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Analytical treatment for cyclic three-state dynamics on static networks
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Whenever a dynamical process unfolds on static networks, the dynamical state of any focal individual will be
exclusively influenced by directly connected neighbors, rather than by those unconnected ones, hence the arising
of the dynamical correlation problem, where mean-field-based methods fail to capture the scenario. The dynamic
correlation coupling problem has always been an important and difficult problem in the theoretical field of
physics. The explicit analytical expressions and the decoupling methods often play a key role in the development
of corresponding field. In this paper, we study the cyclic three-state dynamics on static networks, which include a
wide class of dynamical processes, for example, the cyclic Lotka-Volterra model, the directed migration model,
the susceptible-infected-recovered-susceptible epidemic model, and the predator-prey with empty sites model.
We derive the explicit analytical solutions of the propagating size and the threshold curve surface for the four
different dynamics. We compare the results on static networks with those on annealed networks and made an
interesting discovery: for the symmetrical dynamical model (the cyclic Lotka-Volterra model and the directed
migration model, where the three states are of rotational symmetry), the macroscopic behaviors of the dynamical
processes on static networks are the same as those on annealed networks; while the outcomes of the dynamical
processes on static networks are different with, and more complicated than, those on annealed networks for
asymmetric dynamical model (the susceptible-infected-recovered-susceptible epidemic model and the predator-
prey with empty sites model). We also compare the results forecasted by our theoretical method with those by
Monte Carlo simulations and find good agreement between the results obtained by the two methods.

DOI: 10.1103/PhysRevE.101.012305

I. INTRODUCTION

Networked cyclic three-state dynamics are frequently used
as important models in the field of ecology [1–3] and soci-
ology [4,5]. Each node in the network is considered to be
in one of the three possible states (e.g., rock, paper, and
scissor) at each moment of time. The selected node change
its state stochastically, from one state (scissor) to another
state (rock), with a probability dependent on the states of
the node itself and its neighbors. Concrete examples include
theoretical models for competing species in ecosystems, the
so-called cyclic Lotka-Volterra model [6–9] or predator-prey
model [10–12]. Models for rumor propagation, popularization
of new technologies and products, and transmission of neural
signals can be casted into the classical susceptible-infected-
recovered-susceptible (SIRS) epidemic model [13,14].

Generally, we can interpret the three states in the context of
various scenarios, ranging from strategies in the rock-paper-
scissors games [15,16], over tree, burning tree, empty site
in the forest-fire model [17,18], to bacterial species adopting
different survival strategies [19–24]. In particular, Sinervo and
Livdy studied territory use and patterns of sexual selection
in male side-blotched lizard populations [22] and found that
the large territories strategy of orange males is defeated by
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the “sneaker” strategy of yellow males, which is in turn
defeated by the mate-guarding strategy of blue males; the
large territories strategy defeats the mate-guarding strategy
to complete the dynamic cycle. The authors of Refs. [19,20]
have investigated the coexistence mechanism among three
populations of Escherichia coli by experiments in vitro and
in vivo, respectively. In these studies, sensitive strains beat re-
sistant strains due to a growth-rate advantage, resistant strains
beat colicinogenic strains also by a growth-rate advantage,
and colicinogenic strains displace sensitive strains by killing
them, these three populations of E. coli also satisfies a cyclic
dynamical relationship.

In the literature of ecology, interest is often focused on
the mechanisms of species coexistence or extinction [25–27],
and that is often focused on the disease breakout or not in
networked epidemiology [28–31], whose dynamics resem-
bles like the phenomenon of phase transition in the field of
statistical physics [32–35]. Most theoretical researches based
on the Lotka-Volterra model, which are used to interpret the
corresponding experiments, were exclusively focused on the
dynamical behavior itself, and did not take into account the
spatial structure or the details of interaction among species
[6,7,24,27,36,37]. Under such scenario, the dynamics of the
model can be regarded as taking place on annealed networks,
where each node has the equal probability to interact with
everyone others.

However, the living space of species has generally a ge-
ographical spatial structure [9,38], which is inappropriately
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FIG. 1. (a) Schematic illustration of the transition events of the cyclic three-states dynamics model. (b) The cyclic Lotka-Volterra model.
(c) The directed migration model. (d) The susceptible-infected-recovered-susceptible epidemic model. (e) The predator-prey model with empty
sites model. For a brief and convenient formulation, in the cyclic three-state dynamics, we use k1, k2, k3 to replace the kl→m in the derivations
of explicit analytical solutions.

represented by annealed networks in the global scale, though
due to the natural factor (wind and rain) and animal behavior
(mobility), long-range interactions among species may fre-
quently appear. To fully understand the picture of the cyclic
interactions among species, it is undoubtedly necessary to
study how cyclic three-state model behaves on static topology.

For a static spatial network, a node transfers its state
(which can be interpreted as information, strategy, disease,
territory dominator, and so on) to other nodes just by a set
of fixed paths. For example, a susceptible individual can only
be infected by its infectious neighbors. Meanwhile, predators
generally use a fixed and the most efficient feeding behavior,
and do not change the home range frequently [39]. That
is to say, the state of each node is related to those of its
neighbors. In this paper, we investigate from coupled ordinary
differential equations over dynamic correlations to explicit
analytical solutions in cyclic three-states dynamics on spatial
static networks. And we will show below that our analytical
solutions, including the value of steady state and phase tran-
sition point, are in good agreement with those by the Monte
Carlo simulations.

The remainder of paper is organized as follows. In Sec. II,
we show the four typical kinds of three-state dynamical mod-
els, the generation of static networks, and other parametriza-
tions to help readers understanding this work easily. In
Sec. III, we present the derivations of the coupled ordinary
differential equations with multiple-state dynamics on static
networks. In Sec. IV, we give the derivations of analytical
solutions for the four different cyclic three-state dynamics on
static networks. Finally, in Sec. V, we discuss the results and
conclude the paper. Details of some mathematical derivations
are contained in the Appendices.

II. MODEL

A. Typical representations of three-state model

The cyclic three-state dynamics model constitutes the
following interactions: three states X , Y , and Z cyclically
dominate each other, that is, X beats Y beats Z beats X ,
see Fig. 1(a) for a graphical illustration. For simplicity and
without loss of generality, we consider two of the simplest

types of interactions in a population, whose outcome is either
only dependent on the state of the node itself, which will be
named as “intrinsic interaction” (e.g., the infected individual
heal to a recovered state), or rely on the states of its neighbors
explicitly, which is termed as “neighbor interaction” (e.g.,
the susceptible individual can be infected by its infectious
neighbors).

