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Continuous-time quantum walk on an extended star graph: Disorder-enhanced trapping process
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Using a tight binding model, we investigate the dynamics of an exciton on a disordered extended star graph
whose central site acts as an energy trap. When compared with what happens in an ordered network, our results
reveal that the disorder drastically improves the excitonic absorption that becomes complete. Moreover, we show
the occurrence of an optimal disorder for which the absorption time is strongly minimized, a surprising effect
that originates in a disorder-induced restructuring process of the exciton eigenstates. Finally, we also show the
existence of an optimal value of the absorption rate that reduces even more the absorption time. The resulting
superoptimized trapping process is interpreted as a positive interplay between both the disorder and the so-called
superradiance transition.
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I. INTRODUCTION

Excitonic trapping is a key issue for explaining many
phenomena in molecular lattices [1–5]. Examples among
many are the time evolution of fluorescence processes [6] and
excitonic transport efficiency [7], to cite but a few. Although
most seminal works were initially devoted to translational
invariant networks [8–10], recent studies have been realized
to investigate excitonic trapping in more complex molecular
networks. In this context, two kinds of systems have been
considered simultaneously.

On the one hand, the excitonic trapping process has been
studied in various realistic molecular networks including
the Fenna-Matthews-Olson (FMO) complex [11] and poly-
mer structures such as dendrimers [12]. The FMO complex,
encountered in green sulfur bacteria, is a pigment-protein
complex that involves seven bacteriochlorophyll-a molecules.
In this protein, the capture of light generates excitons that
converge toward a reaction center acting as an irreversible
trap. On this specific site, the trapping of excitons initiates the
photochemistry that ultimately leads to the chemical storage
of energy [13–16]. Similarly, a dendrimer whose terminal
groups are functionalized by chromophores can play the role
of an artificial light-harvesting complex [17–22]. In this con-
text, the absorption of photons by the chromophores generates
excitons that propagate through the branches of the molecule
to reach the core site, which contains either a fluorescent trap,
a reaction center, or a chemical sensor [23,24].

On the other hand, from a more formal point of view, the
excitonic trapping process has been studied in various com-
plex networks including hyperbranched fractals [25], Sierpin-
sky fractals [26], cycle graphs with long-range interactions
[27], chains and rings [28–30], and random networks [31].
These works, intimately connected to graph theory, exploit
the formal resemblance between the excitonic delocaliza-
tion occurring in nature and the concept of continuous time
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quantum walk (CTQW) [32]. As the quantum analog of clas-
sical random walk, CTQW has been extensively studied on
complex networks during the past few years due to its various
applications ranging from the research into perfect quantum
transport [33] to the development of high-performance algo-
rithms [34,35].

In that context, to judge the efficiency of the excitonic
trapping process, the fundamental question arises whether
the exciton delocalizes coherently or localizes along the
networks. Although this problem still remains open, recent
works suggest that the localized or delocalized nature of the
exciton depends on important features such as the exciton-trap
coupling strength, the network symmetry, and the presence of
disorder [32].

First, the coupling with traps has a very pronounced im-
pact on the efficiency of the excitonic propagation [36–38].
Resulting from the interaction with an external continuum,
the trapping effect is usually taken into account using a
non-Hermitian exciton Hamiltonian with complex eigenval-
ues. The real parts of these eigenvalues define the excitonic
energies, whereas the imaginary parts specify the energy
widths, i.e., the decay rates. In that case, a detailed study of
these decay rates has revealed the occurrence of a general
phenomenon called superradiance transition (ST) [39]. When
the exciton is weakly coupled to traps on a network, all the
excitonic eigenstates are similarly affected and exhibit quite
similar decay rates. However, as the exciton-trap coupling
increases, an eigenstate restructuring occurs. Only a few short-
lived states, called superradiant states, exhibit cooperatively
enhanced decay rates. These states are accompanied by sub-
radiant eigenstates which represent long-lived states almost
decoupled from the traps. As the exciton-trap coupling in-
creases, the superradiant states strongly localize on the traps.
As a result, the excitonic transfer to those specific sites is dras-
tically hindered and the trapping process loses in efficiency.

Then, as shown by Mulken et al. [40], localization pro-
cesses may also result from the degeneracy of the exci-
tonic spectrum arising for networks with symmetries. In this
case, when the excitonic quantum state initially expands over
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few highly degenerate eigenstates, specific quantum self-
interferences arise. The propagation of the exciton is thus
stopped, and the exciton remains confined in the neighbor-
hood of the excited region on the network. Such a feature has
been observed in various networks including compact den-
drimers [41], star graphs [42], and Apollonian networks [43].

Finally, localization processes may also arise on networks
that exhibit random defects. Nevertheless, in this case the in-
fluence of the disorder is quite subtle, and different situations
occur. On the one hand, the disorder acts as a negative ingre-
dient that completely hinders the excitonic propagation. This
feature has been observed, for example, in linear chains [44],
discrete rings [45], and binary trees [46]. On the other hand,
the disorder behaves as a positive ingredient that enhances the
exciton delocalization. For instance, in tree graphs and den-
drimers, the presence of a weak disorder generates extended
states through fluctuation-enabled resonances between states
that initially may appear to be localized [47–49]. Similarly on
a Watts-Strogatz network with small-world behavior [50], the
efficiency of the excitonic propagation is enhanced when the
rewiring probability turns on [51]. Finally, it has been shown
that the addition of random bonds to a star graph allows the
exciton wave function to spread more [52].

