1, . . . , L}. Then, one time unit earlier
queue i must have been empty, because otherwise, either
queue i would now still be nonempty, or a car from queue
i would now be in cell i + 1. This shows that there is a
dependency in the model between adjacent cells and queues,
ruling out a product-form stationary distribution.

To conclude this section, we discuss the model’s stability
condition. We have shown above that when the model is
stable, πi0 is the stationary probability at which cell i is empty.
Since cars arrive at cell i with probability pi, and can only
enter the roundabout when the cell is empty, it is conceivable
that the model cannot be stable if pi � πi0 for some cell i.
Conversely, one suspects that if pi < πi0 for all cells i, then
the cells will be vacant often enough to prevent the queue
lengths from growing arbitrarily large, and hence the model
will be stable. We have tested this conjecture using extensive
simulation experiments in which we replace pi by αpi and in-
crease α (starting from α = 0). The experiments confirm that
a system becomes unstable when α exceeds the smallest value
for which αpi � πi0(α) for some i ∈ {1, . . . , L}. Throughout
Secs. IV–VII, we therefore restrict ourselves to cases in which
pi < πi0 for all i ∈ {1, . . . , L}.

IV. METHODS

Since we do not have a closed-form expression for the joint
stationary distribution, we resort to finding approximations for
the stationary distributions of cells and queues. More specifi-
cally, in Sec. II we introduced the pi and qi j , which can be seen
as discrete profiles of arrival and departure probabilities (as a
function of the position i between 1 and L). In Sec. IV A, we
introduce their continuous counterparts, so that for finite L, the
pi and qi j are obtained as discretizations of these continuum
profiles. The continuous setting allows explicit analysis, with
which we can approximate our discrete model.

Later in the paper (in Secs. VI and VII) we state claims on,
respectively, the number of empty cells and the total queue
length for each section of the roundabout in the regime L →
∞. To verify these claims from simulation experiments, we
develop a methodology, which is described in Sec. IV B.

A. Continuum profiles and parameters

We proceed by introducing the continuum profiles of
arrivals and departures. We start with the arrivals. Let
� : (0, 1] → R+ be an integrable function that satisfies∫ 1

0 �(x)dx = 1. For given L ∈ Z+, θ > 0, and i ∈ {1, . . . , L},

we set

pi ≡ pi(L) = θ

∫ (i+1)/L

i/L
�(x)dx.

This construction can be interpreted as follows. When taking
the limit L → ∞, the circular stretch of road is mapped onto
the unit interval (0,1]. The parameter θ > 0 represents the
total rate at which cars arrive at the roundabout, and for a
given interval (u, v] ⊂ (0, 1],

∫ v

u �(x)dx represents the rate at
which cars arrive in that interval. Informally, for L large, pi is
roughly proportional to L−1. Note that in this setup, the arrival
rate over every segment of the roundabout is invariant in L.

To describe the continuum profile for the departures, we
introduce a family [Fx(·)]x∈(0,1] of cumulative distribution
functions on [0,1] [which are nondecreasing with Fx(0) = 0],
and we denote by F c

x (·) ≡ 1 − Fx(·) their complementary dis-
tribution functions. The idea is that in the limit L → ∞, F c

x (u)
represents the probability that a car that enters the roundabout
at point x travels at least a distance u along the roundabout
before leaving. For each finite L ∈ Z+ and i, j ∈ {1, . . . , L},
we now set

qi j ≡ qi j (L) =

⎧⎪⎨⎪⎩
1 − F c

j/L[(i− j+1)/L]

F c
j/L[(i− j)/L] , i � j,

1 − F c
j/L[(L+i− j+1)/L]

F c
j/L[(L+i− j)/L] , i < j.

Since we interpret Fj/L as the distribution function of the
driving distance for cars arriving at j/L, 1 − qi j (L) for i � j
can be seen as the conditional probability that such a car drives
at least a distance (i − j + 1)/L in the roundabout, given
that the car has driven a distance (i − j)/L, and similarly for
i < j. Hence the above definition of qi j guarantees that the
distribution of driving distance of cars remains invariant in
L. We further assume that F c

x is piecewise continuous as a
function of x, meaning that cars that arrive at roughly the
same place in the roundabout also have roughly the same
distribution of driving distance. This condition is natural, and
it guarantees the existence of limL→∞ π�uL�,0.

To summarize: for given � and a family of Fx, we obtain
a sequence of models in L, which can be viewed as discrete
representations of the same roundabout. In the remainder
of the paper, we consider two specific cases of continuum
profiles and the discrete models they produce for different
values of L, in order to support the claims we make in Secs. V,
VI, and VII.

Most of the arguments by which we arrive at our claims
are based on the symmetric case in which pi = p ∈ (0, 1)
and qi j = q ∈ (0, 1) for each i, j ∈ {1, . . . , L}. We therefore
choose a parameter setting in this symmetric case such that
πi0 > pi. More specifically, we choose �(x) = 1 with θ = 1,
and F c

x (u) = exp(−2u) for each x ∈ (0, 1], so that for finite L
we have p(L) = 1/L and q(L) = 1 − exp(−2/L). We refer to
this choice as the homogeneous setting or the homogeneous
case.