We denote Al→m as the total rate of a node which changes
its state l to state m, where l, m ∈ {X,Y, Z}. And we have

Al→m =
{

kl→mam, neighbor interaction,

kl→m, intrinsic interaction,
(1)

where kl→m is the rate of interaction from state l to state
m, and am is the number of state m from the neighbors of
the selected node. Now, four possible dynamical processes
are included in our general model. Specifically, Fig. 1(b)
corresponds to the cyclic Lotka-Volterra model, where all
reaction processes are based on neighbor interactions [6–8].
Figure 1(c) depicts a directed migration model, which charac-
terizes the migration process of animals among three adjacent
habitats (here {X,Y, Z} denote the magnitude of the biomass
on the habitats). If only one neighbor interaction occurs and
the other two are intrinsic interactions [Fig. 1(d)], then we
yield the SIRS model [13] (where Z , X, and Y corresponds
to the states S, I and R, respectively), or forest-fire model [40]
(where Z , X, and Y corresponds to the states of “tree,” “burn-
ing tree,” and “vacant site,” respectively). In Fig. 1(e), there
exist two intrinsic interactions and one neighbor interaction
among {X,Y, Z}, which can be regarded as a predator-prey
model with empty sites [10,41].

B. Static networks generation, stochastic simulation
procedure, and other parameterizations

In this work, we solve analytically the four typical dy-
namical processes on static complex networks with three
different degree distributions: Bimodal distribution P(k) ∼
gδ(k − d1) + hδ(k − d2), where d1 and d2 are the two possible
degree for any node in the network and g

g+h (or h
g+h ) is

the proportion of nodes with degree d1 (or d2), respectively;
Poisson distribution P(k) ≈ exp−〈k〉〈k〉k/k!, where 〈k〉 is the
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average degree of an Erdős-Rényi (ER) random network;
power-law distribution P(k) ∼ k−γ , where γ is the power
exponent of a scale-free(SF) random network. For simplicity,
we currently do not consider the effect of degree-correlation
on the dynamical processes, and therefore use the uncorre-
lated configuration model algorithm presented in Ref. [42] to
generate static networks.

We use the stochastic algorithm in Ref. [43] to simulate the
four dynamical processes on static networks. The simulation
procedure works as follows:

Step 1: Initialize the whole population and set time to zero.
Step 2: Calculate each state’s interaction rate pl . The in-

teraction rate of a node with neighbor interaction is pl = kl ×
kmax. The interaction rate of a node with intrinsic interaction
is pl = kl .

Step 3: Sample the length of this time step from an expo-
nential distribution with parameter λ = ∑

l (pl × L), where L
is the number of subpopulation with state l and λ the total
transition rate.

Step 4: Choose a subpopulation to performing possible
state-transformation with a probability proportional to (pl ×
L). Here, all nodes in the selected subpopulation with a
specified state have the same probability to be selected and
change their states.

Step 5: Randomly select a node i from the selected sub-
population. If the transition event is an intrinsic interaction,
then the event happens deterministically (X → Y or Y → Z
or Z → X , for instance). If the transition event is a neighbor
interaction, then it might happen with a probability of ki/kmax,
where ki is the degree of the selected node. In such case, node
i still needs to take into account the following two steps: (i)
One nearest neighbor j of the node i is randomly chosen; (ii)
if node j is from state Y (Here, we assume that the state of
node i is of state X ), then node i changes its state from X to
Y , else nothing happens.

Step 6: Update the sets of the three types of subpopulation,
and repeat Steps 3–5 until the predetermined time period is
reached.

Unless otherwise explicitly stated, we fix from now on
the total population size as N = 105 (the number of nodes
in the underlying interaction network), the average degree
〈k〉 of the ER networks as 4, and the minimum degree kmin

and the power exponent γ of SF networks as 3 and 2.8,
respectively. We choose d1 = h = 4 and d2 = g = 10 for the
bimodal networks to guarantee that the connection probability
is the same in the two different degrees. The initial proportion
of subpopulation with different states {X,Y, Z} are X = 0.8,
Y = 0.1, and Z = 0.1, respectively. In this study, our key
quantities are the proportion of different types of subpopu-
lations in the steady state and the threshold curved surface of
the coexistence of all states or not.

III. EFFECTIVE DEGREE APPROACH

The effective degree (ED) approach [44–48] (also known
as the approximate master equations [49,50]), taking into
consideration explicitly the dynamic correlations between
directly connected neighbors, is a higher-order degree-based
mean-field approach, which has widely been used in the stud-
ies of binary-states dynamics on networks. We here extend
the ED approach to address multiple-states dynamics. Let us

consider the problem of diversity of species in an ecosystem
[25,26,38,51], wherein n species (states) can be denoted by
Xi(i = 1, 2, · · · , n). The number of nodes of the state Xl ,
whose neighbors’ states are {a1, · · · , an}, can be represented
as [Xl ]{a1,··· ,an}, where ai is the number of state Xi in the
neighborhood of the node with state Xl . Consider an event
that one node with the state Xl changes to the state Xm, the
transition rate of the selected node can be calculated by using
Eq. (1). The key point of the ED approach is to calculating,
beyond the selected node’s state itself, also the variation of the
state transformation of those neighbors of the selected node,
thanks to its state transformation. To be more specific, the
analytical procedure is summarized as follows:

(1) We first calculate the total rate of the new arrival
state Xm, whose value is

∑
{a1,··· ,an} Al→m[Xl ]{a1,··· ,an}, where∑

{a1,··· ,an} means that we sum over all possible ai.
(2) Consider the neighbors’ state information of the se-

lected node, we know that the total rate of state Xs nodes
whose effective degrees are changed by these new arrival state
Xm is

∑
{a1,··· ,an} Al→m[Xl ]{a1,··· ,an}as.

(3) The total number of Xl neighbors of state Xs nodes is∑
{a1,··· ,an}[Xs]{a1,··· ,an}al .
(4) We define Bl→m,s as the rate of one state Xs node

to change its effective degree because of a transition event
that one state Xl node transform to state Xm, and Bl→m,s =∑

{a1 ,··· ,an} Al→m[Xl ]{a1,··· ,an}as∑
{a1 ,··· ,an}[Xs]{a1 ,··· ,an}al

.

With these quantities at hand, the dynamic coupled or-
dinary differential equations in the framework of the ED
approach are given by

d[Xj]{a1,··· ,an}
dt

= −
n∑

i=1

{
[Xj]{a1,··· ,an}Aj→i

}

+
n∑

i=1

{
[Xi]{a1,··· ,an}Ai→ j

}

+
n∑

l=1

n∑
m=1,�=l

{
[(al+1)[Xj]{··· ,(al +1),··· ,(am−1)··· }

− al [Xj]{a1,··· ,an}]Bl→m, j
}
. (2)

It is easy to see that the total number of differential equations
are proportional to kn

max.