In this context, the aim of the present paper is to char-
acterize how the interplay between the excitonic spectral
degeneracy, the exciton-trap coupling, and the presence of
disorder affects the trapping process on a complex network.
To proceed, following our previous work [53], we consider
a network that has been extensively studied in the absence
of disorder, i.e., the extended star graph whose central core
is occupied by a trap. Organized around a central site, this
graph exhibits the local tree symmetry of irregular and com-
plex networks. Without disorder, we have shown that the
exciton dynamics is governed by two kinds of eigenstates,
namely, many eigenstates associated to highly degenerate real
eigenenergies (insensitive to the trap) and three decaying
eigenstates characterized by complex energies (sensitive to
the trap). As a result, when the exciton is initially located
on a peripheral site of the graph, degeneracy-induced lo-
calization favors the confinement of an important part of
the exciton population in the neighborhood of the excited
site. Only a small part of the population is absorbed at the
core of the network. Nevertheless, it has been shown that
when the size of the network and the exciton-trap coupling
are judiciously chosen, the efficiency of the transfer is opti-
mized at ST resulting in the minimization of the absorption
time.

All these results being obtained on an extended star
graph without disorder, we address here the question whether
disorder-induced symmetry breaking modifies the excitonic
propagation and affects the trapping process. The present
paper is then organized as follows. In Sec. II the disordered
extended star graph with a central trap is introduced, and the
exciton Hamiltonian is defined. Then the relevant ingredients
required for characterizing the dynamics are described. The
problem is solved numerically in Sec. III, where a detailed
analysis of the excitonic absorption is performed. Special
attention is paid for characterizing the way the disorder af-
fects the absorption process. The numerical results are finally
discussed and interpreted in Sec. IV.

FIG. 1. The extended star graph with an absorbing core.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

As displayed in Fig. 1, the network we consider is an ex-
tended star graph. It defines a two-generation treelike structure
formed by N1 branches that emanate out from a central core.
Each branch connects the central core to the central node
of N1 peripheral star graphs. Each peripheral star involves
N2 external branches so that the total number of sites is
N = 1 + N1 + N1N2. To give a precise description of the sites,
we introduce two indexes (�, s): (� = 0, s = 0) stands for
the central core, (�, s = 0), with � = 1, . . . , N1, referring to
the central node of the �th peripheral star, and (�, s), with
� = 1, . . . , N1 and s = 1, . . . , N2, characterizing the sth
peripheral site of the �th star.

On this network, the exciton dynamics is modeled as
follows. First, we consider that each site (�, s) is occupied by
a molecular subunit whose internal dynamics is described by a
two-level system with a Bohr frequency ω�,s. Let |�, s〉 define
the state in which the (�, s)th two-level system occupies its
first excited state, all the other two-level systems remaining in
their ground state. We will here assume that a trap is located
on the central core of the graph. This trap is responsible for
an irreversible decay of the exciton according to the decay
rate �. Within this model, the exciton dynamics is governed
by the non-Hermitian effective Hamiltonian [54,55] defined
as (within the convention h̄ = 1)

H =
(

ω0,0 − i
�

2

)
|0, 0〉〈0, 0| +

N1∑
�=1

N2∑
s=0

ω�,s|�, s〉〈�, s|

+
N1∑

�=1

�(|0, 0〉〈�, 0| + |�, 0〉〈0, 0|)

+
N1∑

�=1

N2∑
s=1

�(|�, 0〉〈�, s| + |�, s〉〈�, 0|), (1)
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where � is the exciton hopping constant. Note that the
convention h̄ = 1 will be used throughout this paper. As a
result, an energy h̄ω�,s will be simply denoted ω�,s, and any
“frequency” will be directly called “energy.”

According to the standard Anderson model [56,57], the
disorder is introduced by assuming that the site energies {ω�,s}
are independent random variables uniformly distributed in
the interval [ωS − W/2, ωS + W/2]. Here ωS represents the
energy of each site without disorder. Note that, in this paper,
ωS will be taken as the energy reference, i.e., ωS = 0. The
amplitude W represents the strength of the disorder. It defines
the variance W 2/12 of each site energy.

Due to its non-Hermiticity, the Hamiltonian H exhibits
N complex eigenvalues ω̂k = ωk − iγk/2 (with k = 1, . . . , N)
where the real parts ωk define effective energies, whereas the
imaginary parts γk represent decay rates (i.e., energy widths).
Each eigenvalue is associated to a couple of biorthogonal left
or right eigenvectors called |χ̃k〉 and |χk〉, respectively. Note
that, since H is symmetric, one has the property 〈�, s|χk〉 =
〈χ̃k|�, s〉. Consequently, left and right eigenvectors share
a similar weight on each site of the graph: |〈�, s|χk〉|2 =
|〈�, s|χ̃k〉|2. Also note that in the following, we will consider
that each left and right eigenvector is normalized such as∑

�,s |〈�, s|χk〉|2 = ∑
�,s |〈�, s|χ̃k〉|2 ≡ 1.