To illustrate that our claims are also supported in a real-
istic nonhomogeneous case, we use an example from [13]
(Chap. 21), namely Example Problem 1. This example de-
scribes a roundabout with four on-/off-ramps, and it gives
for each on-ramp (i) the number of arrivals per hour, and
(ii) the fraction of arriving cars that depart via each of the four
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FIG. 1. Graphs of F c
x for x ∈ (0.025, 0.05], and of �, in the

heterogeneous setting.

off-ramps. To choose a � and family of Fx that correspond to
this example, we start by calibrating a finite L model that has
a realistic size. Using the calibration in [7] (Sec. 3.1), we take
the length of each cell to be about 7 m and our time steps
to be 1 s, and we find that L = 20 is a suitable choice. The
resulting model has geometric features and car velocities that
match the realistic ones described in [13] and [14]. We let
the on-/off-ramps be located at cells i = 1, 6, 11, 16, meaning
that only these cells will have nonzero arrival and departure
probabilities, while we set the remaining pi and qi j to zero. We
calculate the arrival probabilities pi at the four on-ramps from
the given number of arrivals per hour in the example problem.
The departure probabilities qi j are analogously obtained from
the given fractions of arriving cars that depart via the off-
ramps. The latter requires that we first fix the probability∏L

�=1 q̄� j that a car completes a full circle in the roundabout;
we set this probability equal to 1% for every type of car, and
then determine the qi j to reproduce the departure behavior of
the example.

Now that we have the pi and qi j for L = 20, we can choose
our continuum profiles � and Fx accordingly. Recall that we
map the full roundabout to the interval (0,1], so that for
L = 20, each cell corresponds to an interval of length 0.05.
We further split each of the four cells i = 1, 6, 11, 16 into
two halves, where the half that is adjacent to the previous
cell corresponds to the off-ramp of the cell, and the other half
corresponds to the on-ramp. We now choose � proportional
to pi at the on-ramps and zero elsewhere, and we choose
θ = ∑20

i=1 pi, so that for L = 20, integration of � gives us the
correct pi. As for the departure profiles, we choose the F c

x to
be exponentially decreasing at the off-ramps in analogy with
the homogeneous case, and constant in between. Here, the rate
of the exponential decrease is chosen such that we obtain the
correct qi j for L = 20. In Fig. 1 we have plotted the resulting
profiles � and a representative from the family (F c

x )x∈(0.025,0.05]

for illustration. We refer to the profiles � and Fx thus obtained
as the heterogeneous setting or the heterogeneous case. We
stress that, although these profiles were calibrated for L =
20, we use the same � and Fx in our simulations of the
heterogeneous case for other values of L.

In the remainder of the paper, we present various claims
about the model. We cannot prove these claims, as we lack
an analytic expression for the joint stationary distribution.
Instead, we will support our claims using simulation in combi-
nation with statistical evidence. We use the following structure
throughout: first we state the claim and provide the intuition
behind it based on the properties of the model, then we

describe an experiment by which we aim to support the claim,
provide our support, and finally we draw our conclusions.
In each simulation experiment, we initialize (i) the cells
according to the marginal stationary probabilities πi j , and (ii)
the queues in the empty state. We then let the system run for
4L units of time, as we have observed that this is a sufficiently
long time interval to safely assume the system has entered the
stationary regime.

B. Supporting convergence in distribution statistically

In Sec. VI, we consider the number of empty cells on a
segment for a sequence of models in L that we obtain from
the continuous arrival and departure profiles, as explained
in the preceding section. Among other things, we claim that
this quantity converges in distribution to a normal random
variable as L → ∞. To empirically verify this claim, we use
two methods. The first, which is classical, is to show that
the (empirical) distribution functions converge pointwise. The
second uses statistical tests and is a method to numerically
support convergence in distribution. We explain the second
method in this section.

For our explanation, we consider the situation in which
{ξL}L is a sequence of random variables that converge in
distribution to an N (μ, σ 2) random variable. In our method,
we use the chi-squared goodness-of-fit test with a confidence
level equal to 0.99. We take 10 bins, the boundaries of which
are chosen such that every bin contains 10% of the probability
mass of the N (μ, σ 2) distribution.

The naive idea for testing convergence to a normal distri-
bution would be to take L large, and apply the χ2-test with the
(L-dependent) hypotheses

H0(L) : ξL
d= N (μ, σ 2),

H1(L) : ξL

d
	= N (μ, σ 2). (3)

However, a χ2-test with these hypotheses does not give useful
information on convergence because, in practice, one expects
that ξL does not have an N (μ, σ 2) distribution for finite L, and
therefore one will always reject H0(L) if the sample size is
large enough. The underlying issue is of course that to support
convergence in distribution, it is not sufficient to consider
a single ξL, but one has to consider the full sequence. Our
method exploits the fact that we can always reject H0(L) by
increasing the sample size. The basic idea is that we compare
the sample sizes M(L) for which we first reject H0(L). If ξL

converges in distribution, M(L) should diverge to ∞ with L.
To put this idea into practice, we start our procedure by

drawing a sample of 50 independent copies of ξL. We perform
the chi-squared test for goodness-of-fit, with the hypotheses
as in (3), which is significant for 50 samples (taking into
account the expected counts in each bin). If we reject H0(L),
we set M(L) = 50; otherwise, we add another independent
copy of ξL to our sample, and we perform the chi-squared
test again. We keep adding independent copies of ξL until
we reject H0(L), at which point we record the size of our
sample M(L). Note that M(L) is itself a random variable, so
we run this procedure multiple times to estimate the mean
EM(L). Finally, we use linear regression to test whether
EM(L) increases like a power law with L, which implies that
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as L → ∞, a diverging number of samples is required to reject
H0(L), thus supporting convergence in distribution.

Our method can, in theory, be applied to every limiting
distribution with a set of hypotheses as in (3), using any
goodness-of-fit test. For practical applications, however, one
has to be able to compute an estimate of EM(L). For instance,
in Sec. VII, we claim convergence in distribution of the total
queue length on a segment to a Poisson random variable.
There is, however, no statistical test that is powerful enough
to distinguish the specific alternative distribution that we are
considering. Therefore, one has to use a huge sample size
M(L) to reject H0(L), even for small L, which makes estimat-
ing the EM(L) computationally infeasible in this particular
case.