IV. ANALYTICAL TREATMENT AND NUMERICAL
SIMULATION OF THE THREE-STATE DYNAMICAL

PROCESSES

In what follows, we present the analytical treatment of
the three-state dynamical processes on static networks. For
convenience, we use k1, k2, k3 to replace the kX→Y , kY →Z , and
kZ→X in the derivations of differential equations.

To begin, by following a randomly chosen edge from X -
state nodes of degree k, we define the probabilities of reaching
an arbitrary node with state X , state Y , and state Z are Pkx1,
(1 − Pkx1)Pkx2, (1 − Pkx1)(1 − Pkx2), respectively. Then, Xabc

can be written as

Xabc = Xk

(
k

a

)
Pa

kx1(1 − Pkx1)k−a

(
b + c

b

)
Pb

kx2(1 − Pkx2)c,
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where Xabc is the number of nodes of the state X , whom in
the mean time have a neighbors with state X , b neighbors
with state Y , and c neighbors with state Z , k = a + b + c is
the total degree of the focal node, and Xk = ∑

k=a+b+c Xabc

is the number of nodes with state X and degree k. Similarly,
by following a randomly chosen edge from nodes of degree
k and with Y state (or Z state), we define the probabilities
of reaching an arbitrary node with state X and state Z node
are Pky1 (or Pkz1) and (1 − Pky1)Pky2 [or (1 − Pkz1)Pkz2], re-
spectively. With these definitions we are able to decouple the
dynamic correlation from directly connected neighbors by the
relationships of

∑
i

( j
i

)
Pi(1 − P) j−ii = jP and

∑
i

( j
i

)
Pi(1 −

P) j−ii2 = j( j − 1)P2 + jP.
By far, the dimensionality of the coupling differential equa-

tions is very high. Here, we use the ED approximate condition
to reduce it by concerning about the properties of the system
in the steady state. In particular, the analytical procedure can
be performed as follows:

(1) In a static network, we calculate the probability of
connecting an arbitrary X -state node by an X -state node i,
Pkx1, which is equivalent to calculate the probability of each
neighbor of the node i to becoming state X .

(2) The effective degree approach just consider explicitly
the dynamic correlations between directly connected neigh-
bors (see Sec. III). Here, for one nearest neighbor j of the node
i, the probability of changed its state just is concerned with
neighbors’ state of node j itself under the ED approximate
condition.

(3) That is to say, the value Pkx1 is thought to be inde-
pendent of the degree of node i in the framework of the ED
approach.

So, we can simplify the values of Px1, Px2, Py1, Py2, Pz1, Pz1,
which can be approximated as [47]

P1D 	 P2D 	 · · · 	 PkD 	 · · · 	 PkmaxD = PD, (3)

where D ∈ {x1, x2, y1, y2, z1, z2}.
Since the interaction structure among the nodes is fixed

in the static networks, the total number of M-state neighbors
of all L-state nodes equals to the total number of L-state
neighbors of all M-state nodes, that is∑

k

∑
k=a+b+c

bXabc =
∑

k

∑
k=a+b+c

aYabc,

∑
k

∑
k=a+b+c

cXabc =
∑

k

∑
k=a+b+c

aZabc,

∑
k

∑
k=a+b+c

cYabc =
∑

k

∑
k=a+b+c

bZabc,

which always holds and is independent on the type of dynam-
ical processes. Plugging Eq. (3) into the above equation, we
yield ∑

k kXk∑
k kYk

= Py1

Px2(1 − Px1)
,

∑
k kXk∑
k kZk

= Pz1

(1 − Px1)(1 − Px2)
, (4)

∑
k kYk∑
k kZk

= Pz2(1 − Pz1)

(1 − Py1)(1 − Py2)
.

TABLE I. All possible event in an interval time dt of the
cyclic three-state dynamic model on a static network. For the cyclic
Lotka-Volterra model, (AX→Y , AY →Z , AZ→X ) = (bk1, ck2, ak3); for
the directed migration model, (AX→Y , AY →Z , AZ→X ) = (k1, k2, k3);
for the susceptible-infected-recovered-susceptible epidemic model,
(AX→Y , AY →Z , AZ→X ) = (k1, k2, ak3); for the predator-prey with
empty sites model, (AX→Y , AY →Z , AZ→X ) = (k1, ck2, ak3). λ =∑

abc(XabcAX→Y + YabcAY →Z + ZabcAZ→X ).

Event Probability �X �Y �[XY ] �[XZ] �[Y Z]

Xabc → Yabc XabcAX→Y /λ −1 +1 a − b −c c
Yabc → Zabc YabcAY →Z/λ 0 −1 −a a b − c
Zabc → Xabc ZabcAZ→X /λ +1 0 b c − a −b

At any time, one happened event will cause a small perturba-
tion among the number of nodes with different states as well
as the edges connecting different states in the network. When
the system evolves to its steady state, the statistical quantities,
such as the number of nodes with X state and the number
of edge [XY ] (connecting a pair of nodes with state X and
Y ), are in dynamic equilibrium. We denote �L and �[LM],
where L, M ∈ {X,Y, Z}, as the variation of the number nodes
with L-state and that of the [LM] edge in the time interval dt
(where only one event occurs) in the population. All possible
values of these quantities on a static network are summarized
in Table I.

Combining the detailed balance condition of nodes’ state
and edge’s state in the stationary state with Eqs. (3) and (4),
we can obtain the explicit analytical solution in cyclic three-
states dynamics on spatial static networks.

A. The cyclic Lotka-Volterra model

We first consider the cyclic Lotka-Volterra model [6–8],
which include all the three neighbor interaction processes
as shown in Fig. 1(b). In Fig. 2, it is obvious that there
is an excellent agreement between the numerical solutions
of Eqs. (1) and (2) and the stochastic simulation results,
for the time series of the proportion of different types of
subpopulations, both during the relaxation process and in the
steady state.

Next, we derive the analytical solutions in static networks
by solving the dynamic correlation problem in the steady
state. Consider the detailed balance condition of nodes’ state
in the stationary state, 〈�X 〉 = 〈�Y 〉 = 0, we have

∑
abc

Xabcbk1 =
∑
abc

Zabcak3 =
∑
abc

Yabcck2,

where
∑

abc means summing over all subscripts. Plugging
Eq. (3) into the above equation, we yield

∑
k k1kXk∑
k k3kZk

= Pz1

Px2(1 − Px1)
,

∑
k k1kXk∑
k k2kYk

= (1 − Py1)(1 − Py2)

Px2(1 − Px1)
, (5)

∑
k k3kZk∑
k k2kYk

= (1 − Py1)(1 − Py2)

Pz1
.
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FIG. 2. Comparison of the results obtained by Monte Carlo simulations and by the effective degree approach for the cyclic Lotka-Volterra
model on static networks with different degree distributions. The fraction of X -state nodes, ρx , as a function of the time are explicitly shown
for comparison. Thick blue solid lines are the numerical solutions of Eqs. (1) and (2) and thin gray lines are 100 independent runs of simulation
results. Parameters: k1 = 0.3, k2 = 1.0, k3 = 0.7.