Considering the bi-orthogonality of the eigen-
vectors, a completeness relation can be introduced∑

k |χk〉〈χ̃k|/〈χ̃k|χk〉 = 1, where 1 is the identity operator.
Using this relation, the excitonic Hamiltonian H can be
rewritten in a diagonal form as

H =
N∑

k=1

ω̂k
|χk〉〈χ̃k|
〈χ̃k|χk〉 . (2)

B. Quantum dynamics

Following our previous work [53], we consider the partic-
ular situation in which the exciton is initially created on the
peripheral site (�0 = 1, s0 = 1).

To study the effects of the disorder, we numerically char-
acterize the system properties in the parameter space (�,W ).
To proceed, we first generate a set of Nc disordered configu-
rations. Here the term “configuration” means a network that
exhibits a particular landscape of random site energies {ω�,s}
uniformly distributed over the range [ωS − W/2, ωS + W/2].
The various disordered configurations will be labeled by the
specific index (c), with c = 1, . . . , Nc. Then, for each configu-
ration (c), we build and we diagonalize the associated Hamil-
tonian H (c). One thus obtains the complex eigenenergies ω̂

(c)
k

and the eigenstates |χ (c)
k 〉 (and |χ̃ (c)

k 〉). From this knowledge,
the evolution operator U (c)(t ) ≡ exp(−iH (c)t ) is built so that
we are able to compute the exciton state |� (c)(t )〉 at time t as

|� (c)(t )〉 = U (c)(t )|�0, s0〉. (3)

Finally, by doing so, we get access to all the information that
is required for describing the trapping process. Indeed, let
Q denote any relevant quantity such as a site population, an
absorption time, or a decay rate, to cite but a few. To study
the effect of the disorder on the quantity Q, the knowledge
of the exciton properties (eigenenergies, eigenstates, quantum
state, and so on) allows us to build the value Q(c) for each
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FIG. 2. Time evolution of the absorbed population P(c)
A (t ) ob-

tained for particular disordered configurations generated with differ-
ent values of W and �.

configuration (c). One thus finally evaluates the correspond-
ing mean value 〈Q〉 by performing a statistical average over
the Nc disordered configurations.

This procedure is illustrated in the following section for
describing the excitonic absorption process in a disordered
extended star graph with fixed parameters N1 = N2 = 4.

III. NUMERICAL RESULTS

A. Absorption process

To start our numerical analysis, let us show an important
property: on an extended star graph, the disorder improves the
efficiency of the excitonic absorption. To observe this feature,
one introduces the absorbed population P(c)

A (t ) defined as

P(c)
A (t ) = 1 −

∑
�,s

|〈�, s|� (c)(t )〉|2. (4)

This quantity is the probability for the exciton to be ab-
sorbed by the trap at time t for a given disordered configura-
tion (c). As displayed in Fig. 2, the time evolution of P(c)

A (t )
has been computed for particular disordered configurations.

When W = 0 (no disorder), the absorbed population in-
creases over a short time ∼10�−1 to reach a maximum value
equal to Pmax

A = 6.25 × 10−2 indicating that the absorption
process is not complete. As the strength of the disorder
increases (W > 0), a different behavior arises. Indeed, the
absorbed population always converges toward unity what-
ever the disorder. Thus, the presence of defects enhances
the absorption process since the whole excitonic population
becomes trapped at the core of the graph.

As shown in Fig. 2, the time needed to reach a complete
absorption strongly depends on both W and �. To characterize
this feature, let us introduce the absorption time τ (c). For
each disordered configuration (c), τ (c) represents the time for
which half of the total excitonic population is absorbed:

P(c)
A (τ (c) ) = 1

2 . (5)

Based on this definition, let us focus on the different
time evolutions shown in Fig. 2. For a weak disorder (� =
1�,W = 0.1�), the absorption process exhibits two phases.
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During the first phase, a population of about 6.25 × 10−2 is
rapidly absorbed over a short time ∼10�−1. Then, over a
longer timescale, the absorbed population progressively in-
creases to finally reach unity. The resulting absorption time is
τ (c) ≈ 7 × 103�−1. In this situation, the absorption process is
complete but not really efficient due to the long time needed to
trap the exciton. Nevertheless, this efficiency can be improved
if one considers a stronger disorder. With (�=1�,W =1�),
the absorbed population directly varies from zero to unity
resulting in a shorter absorption time τ (c) ≈ 100�−1. A more
pronounced enhancement arises when one considers the last
configuration with (� = 5�,W = 5�). In this case, the ab-
sorbed process is faster, and the absorption time reduces to
τ (c) � 14�−1.