V. MODEL PROPERTIES

In this section, we study the spatial correlations and
marginal queue distributions of our model in the finite L
regime in equilibrium. Our results also provide information
about the behavior in the regime L → ∞, which we study in
more detail in Secs. VI and VII.

A. Spatial correlations

Our roundabout model can be seen as a system of particles
moving over a one-dimensional circular lattice. Moreover,
the update rules are local, so that correlations in the model
arise via nearest-neighbor interactions. It is, therefore, con-
ceivable that the correlations decay geometrically in the dis-
tance between cells. To investigate this idea, denote by Ci the
state of cell i and by Qi the state of queue i in equilibrium.
For states of the cells to contribute symmetrically to the
correlations, we let

C̃i := [(Ci − i) mod L] + 1

when Ci 	= 0, and C̃i := Ci if Ci = 0. Thus, C̃i measures the
forward distance to the cell where the car that occupies cell i
entered the roundabout. Now, our claim is as follows:

Claim 1. The correlation between the random variables
C̃i and C̃i+k decreases in k for each i ∈ {1, . . . , L}, and is
bounded above, uniformly in both i and L, by a function that
decreases geometrically with k. The same statement is true for
the correlations between C̃i and Qi+k , and for the correlations
between Qi and Qi+k .

To support Claim 1, it is sufficient for the sample cor-
relation to be geometrically decreasing, starting from some
distance k � 1. To verify this, we estimate the mean sample
correlation coefficient between pairs of cells and/or queues,
from a sample of 100 correlation coefficients, each estimated
from a simulated data set of size 64 × 104. To analyze the
decay of the, potentially negative, mean sample correlation
coefficient on a log scale, we take the absolute value of
the 100 samples and consider their mean. We then verify
that on a log scale, these mean absolute sample correlations
are bounded by a decreasing linear function. However, from
known results on the asymptotic distribution of the sample
correlation (Ref. [15], Example 10.6), we expect that the
variance becomes constant as the correlation tends to zero.
As a consequence, in our experiment the mean absolute
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FIG. 2. Heat maps of correlations (Corr.) on the left and corre-
sponding p-values (p) on the right, for the homogeneous case. From
top to bottom we have the heat maps for L = 32, 64, and 128.

sample correlation will not be a good estimator of the absolute
correlation when the correlation is small. To ensure that our
estimates are accurate, we therefore only consider points for
which the mean sample correlation is at least two standard
errors (as determined from the 100 samples) away from zero.

If the correlations do decay geometrically, cells and/or
queues that are “sufficiently far apart” are approximately
independent. To verify this, we also perform a statistical test of
independence. We use the statistic t = r

√
(n − 2)/(1 − r2),

where r is the correlation coefficient and n is the sample
size. For generally distributed independent random variables
and large n, the t statistic can be shown to have a Student’s
t distribution with n − 2 degrees of freedom (Ref. [15],
Sec. 26.20). In our experiment, we take n = 106 and use t to
test whether the sample correlations are significant. We aim
to show that the correlations are significant over a constant
distance independent of L, thus further supporting the claim
of geometric decay, uniformly in L.

Support of Claim 1. We consider the homogeneous case
first. In Fig. 2 we show heat maps of the correlations and
their corresponding p-values between cells and queues for
L = 32, 64, and 128. Both axes represent a vector containing
first the cells, indexed from 1 through L, and then the queues,
indexed from 1 through L. First of all, notice that nontrivial
correlations do exist, and that for each L they are significant
for certain pairs of cells and queues. This confirms that a
product-form stationary distribution does not apply, as pointed
out earlier. However, we also see that the dependence is not
very strong, since (although they are significant according
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FIG. 3. Decay of correlations, on a log-scale, for the homoge-
neous case. From top to bottom we have L = 32, 64, and 128. For
clarity of the figure, the graphs have been shifted horizontally by a
small value.

to the p-values) the correlations between neighboring cells
and/or queues are small. Furthermore, we observe that p-
values are only significant for correlations between cells and
queues that are at most (about) a distance 10 away from
each other. This distance is more or less constant in L, which
supports our claim that the rate of the decay is uniform in L.

In Fig. 3 we have plotted the mean absolute value of the
sample correlations between a cell or queue and neighboring
downstream cells or queues, for L = 32, 64, and 128 starting
from distance k = 1, with the corresponding standard error
represented by error bars. We have tested for a linear rela-
tionship by applying linear regression, yielding R2 ≈ 0.99 for
every line. We therefore deduce that the decrease is linear,
and we can conclude that the mean absolute correlations
decay geometrically. Furthermore, we see that the behavior is
homogeneous in L. Based on the above, we conclude that our
experiments support Claim 1 numerically in the homogeneous
case.

For the heterogeneous case, we likewise present a set of
heat maps of the correlations and their corresponding p-values
in Fig. 4. As some queues are by construction empty in the
heterogeneous case, their correlations are depicted in gray
in the heat maps. As in the homogeneous case, the results
of our simulations numerically support Claim 1. To analyze
the decay of the correlations, we have also plotted on a log
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FIG. 4. Heat maps of correlations (Corr.) on the left and corre-
sponding p-values (p) on the right, for the heterogeneous case. From
top to bottom we have the heat maps for L = 32, 64, and 128.

scale, for the first four cells that are a distance L/8 apart from
each other, their mean absolute correlations with neighboring
upstream cells, and their standard errors, as a function of the
distance; see Fig. 5. We have applied linear regression, which
gave R2 ≈ 0.99 for every graph, except for the graph of cell 1
for L = 64, which has R2 ≈ 0.94. The results confirm a linear
decay on a log scale. Therefore, as in the homogeneous case,
we find numerical support for Claim 1.