After eliminating Xk , Yk , and Zk from Eqs. (5) and (4), we
readily obtain the value of Px2, the relationship of Py1 and Py2,
and the relationship of Pz1 and Pz2 as

Px2 = k3/(k1 + k3),

(1 − Py1)(1 − Py2)k2 = Py1k1, (6)

Pz2(1 − Pz1)k2 = Pz1k3.

Equation (5) means that the number of subpopulation states
(i.e., the amount of X , Y , and Z in the whole population) is
not time-varying in the steady state. In fact, when the system
is in its steady state, the degree distribution of nodes with
different states is also invariant with time, predicted by the
heterogeneous mean-field theory [52]. Combining this point
and Eq. (6), we obtain

Xk

Zk
= k3

k1

Pz1

Px2(1 − Px1)
,

Xk

Yk
= Py1

Px2(1 − Px1)
, (7)

Yk

Zk
= k3

k1

Pz1

Py1
.

It is interesting that the right-hand sides of Eq. (7) are indepen-
dent on degree k. From this fact, we can assert that the degree
distribution of the nodes in the subpopulation is the same
as the degree distribution of underlying interaction network
and, surprisingly, the number of nodes with different states
is independent on the degree distribution of the interaction
network structure in the steady state, which is shown in
Appendix A and Fig. 3, respectively.

Finally, considering the detailed balance conditions of
edge’s state, 〈�[XY ]〉 = 〈�[XZ]〉 = 〈�[Y Z]〉 = 0, we have

∑
abc

[(a − b)bXabck1 − acYabck2 + baZabck3] = 0,

∑
abc

[−cbXabck1 + acYabck2 + (c − a)aZabck3] = 0, (8)

∑
abc

[cbXabck1 + (b − c)cYabck2 − baZabck3] = 0.

Then, we can obtain the values of Px1, Py1, and Pz1 as

Pz1 = k2

k1 + k2 + k3

∑
k kXk (k − 2)∑
k kXk (k − 1)

,

Px1 =
∑

k kXk∑
k kXk (k − 1)

+ k2

k1 + k2 + k3

∑
k kXk (k − 2)∑
k kXk (k − 1)

, (9)

Py1 = k2

k1 + k2 + k3

∑
k kXk (k − 2)∑
k kXk (k − 1)

.

Detailed analytical derivations are supplemented in the
Appendix B. Combining the relationship of Xk + Yk + Zk =
P(k)N , where P(k) is the degree distribution of the interaction
network with Eqs. (7) and (9), we yield the degree distribution
of subpopulation with different states as

(Xk, Yk, Zk ) = P(k)N

k1 + k2 + k3
(k2, k3, k1),

and the fixed point of the whole population as

(ρx, ρy, ρz ) = 1

k1 + k2 + k3
(k2, k3, k1), (10)

where ρx = 1
N

∑
k Xk is the proportion of state X subpopu-

lation. Once again, our analytical solutions verify that the
degree distribution of the nodes in different subpopulation
is the same as that of the static network (see Appendix A),
and the fraction of the nodes with different states is indepen-
dent on the structural properties of the underlying interaction
network in the steady state (see Fig. 3). Particularly, it is
interesting that this fixed point, indicated by Eq. (10), is con-
sistent with previously reported results in annealed network
[6,27,53], and that the number of X -state subpopulation is
inversely proportional to both the outflow rate k1 and the in-
flow rate k3, and proportional to the rate k2 which is indirectly
related to state X .

In Fig. 3, the simulation results (scatters) are averaged over
100 independent runs and the analytical solutions of Eq. (10)
are shown by wire frame and line. From Fig. 3(a), we can
see that the analytical solutions match quite well with those
obtained from Monte Carlo simulations in the steady-state
region on various networks with different degree distributions.
From Fig. 3(b), we can see that there is a large fluctuation
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FIG. 3. Comparison of the results obtained by Monte Carlo sim-
ulations and by the analytical solutions from Eq. (10) for the cyclic
Lotka-Volterra model on static networks with different degree distri-
butions. (a) The proportion of X -state subpopulation ρx is plotted as
a function of the interaction rate k1 and the interaction rate k3. The
olive wire frame stands for the analytical solutions, while black, red,
and blue circle scatters are simulation results for ER, bimodal, and
SF networks, respectively. Parameters: k2 = 1.0. (b) The proportion
of X -state subpopulation ρx is plotted as a function of the interaction
rate k1. Solid lines are analytical solutions, while square, circle,
and triangle scatters are simulation results for ER, bimodal, and SF
networks, respectively. Parameters: k2 = 1.0, k3 = 1.0. Simulation
results are averaged over 100 independent runs.

and the simulation result is quite below the analytical result
at k1 = 0.1 in the bimodal network. For k1 = 0.1, we can
calculate the proportion of Z-state subpopulation ρz ≈ 0.048
(very small) from Eq. (10). Because of the value of ρz is too
small, the system may likely enter into the absorbing state
(0, 1, 0), whose possibility is dependent on the network
structure. In particular, for our 100 independent runs in the
bimodal network with k1 = 0.1, there are about 78 times
entering into the absorbing state. Basically, our theoretical
solutions for the cyclic Lotka-Volterra dynamic model on
static networks match quite well with those obtained from
Monte Carlo simulations.

B. The directed migration model

Now, we investigate another model with dynamical sym-
metry, the simple directed migration model mimicking the
migration of animals among three adjacent islands, which
does not include neighbor interaction process, as reflected in
Fig. 1(c).

In this situation, it is not necessary to define the con-
nectivity probabilities among nodes with different states.
We just need one condition, the number and the degree
distribution of different subpopulation are invariant with
time when the system is in its steady state, to derive
the properties of the dynamical system. The stable condi-
tion is formulated as

∑
k=a+b+c Xabck1 = ∑

k=a+b+c Zabck3 =∑
k=a+b+c Yabck2. From it one can easily obtain

Xk

Yk
= k2

k1
,

Xk

Zk
= k3

k1
,

Yk

Zk
= k3

k2
, (11)

where the right-hand sides of these equations are also indepen-
dent on the structural properties of the underlying interaction
network.