All these observations have motivated deeper numerical
investigations to better understand the influence of W and �

on the absorption time τ (c). To proceed, the mean absorption
time 〈τ 〉 has been numerically estimated. This characteristic
time is defined as the geometric mean over the values τ (c) as

〈τ 〉 = exp

[
1

Nc

Nc∑
c=1

ln(τ (c) )

]
. (6)

The reason why a geometric mean has been introduced in-
stead of the standard arithmetic mean is simple to understand.
When carrying out a statistic over the different disordered
configurations, it turns out that the distribution of the ab-
sorption time exhibits a very long tail. In this context, the use
of the arithmetic mean produces irrelevant results since the
average value is not representative of the true central tendency
of the series. Such an inaccuracy is related to the sensitivity of
the arithmetic mean to the few particular values τ (c) that are
very large. To overcome this problem, the solution consists
in using another definition for the statistical mean. With long
trail distributions, the geometric mean represents a very good
option due to the lower sensitivity of this estimator regarding
the large singular values of the series.

Based on this definition, the behavior of the mean ab-
sorption time 〈τ 〉 in the parameter space (W, �) is shown in
Fig. 3(a). Blue curves delimit the isochronal contours of 〈τ 〉,
whereas the black hatched area delimits the zone where 〈τ 〉 >

1000�−1. Figure 3(a) reveals the occurrence of an optimal
region where 〈τ 〉 is strongly reduced. This region is centered
around the minimal value of the absorption time 〈τ 〉opt ≈
50�−1 that arises when the model parameters satisfy W =
Wopt and � = �opt with Wopt ≈ �opt ≈ 6�. When one moves
away from this optimal region, 〈τ 〉 increases. However, such
a behavior is not isotropic in the parameter space. Indeed, as
illustrated by the isochronal curves, the contours correspond
to cigar-shaped isolines more elongated along the � direction
rather than along the W direction. For instance, along the W
direction, the isochronal contour 〈τ 〉 = 80�−1 extends over
10�, and it varies from W = 3� to W = 13�. By contrast,
along the � direction, the same isochronal contour extends
over 20.5�, and it varies from � = 1.5� to � = 22�. The
mean absorption time is then typically twice as sensitive to W
as to �.

The anisotropic behavior of 〈τ 〉 hides a more general
optimization phenomenon that is highlighted in Fig. 3(b).
In this figure, the W dependence of 〈τ 〉 is displayed for

FIG. 3. Behavior of the mean absorption time 〈τ 〉: (a) depending
on the strength of the disorder W and the absorption rate � and
(b) for three fixed values of the absorption parameter � considering
W as a free parameter. In panel (b) � = 1� is represented with black
circles, � = �opt = 6� with green squares, and � = 15� with blue
triangles. Each value 〈τ 〉 is the result of a statistic realized over
Nc = 2000 configurations.

three � values. Comparing these three different curves, it
clearly appears that, whatever the value of �, a minimum
of 〈τ 〉 is always reached when W ∼ Wopt. In the case � =
1�, the minimum mean absorption time is 〈τ 〉 ≈ 100�−1.
If now the absorption parameter is optimal � = �opt = 6�,
the minimum mean absorption time is superoptimized, and it
decreases to 〈τ 〉opt ≈ 50�−1. However, for a larger absorption
parameter � = 15�, the mean absorption time admits a larger
minimum value that is 〈τ 〉 ≈ 60�−1.

B. Study of the active states

To understand the behavior of the mean absorption time, let
us now characterize the properties of the system eigenstates.
By doing so, we have observed that only a few eigenstates
govern the exciton dynamics. Due to their active participation
in the trapping process, these particular eigenstates have been
renamed “active states.”

For describing the active states, we took advantage of the
fact that they exhibit a consequent weight |〈�0, s0|χ (c)

k 〉|2 on
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FIG. 4. W dependence of the mean number of active states 〈NAS〉
for � = 1� (black circles), � = �opt = 6� (green squares), and � =
15� (blue triangles). Each point of the graph is the result of a statistic
realized over Nc = 2000 configurations.

the excited site (�0 = 1, s0 = 1). Based on this property, we
have introduced a simple but efficient method to detect the
active states. For each configuration (c), an eigenstate |χ (c)

k 〉
is considered as active only if its weight on the excited site
satisfies |〈�0, s0|χ (c)

k 〉|2 � 10%. This choice has been directly
inspired by our numerical observations. Indeed, in our study it
turns out that each state owning a weight of only a few percent
on the excited site does not play a key role in the excitonic
absorption and, consequently, behaves as a “nonactive state.”
In this context, several tests revealed that using a threshold of
10% was a really efficient way to leave apart all these states.