B. Queue distribution

A natural quantity to study is the (marginal) queue length
distribution of the system. Because of the dependencies in the
system, one cannot derive the marginal queue length distribu-
tion analytically; likewise, no mean-value analysis is possible
to capture the mean queue length. However, because of the
weak dependence, one would expect the queue distribution to
approximately have a geometric tail. We therefore claim the
following:

Claim 2. All queues have marginal stationary distributions
with a tail that is close to geometric.

To verify Claim 2, we have simulated the roundabout for
L = 256. To estimate the tail of the queue distributions in
a sample of size n = 106 sufficiently accurately, we have to
scale the pi by a factor α in both the homogeneous and the het-
erogeneous cases. We choose α such that πi0(α) − αpi ≈ 0.1
for each 1 � i � L. From our data, we estimate the marginal
distributions of a set of queues with equal distance between
them, and we analyze the tail.
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FIG. 5. Decay of correlations, on a log-scale, for the heteroge-
neous case. From top to bottom we have L = 32, 64, and 128. For
clarity of the figure, the graphs have been shifted horizontally by a
small value.

Support of Claim 2. The results in the homogeneous case
are shown in Fig. 6 (left), where λik on the vertical axis
denotes the stationary probability of the event in which queue
i has length k. The figure shows the distribution on a log
scale along with its regression line. The slight deviation from
the linear relation for small k shows that the distribution is
not exactly geometric. However, we observe that the tail is
indeed geometric, as the plot is very close to the regression
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FIG. 6. Marginal queue distribution on log scale for the homo-
geneous case (left) and heterogeneous case (right), along with the
best-fit line for the homogeneous case.

line and linear in the tail, until the estimation errors kick in,
thus confirming Claim 2.

For the heterogeneous case, Fig. 6 (right) shows the results
on a log scale. That is, we have plotted the distribution of one
queue in each of the four arrival zones (i.e., the four on-ramps
into the roundabout) for L = 256. The legend indicates which
queues are considered. We see that each distribution is close to
a linear decay on a log scale for k above, say, 4. For i = 205,
there seems to be a small deviation from a linear line in the
tail of the distribution, though performing linear regression
yields an R2 equal to 0.9902. Thus the analysis indicates
that, in practice, the distribution can be considered as having
geometrically vanishing tails, supporting Claim 2.

VI. SCALING LIMIT FOR CELLS

In this section, we formulate claims about the stationary
state of the cells in the regime L → ∞. More specifically, we
claim that for each division of the roundabout into segments,
the occupation of these segments follows a joint Gaussian
distribution in the limit. This Gaussian limit provides an
approximation to the stationary distribution of the number
of occupied cells on every segment of the roundabout. This
knowledge is particularly useful when designing the round-
about; for instance, a performance target could concern the
maximum utilization of the roundabout.

We first introduce some notation. Let T L
k be the random

variable that counts the number of vacant cells up to cell k.
That is, with Ci the state of cell i, and δ jk the Kronecker delta
(i.e., δ jk = 1 if j = k, and δ jk = 0 if j 	= k),

T L
k :=

k∑
i=1

δCi,0.

Observe that this is a sum of 0-1 random variables with
expectations πi0. For x ∈ (0, 1], write πL(x) := π�xL�,0 and
σ 2

L (x) := πL(x)[1 − πL(x)]. Put

s2
L := 1

L

L∑
i=1

σ 2
L (i/L) =

∫ 1

0
σ 2

L (x)dx, sL � 0

and

tL
k := 1

Ls2
L

k∑
i=1

σ 2
L (i/L) = 1

s2
L

∫ k/L

0
σ 2

L (x)dx.

Now let T L : [0, 1] → R be the random continuous function
that is linear on each interval [tL

k−1, tL
k ], k = 1, . . . , L, and has

values

T L(tL
k ) = T L

k − E
(
T L

k

)√
Ls2

L

at the points of division. Then our claim is as follows:
Claim 3. As L → ∞, T L converges in distribution to a

time-inhomogeneous Brownian motion T̂ on [0,1] with the
representation

T̂ (t ) =
∫ t

0
η(u)dBu,
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interpreted as an Itô integral with respect to a standard Brow-
nian motion B, where η is a deterministic continuous function
on [0,1].

We write “time-inhomogeneous,” where obviously in this
context “time” refers to the position on the roundabout.

Remark 4.1. Instead of counting vacant cells, one could
also count cells containing a car of a type between �aL�
and �bL�, for fixed a and b satisfying 0 < a < b � 1. The
corresponding random continuous function again converges
to a time-inhomogeneous Brownian motion.

The intuition behind the claim is as follows. If the 0-1
variables in the definition of T L

k were independent, T L would
converge to standard Brownian motion by an extension of
Donsker’s theorem (Ref. [16], Exercise 8.4). Unfortunately,
as stressed before, the cells are not independent. However,
we have seen in Sec. V that the correlations between cells
are geometrically decaying in the distance between them,
and that cells that are “sufficiently far apart” are nearly
independent. Hence, one still expects convergence to a (time-
inhomogeneous) Brownian motion.

In particular, we expect that nonoverlapping increments of
the random function T L become asymptotically independent
(as L grows). Moreover, since the central limit theorem still
holds for sequences of random variables that are nearly in-
dependent when they are far away from another (e.g., see
Ref. [17], Theorem 27.4, for the stationary case), we expect
that the increments converge in distribution to zero-mean
normal random variables.