Combine the trivial conservation condition Xk + Yk + Zk =
P(k)N with Eq. (11), we find that the degree distributions of
the nodes in different subpopulation satisfy

(Xk, Yk, Zk ) = P(k)N
1
k1

+ 1
k2

+ 1
k3

(
1

k1
,

1

k2
,

1

k3

)
,

and the fixed point of the whole population is

(ρx, ρy, ρz ) = 1
1
k1

+ 1
k2

+ 1
k3

(
1

k1
,

1

k2
,

1

k3

)
. (12)

From the analytical solutions Eqs. (12) and (10), we find
that there are some common grounds between the directed
migration model and the cyclic Lotka-Volterra model on
static networks. Specifically, in the steady state, the degree
distribution of the nodes in different subpopulation is the same
as that of the original network of interaction (see Appendix A)
and the amount of subpopulation with different states are
independent on the structural properties of the underlying
network. Nevertheless, in the directed migration model, the
number of X -state subpopulation in the stationary state is
inversely proportional to the outflow rate k1, and proportional
to the inflow rate k3 and the rate k2, in contrast to the case of
the cyclic Lotka-Volterra model.

C. The susceptible-infected-recovered-susceptible
epidemic model

We next investigate the susceptible-infected-recovered-
susceptible epidemic model [13,14] (equivalent to the forest-
fire model [40]), which is a dynamical process containing both
neighboring interaction and intrinsic transitions, as displayed
in Fig. 1(d). In Fig. 4, it is obvious that the numerical solutions
of Eqs. (1) and (2) for the time series of nodes with different
states are in good agreement with those obtained from com-
puter simulations.

To obtain the analytical solutions, we first consider the
condition that the amount of subpopulation with different
state and the degree distribution of the nodes in each
subpopulation are not time-varying in the steady state, i.e.,
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FIG. 4. Comparison of the results obtained by Monte Carlo simulations and by the effective degree approach for the SIRS model on static
networks with different degree distributions. The fraction of X -state nodes as a function of the time are explicitly shown for comparison. Thick
blue solid lines are the numerical solutions of Eqs. (1) and (2) and thin gray lines are 100 independent runs of simulation results. Parameters:
k1 = 0.3, k2 = 1.0, k3 = 0.7.

∑
k=a+b+c Xabck1 = ∑

k=a+b+c Zabcak3 = ∑
k=a+b+c Yabck2,

and then we can obtain

Xk

Zk
= k3

k1
kPz1,

Xk

Yk
= k2

k1
,

Zk

Yk
= k2

k3

1

kPz1
. (13)

From Eq. (13), we find that the degree distribution of the
X -state subpopulation is the same as that of the Y -state
subpopulation, while they are different from that of the Z-state
subpopulation (see Appendix A). Then, if we know the value
of Pz1, then the above quantities can be solved exactly.

We combine Eqs. (13) and (4), where Eq. (4) is indepen-
dent of the dynamical processes, to eliminate Yk and Zk , and
obtain three relationships as

k1

k3
=

∑
k kXk∑
k Xk

(1 − Px1)(1 − Px2),

k1

k2
= Px2(1 − Px1)

Py1
, (14)

k3

k2
=

∑
k Xk∑

k kXk

Pz2(1 − Pz1)

(1 − Py1)(1 − Py2)Pz1
.

To precede, we take into account the detailed balance
conditions of edge’s state in the steady state, 〈�[XY ]〉 =
〈�[XZ]〉 = 〈�[Y Z]〉 = 0, to obtain the following additional
three relationships:∑

abc

[(a − b)Xabck1 − aYabck2 + baZabck3] = 0,

∑
abc

[−cXabck1 + aYabck2 + (c − a)aZabck3] = 0, (15)

∑
abc

[cXabck1 + (b − c)Yabck2 − baZabck3] = 0.

After further simplifications, we find that Pz1 has to satisfy the
quadratic equation

AP2
z1 + BPz1 + C = 0, (16)

through which one can easily obtain the following self-
consistent equation of ρk as

a1ρ
2
k + a2ρk + a3 = 0. (17)

The derivation of Eqs. (16) and (17) are given in Appendix C,
and the coefficients A, B, C, a1, a2, and a3 as a function of Xk

are as follows:

A =
[∑

k Xk (k − 1)∑
k Xk

(
k3

k2
+ k3

k1

)] ∑
k

Xk (k − 1),

B =
[

3+k3 + k1

k2
+ k2

k1
− k3

k1

∑
k Xk (k − 1)∑

k Xk

] ∑
k

Xk (k − 1),

C =
[ ∑

k Xk∑
k Xk (k − 1)

k1 + k2 + k3

k3
−k2 + k1

k1

] ∑
k

Xk (k − 1),

a1 = A

(
k1

k3k

)2

− B
k1

k3k

(
1 + k1

k2

)
+ C

(
1 + k1

k2

)2

,

a2 = B
k1

k3k
− 2C

(
1 + k1

k2

)
,

a3 = C.

The convergence problem of nonlinear equations with k
dimensions in Eqs. (17) is difficult for us to obtain exact
solutions. Fortunately, we can use an invariant to reduce the
dimensions from k to one. Now we calculate the fraction of
X -state subpopulation ρx in the steady state as follows: (i)
Denote the parameter z =

∑
k Xk∑

k Xk (k−1) ; (ii) Give any z ∈ (0, 1],
we calculate the ρk by Eqs. (17) and get a new z′; (iii)
Compare the absolute value of z′ − z, the value zero of z′ − z
is the solution. In Fig. 5, the simulation results which are
shown by scatters are averaged over 100 independent runs
and the analytical solutions of Eq. (17) are denoted by wire
frame and line. It is obvious that the results from the analytical
solution match quite well with those obtained from Monte
Carlo simulations for the SIRS epidemic model on various
static networks with different degree distributions.

In annealed networks, the steady-state solution of the SIRS
model can be exactly mapped to that of the SIS model by
rescaling the density of infected individuals (X -state nodes)
with the immunity decay rate (the interaction rate k2) [54],
and all the critical properties of the SIRS model are the same
as the SIS model (independent on k2) [40]. However, on static
networks, the steady-state solution of the SIRS model, i.e.,
Eq. (17), is more complicated than that of the SIS model in
Ref. [47], and we will show below that the threshold curve is
not independent on the interaction rate k2.
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FIG. 5. Comparison of the results obtained by Monte Carlo simulations and by the analytical solutions from Eq. (17) for the SIRS model on
static networks with different degree distributions. (a–c) The proportion of X -state subpopulation ρx is plotted as a function of the interaction
rate k1 and the interaction rate k3. The wire frame stands for the analytical solutions, while circle scatters are simulation results. Parameters:
(a) ER network, (b) bimodal network, (c) SF network, (a–c) k2 = 1.0. (d) The proportion of X -state subpopulation ρx is plotted as a function
of the interaction rate k1. Solid lines are analytical solutions, while square, circle, and triangle scatters are simulation results for ER, bimodal,
and SF networks, respectively. Parameters: k2 = 1.0, k3 = 1.0. Simulation results are averaged over 100 independent runs.