Proceeding with this numerical approach, a complete study
of the active states properties has been realized. By doing
so, an important thing has been noticed: the active states are
always more sensitive to the strength of the disorder W than
the absorption rate �. This phenomenon clearly reminds us
of the behavior of the mean absorption time 〈τ 〉, as seen
previously. Consequently, we will here focus on the effect
of the disorder for three cases: � = 1�, � = �opt = 6�,
and � = 15�. In all the following figures, the curves with
black circles correspond to results obtained for � = 1�, green
squares for � = �opt = 6�, and blue triangles for � = 15�

(see color figures online).
The first property we consider is the mean number 〈NAS〉 of

active states. It is defined as

〈NAS〉 = 1

Nc

Nc∑
c=1

N (c)
AS , (7)

where N (c)
AS is the total number of active states detected for the

cth disordered configuration.
The W dependence of 〈NAS〉 is illustrated in Fig. 4. What-

ever �, a quite similar behavior is adopted as W increases.
For small W values, the number of active states is the
same: 〈NAS〉 ≈ 1.7. Then as W increases, 〈NAS〉 increases
until it reaches a maximum value 〈NAS〉max. For � = 1�

and � = 15�, 〈NAS〉max ≈ 2.6, whereas for � = �opt = 6�,
〈NAS〉max ≈ 2.4. Note that this maximization phenomenon
always arises in the neighborhood of the optimal disorder

Wopt

<
IP

R
A

S
>

1

2

3

4

10 2 10 1 100 101 102 103

FIG. 5. W dependence of the mean IPR of the active states
〈IPRAS〉 for � = 1� (black circles), � = �opt = 6� (green squares),
and � = 15� (blue triangles). Each point of the graph is the result of
a statistic realized over Nc = 2000 configurations.

W = Wopt. Then when W exceeds Wopt the three curves de-
crease. They converge toward 〈NAS〉 = 1 within the strong
disorder limit W � Wopt.

Let us now consider the mean inverse participation ratio
〈IPRAS〉 of the active states. The inverse participation ratio
(IPR) gives a measure of the spatial extension of an eigenstate.
For a particular eigenstate |χ (c)

k 〉, it is defined as

IPR
(∣∣χ (c)

k

〉) = 1∑
�,s

∣∣〈�, s
∣∣χ (c)

k

〉∣∣4 . (8)

Within this definition, the IPR of an eigenstate localized on
one site is equal to 1. By contrast, the IPR of a state uniformly
delocalized over the whole graph is equal to N . The mean IPR
of the active states 〈IPRAS〉 is written as

〈IPRAS〉 = 1

Nc

Nc∑
c=1

∑
k∈AS

IPR
(∣∣χ (c)

k

〉)
N (c)

AS

, (9)

where
∑

k∈AS is a sum over the active states.
The W dependence of 〈IPRAS〉 is shown in Fig. 5. This

figure reveals that the evolution of the mean IPR of the active
states is quite similar to that of 〈NAS〉. Indeed, for small
disorder W , the three curves start with a same initial value
〈IPRAS〉 ≈ 2.2. Then when W increases the three curves reach
different maximum values 〈IPRAS〉max that arise in the neigh-
borhood of the optimal disorder W = Wopt. For � = 1� the
maximum is 〈IPRAS〉max ≈ 4.2, whereas for � = �opt = 6�

it is 〈IPRAS〉max ≈ 3.6. The last situation � = 15� presents a
maximum of 〈IPRAS〉max ≈ 3.2. After reaching these maxima,
the three curves decrease. In the strong disorder limit W �
Wopt, they converge toward unity.

To keep on characterizing the spatial extension of the
active states, the next property we have estimated is their
mean weight 〈
core

AS 〉 over the central trap. This quantity is
defined as

〈

core

AS

〉 = 1

Nc

Nc∑
c=1

∑
k∈AS

∣∣〈0, 0
∣∣χ (c)

k

〉∣∣2

N (c)
AS

. (10)
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FIG. 6. W dependence of the mean weight on the core site of
the active states 〈
core

AS 〉 for � = 1� (black circles), � = �opt =
6� (green squares), and � = 15� (blue triangles). Each point
of the graph is the result of a statistic realized over Nc = 2000
configurations.

Figure 6 shows the W dependence of 〈
core
AS 〉. Once more,

the three curves present a similar progression as W increases.
For small disorder, the mean weight of the active states over
the core site is very small. For W = 0.1� the amplitude of the
three curves ranges in the interval 〈
core

AS 〉 ∈ [10−4%, 10−2%].
Then as W increases, the curves increase to reach different
maxima, all arising in the neighborhood of the optimal dis-
order W = Wopt. For � = 1� the maximum is 〈
core

AS 〉max ≈
7.2%, whereas for � = �opt = 6� the value is 〈
core

AS 〉max ≈
2.4%. Finally for � = 15�, one obtains 〈
core

AS 〉max ≈ 0.5%.
After reaching these maxima, the curves decrease to return to
lower values in the strong disorder limit W � Wopt.

Finally, we have investigated the W dependence of the
mean decay rate 〈γAS〉 of the active states. This quantity is
defined as

〈γAS〉 = 1

Nc

Nc∑
c=1

∑
k∈AS

γ
(c)

k

N (c)
AS

. (11)

Figure 7 illustrates the behavior of 〈γAS〉. Here again, what-
ever �, a quite similar behavior is adopted as W increases.
First, for a weak disorder, the mean decay rate is very small.
For instance, when W = 0.1� the amplitude of the three
curves ranges in the interval 〈γAS〉 ∈ [10−5�, 10−4�]. Nev-
ertheless, as W increases, the curves progressively increase
to reach different maxima all arising in the neighborhood of
the optimal disorder W = Wopt. For � = 1� the maximum
reached is 〈γAS〉max ≈ 3.6 × 10−2�, whereas for � = �opt =
6� the value is 〈γAS〉max ≈ 7 × 10−2�. Finally for � = 15�

one obtains 〈γAS〉max ≈ 4.1 × 10−2�. After reaching these
maxima, the three curves decrease in the strong disorder limit
W � Wopt. For instance, when W = 100� the three curves
present a quite similar amplitude 〈γAS〉 ∼ 10−3�.