As for the covariance matrix between increments, we ex-
pect first of all that

Var(T L(t )) = 1

Ls2
L

�tL�∑
i=1

Var(δCi,0)

+ 2

Ls2
L

�tL�∑
i=1

�tL�∑
j=i+1

Cov
(
δCi,0, δCj ,0

)
∼ �tL�

L
+ 2�tL�a(t )

L
→ t + 2ta(t ),

where a(t ) is a constant representing the row average of all
correlations in the upper triangular part of the correlation
matrix. This sum should be finite because of the geometric
decay of correlations. Finally, we expect that the covariances
between increments converge to zero, since

Cov(T L(t ) − T L(s), T L(s))

∼ 1

Ls2
L

Cov

⎛⎝ �tL�∑
i=�sL�

δCi,0,

�sL�∑
j=0

δCj ,0

⎞⎠
∼ 1

L

�tL�∑
i=�sL�

�sL�∑
j=0

ρCi,Cj → 0.

Here, ∼ means that both sides have the same limit as L → ∞,
ρC�,Ck denotes the correlation coefficient, and the limit is zero
since the double sum in the third line is of constant order in L
by the geometric decay of correlations.

In view of the above, to support Claim 3, we aim to test
(i) that increments of T L become asymptotically independent
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FIG. 7. Graphs of dM
12(L) in the homogeneous case, for M ∈

{128, 256, 512, 1024}, along with their best-fit line.

as L → ∞, and (ii) that they converge in distribution to zero-
mean normal random variables.

A. Independence of increments

To verify that the increments of T L become independent as
L → ∞, we compare the joint distribution of two increments
to the product distribution of the marginals. We divide the
roundabout of size L into four segments of equal length, and
we denote the four increments of T L on these segments by
IL
k , where k ∈ {1, 2, 3, 4} and the superscript L indicates the

dependence on L.
As a measure of the distance between the joint distribution

of increments k and j and the distribution one would have if
these increments were independent, we define

dM
k j (L) = sup

|A|=M

1

2

∑
a∈A

| fk j (a) − fk (a) f j (a)|, (4)

Here, the supremum is taken over sets A consisting of M
distinct outcomes of the random vector (IL

k , IL
j ), fk j is the joint

density of IL
k and IL

j , and fk and f j are the respective marginal
densities. We note that for a = (ak, a j ) ∈ A, we interpret fk (a)
as fk (ak ) and f j (a) as f j (a j ). To ensure that the product
sample space of IL

k and IL
j has at least M elements, L must

be large enough [to be precise, (L/4 + 1)2 � M]. To support
Claim 3, we wish to empirically show that dM

k j (L) → 0 for
k 	= j as L → ∞.

Note that if we replace the supremum in (4) by a supremum
over sets A of arbitrary size, then (4) becomes the total
variation distance. That distance is not suited for our purposes,
because we have to estimate the densities in (4), and the total
estimation error grows faster than the total variation distance
decreases. This is why we restrict the sum to the M largest
contributions in (4).

In our experiment, we take M ∈ {128, 256, 512, 1024} and
evaluate dM

k j (L) by estimating the densities fk j (a) and fk (a)
using a simulated sample of size 106.

Support of Claim 3. We first consider the homogeneous
case. Since neighboring increments have a stronger depen-
dence, as shown above, and because of symmetry, the results
of dM

12(L) are representative for all dM
k j (L). Figure 7 shows the

estimated dM
12(L) as a function of L on a log-log scale, together

with the best-fit line. For every M, we obtain an R2 between
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FIG. 8. Graphs of maxk j dM
k j (L) in the heterogeneous case, for

M ∈ {128, 256, 512, 1024}, along with their best-fit line.

0.78 and 0.92, and a negative slope. Thus we conclude that
for each M ∈ {128, 256, 512, 1024}, the estimated dM

12(L) de-
creases in L according to a power law. This is sufficient to
also conclude that dM

12(L) → 0 as L → ∞, which supports
our claim that the increments of T L become independent as
L becomes large.

For the heterogeneous case, we have plotted the distance
maxk j dM

k j (L) (for different M) in Fig. 8. Our conclusions are
the same as in the homogeneous case.

B. Distribution of increments

We now focus on supporting the part of Claim 3 stat-
ing that the increments of T L converge in distribution to a
normal random variable. For this purpose, we divide [0,1]
into N intervals of equal length. For fixed N , we denote the
corresponding increments of T L by IL

k , and their standard
deviations by σ L

k , where k ∈ {1, . . . , N}. Denote by tn−1 the
cumulative distribution function of a t-distribution with n − 1
degrees of freedom.

We use the two methods described in Sec. IV B. However,
a complication is that we do not know σ L

k , and therefore we
do not have a complete description of the limiting distribution.
Hence, we slightly modify the two methods by considering the
random variables IL

k /σ̂ L
k , where σ̂ L

k is the maximum-likelihood
estimator for σ L

k , estimated from a simulated sample of size
n = 106. Claim 3 implies that, as L → ∞, IL

k /σ̂ L
k converges

in distribution to a random variable that has distribution tn−1,
and it is this implication that we will support.