The root ρk = Xk/Nk = 0 corresponds to the case of all
Z-state nodes in the network, which is the absorbing state
(0, 0, 1) and always a solution. A stationary solution for
the coexistence of all the X , Y, and Z states in the system is
obtained when Pz1 has a nontrivial solution in the interval 0 <

Pz1 � 1. We denote the left-hand side of Eq. (23) by f (Pz1).
It is easy to see that Pz1 = 0 is a trivial solution of Eq. (16).
Hence, it is easy to realize that, on uncorrelated static random
networks, the threshold curve surface for the coexistence

of all states, i.e., indicated by solving d[ f (Pz1 )]
dPz1

|
Pz1=0

= 0, is

given by

〈k〉
〈k2〉 − 〈k〉 = k3(k1 + k2)

k1(k1 + k2 + k3)
. (18)

It is clear that the threshold curve surface Eq. (18) is not
independent on the interaction rate k2 on static networks,
while it does depend on the interaction rate k2 on annealed
networks [54]. Remarkably, our results also verify the previ-
ous results of some special cases. For instance, in the case of
random regular network [55], P(k) = δ(k − k0), the solution

of Eq. (18) reads as λ(γ ) = 1+γ

k−2+γ (k−1) , which is consistent
with the result in Ref. [14]. What is more, as the interaction
rate k2 → ∞, the SIRS epidemic model degenerates into
the SIS epidemic model, and the solution of Eq. (18) can
be rewritten as λ = 〈k〉

〈k2〉−〈k〉 , which is consistent with the
result in Refs. [47,56]. Besides, as the interaction rate k2 = 0,
the SIRS epidemic model will degenerates into the classical
SIR epidemic model, for which the solution of Eq. (18) is
λ = 〈k〉

〈k2〉−2〈k〉 , consistent with the finding in Refs. [44,54].
(Note that here we have used λ = k3/k1 and γ = k2/k1

for a clear comparison with previously obtained results in
Refs. [14,44,47,54,56]).

We use the quasistationary method introduced in Ref. [57],
which permits to overcome the difficulties in simulating finite
size systems with absorbing states, to simulation the threshold
of phase transition on static networks. In Fig. 6, we plot the
threshold curves for fixed k2 = 1.0 against network size N
and show that, with the increase of the size of ER random net-
works, the threshold curves estimated by the quasistationary
simulation [58,59] move closer and closer to the theoretical
values predicted by Eq. (18).
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FIG. 6. Phase diagram of the SIRS model on ER random net-
works with different network size N and 〈k〉 = 4. The coexistence
phase of X -Y -Z and the no-coexistence phase are separated by
the threshold curves from the quasi-stationary simulation method
(scatters with line to guide the eye) and the analytical solutions of
Eq. (18) as k3 = k1(k1+1)

3k1+4 (thick solid line). Parameters: k2 = 1.0.

D. The predator-prey with empty sites model

In the last case, we investigate another model with dy-
namical asymmetry, the predator-prey with empty sites model
[10,41], which include one intrinsic transition process and two
neighboring interaction processes, as illustrated in Fig. 1(e).
In Fig. 7, it is shown that the numerical solutions of Eqs. (1)
and (2) for the time series of the fraction of subpopulation
are in good agreement with those obtained from computer
simulations.

In a similar way as in the analysis of the above three-state
models, considering the number of and the degree distribution
the nodes in each subpopulation are not time-varying in the
steady state, we have

Xk

Zk
= k3

k1
kPz1,

Xk

Yk
= k2

k1
k(1 − Py1)(1 − Py2), (19)

Yk

Zk
= k3

k2

Pz1

(1 − Py1)(1 − Py2)
.

From Eq. (19), we can find that the degree distribution of
the Y -state subpopulation is the same as that of the Z-state
subpopulation, while they are different from that of the X -state
subpopulation (see Appendix A). We combine Eqs. (19) and
(4) to eliminate Yk and Zk , and obtain the following equations

k1

k3
=

∑
k kXk∑
k Xk

(1 − Px1)(1 − Px2),

k1

k2
=

∑
k kXk∑
k Xk

(1 − Py1)(1 − Py2)(1 − Px1)Px2

Py1
, (20)

k3

k2
= Pz2(1 − Pz1)

Pz1
.

As before, considering the detailed balance condition of
edge’s state in the steady state, 〈�[XY ]〉 = 〈�[XZ]〉 =
〈�[Y Z]〉 = 0, we obtain additional three relationships as

∑
abc

[(a − b)Xabck1 − acYabck2 + baZabck3] = 0,

∑
abc

[−cXabck1 + acYabck2 + (c − a)aZabck3] = 0, (21)

∑
abc

[cXabck1 + (b − c)cYabck2 − baZabck3] = 0.

After further simplifications, we find that Pz1 has to satisfy the
quadratic equation

A′P2
z1 + B′Pz1 + C′ = 0. (22)

By using the auxiliary parameter z =
∑

k Xk∑
k Xk (k−1) , the coeffi-

cients A′, B′, and C′ as a function of Xk can be given as follows:

A′ =
[(

1 + k3

k2

)
1

z

] ∑
k

Xk,

B′ =
[
−

(
2 + k3

k2

)
1

z
+ 1 + k1

k3

(
1 + k3

k2

)

−k1

k2

(
2 + k3

k2

)] ∑
k

Xk,

C′ =
{

z

[
k1

k3
−k1

k2

(
1 + k1

k3

)]
+1

z
−

(
1 + k1

k3
− k1

k2

)} ∑
k

Xk .
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FIG. 7. Comparison of the results obtained by Monte Carlo simulations and by the effective degree approach for the predator-prey with
empty sites model on static networks with different degree distributions. The fraction of X -state nodes as a function of the time are explicitly
shown for comparison. Thick blue solid lines are the numerical solutions of Eqs. (1) and (2) and thin gray lines are 100 independent runs of
simulation results. Parameters: k1 = 0.3, k2 = 1.0, k3 = 0.7.
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FIG. 8. Comparison of the results obtained by Monte Carlo simulations and by the analytical solutions from Eq. (23) for the predator-prey
with empty sites model on static networks with different degree distributions. (a–c) The proportion of X -state subpopulation ρx is plotted
as a function of the interaction rate k1 and the interaction rate k3. The wire frame stands for the analytical solutions, while circle scatters
are simulation results. Parameters: (a) ER network, (b) bimodal network, (c) SF network, (a–c) k2 = 1.0. (d) The proportion of X -state
subpopulation ρx is plotted as a function of the interaction rate k1. Solid lines are analytical solutions, while square, circle, and triangle
scatters are simulation results for ER, bimodal, and SF networks, respectively. Parameters: k2 = 1.0, k3 = 1.0. Simulation results are averaged
over 100 independent runs.