IV. DISCUSSION

When compared with what happens in an ordered network,
our results reveal that the disorder drastically improves the

Wopt
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FIG. 7. W dependence of the mean decaying rate of the ac-
tive states 〈γAS〉 for � = 1� (black circles), � = �opt = 6� (green
squares), and � = 15� (blue triangles). Each point of the graph is
the result of a statistic realized over Nc = 2000 configurations.

excitonic absorption in an extended star graph. Therefore,
various properties have been observed.

First, when W > 0, it has been shown that the absorption
process is complete. Whatever the strength of the disorder, an
exciton starting on a peripheral site is always fully trapped at
the core site. This feature clearly contrasts with the incomplete
trapping process observed in an ordered graph [53].

Then it has been shown that the efficiency of the absorption
process strongly depends on the model parameters. Indeed,
the behavior of the mean absorption time 〈τ 〉 in the parameter
space (�,W ) reveals the occurrence of an optimal regime
when W = Wopt and � = �opt with Wopt = �opt ≈ 6�. In
this case, the trapping process is strongly enhanced, and the
absorption time 〈τ 〉 reduces to a minimum approximately
equal to 50�−1. Around this optimal region, the study of
the W dependence of 〈τ 〉 has also revealed the rising of a
more general optimization process. Indeed, whatever �, a
minimization of the absorption time 〈τ 〉 always occurs in the
neighborhood of the optimal disorder W ∼ Wopt.

To understand these behaviors, a study of the active states
properties has been realized. Four quantities have been stud-
ied: their mean number 〈NAS〉, their mean IPR 〈IPRAS〉, their
mean weight on the central trap 〈
core

AS 〉, and their mean decay
rate 〈γAS〉. It has been shown that all these quantities reach a
maximum value when W ∼ Wopt.

To interpret these features, let us characterize the fun-
damental ingredients that govern the exciton dynamics, the
system eigenstates. Indeed, to be absorbed at the core site
(0,0), an exciton initially situated on (�0, s0) has to tunnel
across the network to reach the trap. According to the fun-
damental principles of quantum mechanics, this tunneling
process, which is encoded in the evolution operator, results
from the sum over all the various paths that the exciton
can follow to reach the core site at time t . A “path” de-
fines here a transition through an eigenstate |χk〉 involv-
ing specifically its projections on the initial site 〈�0, s0|χk〉
and on the core site 〈0, 0|χk〉. Consequently, the time evo-
lution of the absorption process strongly depends on the
eigenstates that actively support the exciton delocalization
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to the trap, i.e., the “active states.” Depending on whether
the graph is ordered or disordered, as well as depending on
the strength of the absorption rate �, the properties of the
active states can change and thus generate various regimes of
absorption.

Based on this idea, the scheme of our discussion is simple.
As W increases, we will progressively detail the way the
disorder modifies the system eigenstates. Let us begin with
the case of an ordered graph.

When W = 0, the N1-fold symmetry of the network pro-
duces two kinds of eigenstates. On the one hand, N − 3
degenerate eigenstates are insensitive to the effect of the trap
and exhibit purely real eigenenergies. On the other hand, three
nondegenerate decaying states are sensitive to the trap and
exhibit complex eigenenergies. Due to their extension over the
graph, the three decaying states are the only ones that produce
an excitonic tunneling to the core and that participate in the
trapping process. However, because of their weak weights
on the initial site (�0, s0), these eigenstates do not represent
real “active states”: they govern the dynamics only of a weak
part of the total excitonic population. Indeed, as demonstrated
in our previous work [53], when an exciton starts from
a peripheral site, its dynamics is mainly governed by the
highly degenerate eigenstates, which interfere only on the N1

periphery stars of the network. The resulting interferences
produce a localization of the exciton on its initial peripheral
star, which therefore hinders the propagation to the trap. As
a consequence, the total absorbed population at the core is
limited and reaches a maximum of Pmax

A = 1/N1N2. Note that
with N1 = N2 = 4, one obtains the value Pmax

A = 6.25 × 10−2

as observed in Fig. 2.
If now a weak disorder W = 0+ perturbs the graph, a

different behavior occurs. In this context, the presence of
local defects breaks the symmetry of the network. As a
result, all the degeneracies are raised, and each eigenstate
exhibits a nonzero decay rate. Indeed, due to the disorder,
a spatial restructuring of the eigenstates occurs so that each
state presents a nonvanishing weight on the core site. As a
consequence, each state becomes sensitive to the trap and
acquires a finite lifetime. The excitonic population initially
located at the periphery of the network can thus entirely
transfer to the trap, resulting in a complete absorption process,
Pmax

A = 1.
Nevertheless, in the weak disorder limit, the absorption

process remains inefficient. The reason is quite simple to un-
derstand. When W = 0+, the eigenstates are weakly perturbed
by the disorder so that the graph still keeps the memory of its
properties in the absence of disorder. On the one hand, three
short-lived eigenstates still remain delocalized over the graph
and correspond to the relics of the three decaying states. On
the other hand, N − 3 long-lived eigenstates are still mainly
localized on the peripheral stars of the graph and correspond
to the relics of the degenerate states. Due to their very weak
(but nonvanishing) weight on the central trap, these states
exhibit very small decay rates compared with the three other
short-lived states.