With our first experiment, we aim to show that, for every
k ∈ {1, . . . , N},

d sup
k (L) := ∥∥F̂ L

k − tn−1

∥∥
∞ → 0

as L → ∞, where ‖·‖∞ denotes the supremum norm, and F̂ L
k

denotes the empirical distribution function of IL
k /σ̂ L

k .
In our second experiment, we use the method that was

explained in Sec. IV B. To be precise, we apply the chi-
squared goodness-of-fit test, with the hypotheses

H0(L) : IL
k /σ̂ L

k
d= tn−1,

H1(L) : IL
k /σ̂ L

k

d
	= tn−1,
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FIG. 9. Graph of d sup
1 (L) for the homogeneous case.

to determine M(L). We estimate EM(L) by repeating the pro-
cedure 104 times, and we aim to show that EM(L) diverges
as L → ∞.

Support of Claim 3. Consider the first experiment, and
the homogeneous case. For N ∈ {1, 2, 4, 8}, we have plotted
dsup

1 (L) in Fig. 9. By symmetry, the results for k 	= 1 are
similar. As the graphs are all linear in L on a log-log scale,
the distance decreases in L like a power law. This is in turn
sufficient to conclude that for each 1 � k � N , dsup

k (L) → 0
as L → ∞, and thus supports Claim 3.

For the heterogeneous case, Fig. 10 depicts the distance
maxk d sup

k (L) as a function of L. The results are in line
with those of the homogeneous case. Hence, the experi-
ment supports convergence in distribution of the increments
of T L.

Support of Claim 3. Now consider the second experiment.
For N ∈ {1, 2, 4, 8} and k ∈ {1, . . . , N} we have estimated
EM(L) for L ∈ {32, 64, . . . , 1024}. Then, we applied a log-
transformation to L and EM(L), after which we applied linear
regression to find the best linear fit. The idea is that if the
linear fit on a log-log scale is good and strictly increasing,
then EM(L) is strictly increasing in L via a power law, i.e.,
EM(L) ∼ Lβ , where β is the slope of the linear fit found by
the regression.

The results of the linear regression are given in Table I for
the homogeneous case, and in Table II for the heterogeneous
case. Here, N and k are as before, “Rsq” and “Rsq_adj”
are, respectively, the ordinary and adjusted R2 from ordinary
least squares, F is the F -statistic, and p is its corresponding
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FIG. 10. Graph of maxk d sup
k (L) for the heterogeneous case.
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TABLE I. Results of the linear regression of L vs estimated
EM(L) (homogeneous case).

N k Rsq Rsq_adj F p Intercept Slope

1 1 0.8134 0.8072 130.7484 1.8457 × 10−12 1.0406 1.0076
2 1 0.7128 0.7033 74.4703 1.2586 × 10−9 0.7283 1.0261
2 2 0.7197 0.7104 77.0325 8.7121 × 10−10 0.7331 1.0274
4 1 0.5816 0.5677 41.7071 3.9042 × 10−7 1.4803 0.7842
4 2 0.5690 0.5546 39.6035 6.1631 × 10−7 1.3822 0.8033
4 3 0.5728 0.5586 40.2324 5.3689 × 10−7 1.4932 0.7814
4 4 0.5797 0.5657 41.3778 4.1895 × 10−7 1.4924 0.7811
8 1 0.5509 0.5359 36.8022 1.1580 × 10−6 0.1515 0.9281
8 2 0.5479 0.5328 36.3542 1.2841 × 10−6 0.1686 0.9252
8 3 0.5435 0.5282 35.7116 1.4914 × 10−6 0.1776 0.9237
8 4 0.5498 0.5348 36.6344 1.2036 × 10−6 0.1872 0.9214
8 5 0.5462 0.5311 36.1087 1.3594 × 10−6 0.1447 0.9289
8 6 0.5428 0.5275 35.6145 1.5257 × 10−6 0.1627 0.9269
8 7 0.5497 0.5346 36.6159 1.2088 × 10−6 0.1582 0.9277
8 8 0.5321 0.5165 34.1113 2.1793 × 10−6 0.3014 0.8971

p-value. The last two columns contain the intercept and slope
of the regression line given by ordinary least squares.

The tables show that under the assumption of standard nor-
mally distributed residuals, the fit for each pair of N and k is
good, since R2 is large and the p-value from the corresponding
F -statistic is very small. Also, the slope is always significantly
positive. As explained above, we thus conclude that EM(L)
diverges like a power law in L.

In both the homogeneous and heterogeneous cases, we
have to verify that the residuals of the regressions are normally
distributed, and that the conclusions we draw are therefore
valid. To do so, we made QQ-plots for every pair of N and k;
the case N = 4 and k = 1 is given in Fig. 11 for illustration.
The data from which these residuals stem are drawn on a
log-log scale in Fig. 11 together with the best-fit line. None
of the QQ-plots gives us a reason to question the assumption
of normally distributed residuals, and hence our conclusions
are valid.

TABLE II. Results of the linear regression of L vs estimated
EM(L) (heterogeneous case).

N k Rsq Rsq_adj F p Intercept Slope

1 1 0.7541 0.7459 92.0002 1.1971 × 10−10 0.7161 1.0702
2 1 0.6878 0.6773 66.0790 4.4923 × 10−9 0.5324 0.9724
2 2 0.5639 0.5493 38.7879 7.3848 × 10−7 2.0480 0.7580
4 1 0.7518 0.7436 90.8835 1.3761 × 10−10 0.9568 0.8230
4 2 0.6827 0.6721 64.5423 5.7407 × 10−9 0.3722 0.8814
4 3 0.6955 0.6854 68.5310 3.0624 × 10−9 0.3669 0.8900
4 4 0.7479 0.7395 88.9982 1.7462 × 10−10 0.9977 0.8228
8 1 0.6871 0.6767 65.8841 4.6332 × 10−9 1.0612 0.6820
8 2 0.6306 0.6183 51.2062 5.8243 × 10−8 0.8349 0.7562
8 3 0.4906 0.4737 28.8981 8.0635 × 10−6 1.3538 0.6137
8 4 0.4476 0.4292 24.3093 2.8351 × 10−5 1.6853 0.5714
8 5 0.4880 0.4709 28.5930 8.7378 × 10−6 1.5911 0.5810
8 6 0.4839 0.4667 28.1235 9.8957 × 10−6 1.4242 0.6184
8 7 0.6181 0.6053 48.5450 9.6884 × 10−8 0.7438 0.7548
8 8 0.6540 0.6425 56.7122 2.1412 × 10−8 0.6693 0.7848
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FIG. 11. Illustration results of linear regression. The upper fig-
ures show the regression and the lower figures show the correspond-
ing QQ-plots, with the homogeneous case (left) and the heteroge-
neous case (right).