From Eq. (22), we yield the following self-consistent equa-
tions of ρk:

a′
1ρ

2
k + a′

2ρk + a′
3 = 0. (23)

Where the coefficients a′
1, a′

2, and a′
3 can be given as follows:

a′
1 = A′

[
C′zk + k1

k3
(1 − z)

]2

+
[

k(1 − z) − k1

k3
+ B′kz

]

×
[

(1 − z)

(
C′k − k1

k3
B′

)
− k1

k3
C′

]
,

a′
2 = −2A′C′zk

[
C′zk + k1

k3
(1 − z)

]

+ (1 − z)[k(1 − z) + B′kz]

[
k1

k3
B′ − 2C′k

]

+ k1

k3
C′k[2 + (B′ − 2)z],

a′
3 = A′(C′zk)2 + C′k(1 − z)[k(1 − z) + B′kz].

We calculate the fraction of X -state subpopulation ρx in the
steady state as follows: (i) Give any z ∈ (0, 1], we calculate
the ρk by Eqs. (23) and get a new z′; (ii) Compare the absolute
value of z′ − z, the value zero of z′ − z is the solution. The
results are summarized in Fig. 8.

In a similar way as in the analysis of the SIRS model, we
denote the left-hand side of Eq. (22) by h(Pz1). Considering
the equality d[h(Pz1 )]

dPz1
|
Pz1=0

= 0, we are able to find the threshold

curve surface for the coexistence of all three states in the
predator-prey with empty sites model for uncorrelated static
random networks:

1 +
[

k1

k3
− k1

k2

(
1 + k1

k3

)]( 〈k〉
〈k2〉 − 〈k〉

)2

−
(

1 + k1

k3
− k1

k2

) 〈k〉
〈k2〉 − 〈k〉 = 0. (24)

In Fig. 8, the simulation results which are displayed by
scatters are averaged over 100 independent runs and the
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FIG. 9. Phase diagram of the predator-prey with empty sites
model on static ER random networks with different network size N
and 〈k〉 = 4. The coexistence phase of X -Y -Z and the no-coexistence
phase are separated by the threshold curves from the quasi-stationary
simulation method (scatters with line to guide the eye) and the
analytical solutions of Eq. (24) as k3 = k1(k1+3)
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Parameters: k2 = 1.0.

analytical solutions of Eq. (23) are denoted by wire frame and
line. We can see that, in bimodal and ER random networks,
the results from the analytical solution match well with those
obtained from Monte Carlo simulations for the predator-prey
with empty sites model. However, in SF random networks,
a visible discrepancy of ρx between the simulations and
analytical solutions can be observed.

The reason is attributed to the extent of accuracy the ED ap-
proximate method Eq. (3), which just considers the dynamic
correlation between the nearest neighbors, whose accuracy
will decrease in the heterogeneous networks. In Fig. 9, we
plot the threshold curve for fixed k2 = 1.0 against network
size N of ER random networks, and we can see that the
accuracy of the threshold curves of our method matches quite
well with the results from the quasi-stationary simulations. We
believe that the accuracy of effective degree approach for the
prediction of the fraction of different states in the steady state
and the threshold curved surface will be promoted further by
taken into consideration of higher-order dynamic correlation
in SF random networks.

V. CONCLUSION AND DISCUSSION

In summary, with the aid of the effective degree approx-
imation method we have addressed the dynamic correlation
problem of nearest neighbors’ states of typical three-state
dynamical processes unfolding on static networks, includ-
ing the cyclic Lotka-Volterra dynamics, the directed migra-
tion dynamics, the forest-fire (or SIRS) dynamics, and the
predator-prey with empty sites dynamics. We focused mainly
on the relaxation behavior as well as the extinction threshold
of different states in the system. By analyzing the coupled
ordinary differential equations and employing the statistical
properties of the systems in the steady state, we are able to

obtain explicitly the analytical solutions for the four typical
dynamics.

Particularly, the threshold curved surface for each three-
state dynamical model can be calculated as a corollary of the
propagation sizes of the states. In the cyclic Lotka-Volterra
model, we found that the macroscopic behaviors on static net-
works are the same as those on annealed networks, including:
(1) The fraction of all the three states will oscillate damply to a
fixed point both on static and annealed networks with identical
degree distribution; (2) The solution of the fixed point is
identical between static network and annealed network; (3)
There are no phase transition for the cyclic Lotka-Volterra
dynamical process on both static and annealed networks. For
the directed migration model (in which the three states are of
rotational symmetry as in the case of cyclic Lotka-Volterra
model), we also found that the macroscopic behaviors on
static networks are the same as those on annealed networks.
We therefore speculate that dynamical symmetry plays an
important role against the consistency between the outcomes
of dynamical processes taking place on static and annealed
networks.

In asymmetric dynamical model, i.e., the SIRS epidemic
model and the predator-prey with empty sites model, we
derived the self-consistent equations of the fraction of dif-
ferent states in the steady state and the threshold curved
surface, and found that the results on static networks are more
complicated than those on their annealed counterparts. For the
SIRS epidemic model, there are some important differences
between the outcomes of the dynamical process carried out
on static networks and annealed networks, including: (1) The
steady-state solution of the SIRS model on static networks
cannot be mapped to that of the SIS model by rescaling
the density of infected individuals (state X nodes) with the
immunity decay rate (the interaction rate k2); (2) the threshold
curve surface is not independent on the interaction rate k2,
specifying the rate of recovered individuals getting back to
susceptible ones.

It is worth pointing out that, for all the time series of the
propagating size, the steady-state solution of the propagating
size, or the threshold curve surface, the results forecasted
by our theoretical analysis are in good agreement with those
by Monte Carlo simulations, expect for the case of hetero-
geneous networks. However, we believe that the accuracy
of propagating size and threshold of the three-state model
on static, heterogeneous network of interaction can be fur-
ther promoted by taken into account higher-order dynamic
correlation.

For equilibrium three-state dynamics, our theoretical anal-
ysis captures essential elements on degree-uncorrelated static
networks (not arbitrary network structure) with arbitrary de-
gree distributions. And our analysis will provide meaning-
ful guidance for future researches. On one hand, dynamical
processes on degree-correlated networks, directed networks,
weighted networks, and activity-driven networks can be con-
sidered to approximate the dynamics of real complex systems.
On the other hand, our approach can also be conveniently
extended to nonequilibrium dynamical models on networks,
such as three-state oscillators [60,61] and driven Potts models
[62] where the state of each node is similarly dependent on
its neighbors.
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FIG. 10. The degree distributions of different subpopulations obtained by one Monte Carlo simulation for the four kinds of models on static
networks with different degree distributions at time t = 200 for comparison. Parameters: the top three panels are for the cyclic Lotka-Volterra
model, the second row panels are for the directed migration model, the third row panels are for the SIRS model, and the bottom three panels
are for the predator-prey with empty sites model; the left column panels are for ER networks with average degree 〈k〉 = 4, the middle column
panels are for bimodal networks with d1 = h = 4 and d2 = g = 10, and the right column panels are for SF networks with the power exponent
γ = 2.8. The interaction rates are k1 = 0.3, k2 = 1.0, and k3 = 0.7, respectively.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 11705147 and
No. 11975111).