In this context, among the N − 3 long-lived states are the
“active states,” i.e., the eigenstates transmitting the main part
of the excitonic population to the trap. Due to their long-lived
nature, the resulting absorption process varies slowly, and its

time evolution exhibits two phases (as observed in Fig. 2).
First, over a short timescale, the trapped population increases
from zero to 1/N1N2 owing to the action of the three “relic
decaying states.” Then, due to the influence of the long-lived
active states, the absorption process enters in a second phase.
Slowly, the active states transmit the remaining excitonic
population to the trap. As a result, the absorbed population
PA(t ) progressively increases and converges toward unity.

Now, if W increases, the restructuring process induced by
the disorder intensifies. As a result, the absorption efficiency
is strongly affected, and it exhibits a transition depending
on the value of W . First, when W increases the absorption
process is enhanced and the time needed to trap the exciton
decreases until it reaches a minimum. This minimum occurs
in the neighborhood of the optimal value W = Wopt. Second,
when W exceeds this optimal value, the trapping process
progressively loses in efficiency and the absorption time
increases.

Understanding the precise origins of this transition is a very
difficult task since the latter results from the interplay between
different complex mechanisms. However, deeper numerical
investigations of the active states have allowed us to gather
some key information to interpret this phenomenon. To intro-
duce these features, one will realize a simple thing: tracking
the active states for a particular disordered configuration as
a function of W . Of course, with this approach we do not
pretend to be fundamentally exhaustive. However, based on
a simple example, we want here to highlight some typical
mechanisms that could explain the existence of the optimal
disorder. In this context, Fig. 8 shows the results obtained for
a given disordered configuration. On the left part of the figure,
the evolution of the eigenenergies is shown (black curves).
The red curves represent the eigenenergies of the active states
(see color online). On the right part of the figure the spreading
of the active states on the extended star graph is represented
for (a) a weak disorder, (b) an optimal disorder, and (c) a
strong disorder.

In the weak disorder regime, a single active state is present.
The corresponding eigenenergy is located at the center of the
excitonic spectrum in a place that originally contains many
degenerate states when W = 0. As a relic degenerate state,
this active state remains mainly localized on the peripheral
star that initially carries the exciton [see Fig. 8(a)].

When W increases, the restructuring process affecting the
eigenstates strengthens, producing a shift of the eigenenergies.
When W reaches Wopt, the amplitude of the disorder becomes
approximately equal to the width of the excitonic spectral
band known in the absence of disorder 2�

√
N1 + N2 ∼ 5.7�.

In this case, the disorder effect becomes strongly nonpertur-
bative. The restructuring process affecting the eigenstates be-
comes so strong that all the eigenenergies drastically deviate
in the spectrum. As a result, avoided crossings appear which
indicates the emergence of a new phenomenon: the hybridiza-
tion of the system eigenstates. Indeed, owing to the presence
of the disorder, some resonances may arise between states
localized in different regions of the graph. As a consequence, a
complex mixing between different relic eigenstates can occur,
which generates new paths for the exciton. In this context,
as shown in Fig. 8(b), the active states properties evolve:
they become more numerous (three states are detected when
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FIG. 8. Tracking of the active states for one particular configuration of disorder for � = 1�. Here the local defects are preserved and
scaled with respect to the amplitude W . On the left part of the figure, the graph represents in black the evolution of the real eigenenergies ωk as
a function of W . The red curves indicate the energies of the active states. On the right side an illustration of the spatial extension of the active
states is given for three different cases: (a) weak disorder W � Wopt, (b) optimal disorder W = Wopt, and (c) strong disorder W � Wopt. The
size of the balls stands for the weights of the active state on each node whereas the arrow indicates the initial excited site.