VII. SCALING LIMIT FOR QUEUES

We now focus on the behavior of the total queue length
in a segment of the roundabout, as L → ∞. We claim that,
for every subdivision of the roundabout into segments, the
sum of the queue lengths within these segments is Poisson-
distributed. Similar to our results for the cells, one could use
these results for the queues in the design of the roundabout.
For example, using the Poisson limit in combination with
Little’s law, we can approximate mean waiting times; one
could thus design the roundabout such that these delays
remain within an acceptable bound.

Before we formulate our claim, we introduce some nota-
tion. Recall that Qi denotes the length of queue i in equilib-
rium. Define PL

0 = 0 and

PL
k := Q1 + · · · + Qk, k � 1.

Furthermore, define PL : [0, 1] → N0 by PL(u) = PL
�uL�. We

now claim the following:
Claim 4. As L → ∞, PL converges in distribution to a

time-inhomogeneous Poisson process P.
The intuition for this claim stems primarily from studying

the behavior of specific quantities in the roundabout model,
as L → ∞. We have pi = O(1/L) and qi j = O(1/L), so that
πi0 = O(1). We write σikl for the stationary probability of
the event {Ci = k, Qi = l}, and recall that λik denotes the
stationary probability that Qi = k. By considering what hap-
pens when we start the Markov chain from the stationary
distribution, and let it take one step, one can derive the
identities

πi+1,0 =
L∑

j=1

πi jqi j + σi00(1 − pi ), (5)

λi0 = λi0(1 − pi ) + σi01(1 − pi ) + σi00 pi. (6)
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FIG. 12. Graphs of dM
12(L) for the homogeneous case (left)

and maxk j dM
k j (L) for the heterogeneous case (right), for M ∈

{128, 256, 512, 1024}.

Furthermore, a calculation shows that (1) and (2) imply

L∑
j=1

πi j (1 − qi j ) = 1 − πi+1,0 − pi. (7)

Combining (7) with (5) and (2) yields

σi00 = πi0 − pi

1 − pi
,

implying that σi00 = O(1). Using that σi01 � 0, it then follows
from (6) that λi0 = O(1) as well.

This line of reasoning fails to determine the order of λik ,
but it is conceivable that λik = O(1/Lk ). The argument behind
this is as follows. Since πi0 = O(1), the time we have to wait
for an empty cell is of constant order. For a queue of length
k to build up from an empty queue, we need to have at least
k arrivals within this constant time. The probability that this
happens is of order 1/Lk , because pi = O(1/L).

Under the proviso that λik = O(1/Lk ), it follows that the
functions PL behave asymptotically as counting processes.
For convergence to a Poisson process, it then suffices that the
finite-dimensional distributions converge to those of a Poisson
process (see, e.g., Ref. [16], Theorem 12.6). To support Claim
4, we therefore verify below (i) that the increments of PL

become independent as L → ∞, and (ii) that they converge
in distribution to a Poisson random variable.

A. Independence of increments

To verify that the increments of PL become independent,
we use the same experiment as the one used for the Gaussian
scaling limit. For completeness, we recall its main ingredients,
and we introduce some notation. We divide the roundabout
into four segments, and we denote the increments of PL

on these segments by JL
k , where k ∈ {1, 2, 3, 4}. We use the

metric defined in (4), where fk j is now the joint density of
JL

k and JL
j , and where fk and f j are their respective marginal

densities. For M ∈ {128, 256, 512, 1024}, we aim to show that
for k 	= j, dM

k j (L) → 0 when L → ∞.
Support of Claim 4. In the left plot of Fig. 12 we show

the graph of the estimates of dM
12(L) as a function of L.

By symmetry, and because neighboring increments have the
strongest dependence, it is enough to consider k = 1 and
j = 2 in the homogeneous case. First, from the figure we
establish that our estimate is the same for each M, which is due
to the small support of the empirical distributions. From the
linearity of the plot we see that dM

12(L) is decreasing according

to a power law, which is sufficient for dM
12(L) → 0 as L → ∞.

Finally, we also see that dM
12(L) is already small for L = 32

and quite quickly becomes too small to estimate accurately
with our sample size, meaning that the effect of the variance
kicks in quite quickly. Rather than negating our findings, this
actually makes our conclusion stronger, since the queues are
already only weakly dependent for small L.

For the heterogeneous case, we plotted maxk, j dM
k j (L) as a

function of L in the right panel of Fig. 12. Again, the function
does not depend on M. The dependencies are systematically
small, so that we cannot show that maxk, j dM

k j (L) → 0 as
L → ∞. However, the results still support independence of
the increments of PL in the limit, since the dependence is
already negligible for L = 32.