APPENDIX A: DEGREE DISTRIBUTION OF THE NODES
AMONG DIFFERENT SUBPOPULATIONS

In this section, we measure the degree distribution of
the nodes in different subpopulations and also in the whole

population for the four kinds of dynamical models on typical
complex networks.

From Figs. 10(a)–10(f), we can see that, for the cyclic
Lotka-Volterra model and the directed migration model, the
degree distribution of the nodes in different subpopulation in
the steady state are the same as that of the underlying network
of interaction. From Figs. 10(g)–10(i), we can see that, for
the forest-fire dynamical model, the degree distribution of
X -state subpopulation is the same as that of Y -state subpop-
ulation, approximately equal to that of the original network,
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and different from Z-state subpopulation in the steady state.
From Figs. 10(j)–10(l), we can see that, for the predator-prey
with empty sites model, the degree distribution of X -state
subpopulation in the steady state is different from that of Y -

state subpopulation, that of Z-state subpopulation, and that of
the original network, while the degree distribution of Y -state
subpopulation is the same as that of Z-state subpopulation in
the steady state.

APPENDIX B: DERIVATION OF EQUATION (9)

Here, we show detailed derivations to obtain Eq. (9). First, using the relationships of
∑

i

( j
i

)
Pi(1 − P) j−ii = jP and∑

i

( j
i

)
Pi(1 − P) j−ii2 = j( j − 1)P2 + jP, we get∑

k

∑
k=a+b+c

cYabck2(−c + b) =
∑

k

k2Yk (1 − Py2)k(Py1 − 1)[2Py2(k − 1)(Py1 − 1) − (k − 1)Py1 + k].

And then, combining the relationships of (1 − Py1)(1 − Py2)k2 = Py1k1 in Eq. (6) and Xk
Yk

= Py1

Px2(1−Px1 ) in Eq. (7), we obtain

∑
k

∑
k=a+b+c

cYabck2(−c + b) =
∑

k

k1XkPx2(Px1 − 1)k

[
(k − 1)

(
1 + 2k1

k2

)
Py1 + (2 − k)

]
.

After doing some algebra, Eq. (8) can be rewritten as a set of linear equations,∑
k

kXk[(1 + Px2)(k − 1)Px1 − (kPx2 − Px2 + 1) − (k − 1)Py1 + (k − 1)Pz1k3/k2] = 0,

∑
k

kXk[(Px2 − 1)(1 − Px1)(k − 1) + (k − 1)Py1 + (k − 2) − Pz1(k − 1)(2 + k3/k2)] = 0,

∑
k

kXk[(1 − Px2)(k − 1)(1 − Px1) − (k − 1)Pz1k3/k2 + (k − 2) − Py1(k − 1)(1 + 2k1/k2)] = 0,

with the augmented matrix,⎡
⎢⎣

(1 + Px2)Q2 −Q2
k3
k2

Q2 Q1 + Px2Q2

(1 − Px2)Q2 Q2 −(
2 + k3

k2

)
Q2 Q1 − Px2Q2

(Px2 − 1)Q2 −(
1 + 2 k1

k2

)
Q2 − k3

k2
Q2 Q1 − (2 − Px2)Q2

⎤
⎥⎦,

where Q1 = ∑
k kXk , Q2 = ∑

k k(k − 1)Xk , and Px2 = k3/(k1 + k3) in Eq. (6). Then, we can obtain the Eq. (9) easily.

APPENDIX C: DERIVATION OF EQUATIONS (16) AND (17)

Here, we give detailed derivations to yield Eqs. (16) and (17). Substituting Eq. (13) into Eq. (15), then we get the following
equations after rearrangement:∑

k

Xk[k(Px1 + Px1Px2 − Px2) − kPy1 + (k − 1)Pz2(1 − Pz1)] = 0, (C1)

∑
k

Xk{[(k − 1)(Pz2 − 1)(Pz1 − 1) − (k − 1)Pz1 − 1] − k(1 − Px1)(1 − Px2) + kPy1} = 0, (C2)

∑
k

Xk{k(1 − Px1)(1 − Px2) − k(2Py2 − 1)(1 − Py1) − (k − 1)Pz2(1 − Pz1)} = 0. (C3)

After doing some algebra, we obtain ∑
k

Xk (kPx1 − 1) =
∑

k

Xk (k − 1)Pz1, (C4)

Px2(Px1 − 1) = Py2(Py1 − 1), (C5)

Px2 = k1

k3

∑
k Xk∑

k Xk (k − 1)(Pz1 − 1)
+ 1, (C6)

k1

k2
Py1 = Px2(1 − Px1), (C7)

Py1 = k2

k1

∑
k Xk (k − 1)(1 − Pz1)∑

k Xkk
− k2

k3

∑
k Xk∑

k Xkk
, (C8)

Pz2(1 − Pz1) = k3

k2

∑
k kXk∑
k Xk

Pz1(1 − Py1)(1 − Py2), (C9)
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where Eqs. (C4)–(C9) are obtained by Eq. (C1) plus Eq. (C2), Eq. (C1) plus Eq. (C3), substituting Eq. (C4) into the first formula
of Eq. (14), the second formula of Eq. (14), substituting Eq. (C4) and (C6) into the second formula of Eq. (14), and the third
formula of Eq. (14), respectively.

Finally, substituting Eqs. (C4)–(C9) into Eq. (C1), we can obtain Eq. (16) with the following coefficients:

A =
[∑

k Xk (k − 1)∑
k Xk

(
k3

k2
+ k3

k1

)]∑
k

Xk (k − 1),

B =
[

3 + k3 + k1

k2
+ k2

k1
− k3

k1

∑
k Xk (k − 1)∑

k Xk

] ∑
k

Xk (k − 1), (C10)

C =
[ ∑

k Xk∑
k Xk (k − 1)

k1 + k2 + k3

k3
− k2 + k1

k1

] ∑
k

Xk (k − 1).

According to the relationship of k1Xk = Pz1k3k(Nk − Xk − k1
k2

Xk ), which is from Eq. (13), we can obtain Eq. (17) with the
following coefficients:

a1 = A

(
k1

k3k

)2

− B
k1

k3k

(
1 + k1

k2

)
+ C

(
1 + k1

k2

)2

,

a2 = B
k1

k3k
− 2C

(
1 + k1

k2

)
, (C11)

a3 = C,

where A, B, and C are from Eq. (C10).
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