W = Wopt), and they better spread over the graph. In addition,
their weight over the core site is enhanced as well as their
widths revealing that they become more sensitive to the trap
(not represented here). In this new dynamical context, the
excitonic transport changes. The cooperative action of the
new active states facilitates the excitonic delocalization from
the excited site to the core of the graph. As a result, the
absorption time strongly decreases and the trapping process
gains in efficiency. At this point, note that all these properties
clearly corroborate the maximization of all the quantities
〈NAS〉, 〈IPRAS〉, 〈
core

AS 〉, and 〈γAS〉 observed when W ∼ Wopt.
Now, if W exceeds Wopt, the hybridization process pro-

gressively vanishes giving rise to another phenomenon: the
so-called Anderson localization [56]. Indeed, in the strong
disorder limit, the local defects become so important that
each eigenstate tends to localize on one particular site. As
a consequence, as shown in Fig. 8(c), the number of active
states decreases and only one active state subsists. Due to
its strong localization on the excited site, this state becomes
weakly sensitive to the trap: its weight on the core site and its
decay rate vanish when W increases (not represented here). In
this context, the exciton remains stuck over a very long time
on its initial site, and its propagation from the periphery to the
core is hindered. As a result, the absorption time drastically
increases, and the trapping process loses its efficiency. Once
again, note that these properties corroborate the limit behavior
observed when W � Wopt for 〈NAS〉, 〈IPRAS〉, 〈
core

AS 〉, and
〈γAS〉.

Therefore, within this simple example we have depicted a
typical scenario explaining how the eigenstates restructuring
induced by the disorder can strongly enhance the absorption
process when W ∼ Wopt. Nevertheless, one last feature still
has to be tackled: when W = Wopt, the absorption process can
be even more optimized if the absorption rate � tends to �opt.
This process gives rise to the occurrence of the optimal region
of absorption as presented in Fig. 3.

The emergence of the optimal region of absorption orig-
inates in the interplay between two phenomena: the positive
restructuring of the eigenstates induced by the disorder and the

occurrence of the so-called superradiance transition [36–39].
To better understand this feature, let us consider the optimal
disorder W = Wopt as a starting point. In this situation, we
know that the restructuring of the eigenstates produces active
states exhibiting a maximal weight over the core of the graph
(see Fig. 6). As a consequence, these states are in their best
predisposition to delocalize the exciton to the trap. Therefore,
if � starts to increase, the sensitivity of these states to the
trap intensifies, which enhances their width (see in Fig. 7
the increasing of 〈γAS〉max when � varies from 1� to �opt).
However, due to the occurrence of a countering phenomenon,
this enhancement exhibits a limit. Indeed, as � increases,
a nonactive state progressively localizes on the trap. As a
consequence, all the active states tend to lose their extension
over the core of the graph (see in Figs. 6 and 5 the decreasing
of 〈
core

AS 〉max and 〈IPRcore
AS 〉max when � increases).

When � < �opt, this localization is not so significant.
The active states then keep improving their interaction with
the trap; i.e., their widths increase with �. However, when
� > �opt, the localization process of the nonactive state is
so strong that the trap starts to behave as a singular site that
almost disconnects from the rest of the graph. In this context,
the beneficial interaction of the active states with the trap
gets hindered, and a segregation occurs in the decay rates
of the eigenstates. On the one hand, the strongly localized
nonactive state becomes superradiant: its decay rate keeps
on increasing with �. On the other hand, the active states
become subradiant: their decay rates decrease with � (see
in Fig. 7 〈γAS〉max, which diminishes when � > �opt). This
segregation process that is arising in the neighborhood of
�opt is the signature of a superradiance transition which
gives rise to the optimal region of absorption observed in
Fig. 3.

V. CONCLUSION

In this paper, a tight binding model was introduced for
studying the dynamics of an exciton moving on a disordered
extended star graph whose central site is occupied by a

012310-8



CONTINUOUS-TIME QUANTUM WALK ON AN EXTENDED … PHYSICAL REVIEW E 101, 012310 (2020)

trap. Quite surprisingly, our work has evidenced the way the
disorder improves the absorption process occurring at the core
of the graph.

First, in a marked contrast with what happens on an or-
dered graph, it has been shown that the absorption process
is always complete on a disordered graph. The origin of this
phenomenon is intimately linked to the symmetry breaking
that affects the system. In this context, all the degenerate states
that originally hinder the excitonic delocalization become per-
turbed so that they can participate to the excitonic transport.
As a consequence, an exciton starting on a peripheral site can
be transferred to the trap, resulting in a complete absorption
process.

Second, we have shown the existence of optimal values
for both the disorder and the absorption rate. When both
parameters are approximately equal to the width of the un-
perturbed excitonic spectrum, the time needed to trap the ex-
citon strongly reduces. This feature results from the interplay
between two complex phenomena. First, when the disorder
becomes optimal, a mixing of several relic eigenstates occurs

which produces new hybrid states. Owing to their spatial
extension, these new hybrid states facilitate the delocalization
of the exciton to the trap, which speeds up the trapping.
Then a complementary improvement can be done when the
absorption rate also reaches its optimal value. In this context,
a superradiance transition arises, a transition that enhances the
sensitivity of the hybrid eigenstates to the influence of the
trap. As a result, the excitonic population reaching the core
of the graph is trapped more rapidly, giving rise to a so-called
superoptimal absorption process.

Naturally, the study introduced in this paper must be
seen as preliminary work that should open complementary
investigations. For instance, an interesting question would be
to determine how the size of the graph may influence the
optimization of the absorption process. In another context, it
would also be wise to reconsider this study with a more real-
istic physical point of view. To do so, considering additional
effects of the excitonic environment, such as exciton-phonon
interactions and optical recombination, would represent the
next logical step of this work.
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