B. Distribution of increments

To verify that the increments of PL are Poisson-distributed,
we use an experiment analogous to the one used in supporting
Claim 3. Because we do not have a statistical test with
enough power to apply the second method from Sec. IV B,
we can only use the first method here, which looks at the
distance between the empirical distribution function and a
Poisson distribution. We divide the roundabout into N seg-
ments of equal length, where N ∈ {1, 2, 4, 8}. Each of these
segments corresponds to an increment of PL that, for fixed
N , we denote by JL

k with k ∈ {1, . . . , N}. Our claim is that
in the limit L → ∞, JL

k has a Poisson distribution with some
parameter ν.

For the homogeneous case, we estimate ν by the
maximum-likelihood estimator ν̂ = P̄1024(1), the bar denot-
ing the sample mean. We set ν̂k = ν̂/N for each k. In the
heterogeneous case, we estimate the parameter separately for
each increment, as we do not expect a homogeneous Poisson
process; so in this case, we have ν̂k = J̄1024

k .
The experiment is designed to support that

d sup
k (L) := ∥∥ĜL

k − Ps(ν̂k )
∥∥

∞ → 0

for 1 � k � N as L → ∞. Here, ĜL
k denotes the empiri-

cal distribution function of JL
k , and Ps(ν̂k ) denotes a Pois-

son distribution with parameter ν̂k . To justify that we use
ν̂k as the parameter, we estimate E

∑k
i=1 JL

i for each L ∈
{32, 64, . . . , 1024} via the sample mean, and numerically
verify that the sample mean converges in L.
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FIG. 13. Graph of d sup
1 (L) for N ∈ {1, 2, 4, 8} (homogeneous

case).
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FIG. 14. Poisson characteristics for the increments
∑k

i=1 JL
i , for

k ∈ {1, 2, 3, 4} and N = 4, in the homogeneous case. Shown are the
means (upper left), the variances (upper right), the dispersions (lower
left), and the scaled means (lower right).

Support of Claim 4. We present the homogeneous case first.
In Fig. 13 we show the graph of d sup

1 (L) for N ∈ {1, 2, 4, 8},
which supports our claim that dsup

1 (L) tends to zero. For k 	= 1
the results are equivalent due to symmetry. In Fig. 14 we
show the behavior of the sample means, sample variances,
and sample dispersions of

∑k
i=1 JL

i , and the scaled sample
means

∑k
i=1 J̄L

i /( Lk
N ), for k ∈ {1, 2, 3, 4} and N = 4. Observe

from the first set of graphs that the sample means converge, so
that we can indeed use ν̂ as an estimate of the true Poisson
parameter. Furthermore, the variances also converge. The
corresponding dispersions tend to 1, which is indicative of the
underlying random variable being Poissonian, thus providing
additional support for our claim. Finally, the graph of the
scaled means shows that the infinitesimal contribution of each
queue goes to zero, but is equal for every subdivision of N
increments. Hence, even for L relatively small, PL behaves
like a Poisson process.

For the heterogeneous case, for N ∈ {1, 2, 4, 8}, we have
plotted maxk d sup

k (L) as a function of L in Fig. 15. Figure 16
shows the sample means, variances, dispersions, and scaled
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FIG. 15. Graph of maxk d sup
k (L) for N ∈ {1, 2, 4, 8} (heteroge-

neous case).

0.1

0.3

0.5

0.7

0.9

0 256 512 768 1024
L

S
am

pl
e 

M
ea

n

k = 1
k = 2
k = 3
k = 4

0.1

0.3

0.5

0.7

0.9

0 256 512 768 1024
L

S
am

pl
e 

V
ar

ia
nc

e k = 1
k = 2
k = 3
k = 4

0.84

0.88

0.92

0.96

0 256 512 768 1024
L

D
is

pe
rs

io
n

k = 1
k = 2
k = 3
k = 4

0.00

0.01

0.02

0 256 512 768 1024
L

S
ca

le
d 

M
ea

n

k = 1
k = 2
k = 3
k = 4

FIG. 16. Poisson characteristics for the increments
∑k

i=1 JL
i , for

k ∈ {1, 2, 3, 4} and N = 4, in the heterogeneous case. Shown are the
means (upper left), the variances (upper right), the dispersions (lower
left), and the scaled means (lower right).

means for N = 4. We see that the conclusions from the homo-
geneous case carry over to the heterogeneous counterpart.

VIII. CONCLUSION

Existing analytical papers on roundabout modeling tend
to leave out relevant model features (on-/off-ramps, entry
behavior, etc.) to facilitate the derivation of closed-form ex-
pressions. The obvious alternative is to realistically model the
underlying dynamics, but to resort to simulation. The primary
objective of our paper was to develop a roundabout model that
included relevant (geometric) properties while still allowing
mathematical analysis.

We have proposed a roundabout model that models the
cars’ circulating behavior and has queueing at the on-ramps.
The model is highly flexible; its parameters can be directly
calibrated to measurements. We find an explicit expression
for the marginal stationary distribution of the cells of which
the roundabout consists. As it turns out, the cells and the
queues are dependent, so that obtaining a joint stationary
distribution remains out of reach. The experiments, however,
show that dependencies are typically small, thus leading to
various approximations. These approximations are tested in
depth, and supported by numerical evidence. They can be used
when designing the roundabout in such a way that delay or
occupation measures are kept below a maximum allowable
level.

Our model includes many features that were not incor-
porated in previously studied models. Nonetheless, various
extensions can be thought of. One could, for instance, make
the entry behavior and congestion on the circulating ring more
realistic (so as to capture the effect that cars stop moving
when cells in front of them are occupied). Importantly, we
do believe that, while their functional forms might change,
our findings generalize to more realistic models; the underly-
ing arguments and/or techniques are not affected when one
includes these features. In addition, a challenging research
direction could relate to modeling roundabouts in networks.
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