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Analytical modeling of orientation effects in random nanowire networks
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Films made from random nanowire arrays are an attractive choice for electronics requiring flexible transparent
conductive films. However, thus far there has been no unified theory for predicting their electrical conductivity.
In particular, the effects of orientation distribution on network conductivity remain poorly understood. We
present a simplified analytical model for random nanowire network electrical conductivity that accurately
captures the effects of arbitrary nanowire orientation distributions on conductivity. Our model is an upper
bound and converges to the true conductivity as nanowire density grows. The model replaces Monte Carlo
sampling with an asymptotically faster computation and in practice can be computed much more quickly than
standard computational models. The success of our approximation provides theoretical insight into how nanowire
orientation affects electrical conductivity.
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I. INTRODUCTION

Transparent conductive films are a crucial component of
touch screens and solar cells, among various other electron-
ics [1,2]. One approach to making transparent conductive
films that has been widely studied and deployed is to ran-
domly disperse highly conductive nanowires into a substrate.
Films made in this way, using conductive material such as
silver nanowires or carbon nanotubes, display competitive
electrical and optical properties to alternatives, while being
cheaper and more flexible than the performance standard
indium tin oxide [3–7]. The latter property is particularly
valuable as flexible electronics continue to become more
mainstream in consumer devices. However, despite the wide
interest in applying them, there is no unified theory for
predicting electrical properties of random nanowire networks,
and many observed effects have not been fully characterized
or explained. As a result, the technology remains underdevel-
oped, and there is undoubtedly still room for improvements in
performance.

The majority of results describing properties of random
nanowire networks have been experimental or via direct
computational simulation. Various studies have experimen-
tally compared electrical properties of films using different
conductive rods, such as silver nanowires and carbon nan-
otubes [4,5,8]. Agreement between simulation and experi-
mental observations of electrical properties has also been
well established for the classes of random nanowire net-
works that are easiest to produce experimentally [9]. More
recently, computational models have been used to maxi-
mize electrical performance of random nanowire networks
by varying the distributions from which the networks are
sampled [10–17]. Some of these results have been verified
experimentally [18–21]. In particular, various computational
studies have demonstrated that it is possible to improve
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electrical conductivity of nanowire networks by controlling
nanowire orientation [10–16]. However, this effect is not well
understood, and there is no simple framework to predict the
result of using a specific, arbitrary orientation distribution.

Recently, a number of analytical models have also been de-
veloped to describe properties of random nanowire networks,
but none thus far have explained the effect of nanowire ori-
entation on electrical conductivity in full generality [22–29].
Forro et al. proposed a model derived assuming high nanowire
density, so that potential drop across nanowire networks can
be assumed to be linear [25]. The model is accurate in the
high-density regime and yields a closed-form expression.
Benda et al. obtained a closed-form expression for network
conductivity by numerically fitting a physically interpretable
form to Monte Carlo simulations, while Manning et al. de-
veloped a theoretical framework for analyzing both electri-
cal and optical performance of nanowire networks [26,28].
However, these models are developed under the assumption
of uniformly distributed wire orientation and do not general-
ize in a clear manner to random orientation of an arbitrary
distribution.

In this work, we present an analytical model for random
nanowire network conductivity that accurately captures the
effects of arbitrary distributions of nanowire orientation. Our
approximate model replaces Monte Carlo sampling with an
asymptotically less expensive computation and is empiri-
cally much faster than standard computational models. It ap-
proaches the limiting dependency of network conductivity on
nanowire density, with small errors even at moderate nanowire
densities. Furthermore, the structure of our approximations
provides intuition for how orientation affects network conduc-
tivity as well as intuition for the behavior of random nanowire
networks in general.

II. MODEL CONSTRUCTION

A. Setting

We begin by presenting the setting in which we develop our
model. We consider networks comprising one-dimensional
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nanowires (linear, widthless sticks) inside a square space of
unit length in each direction with periodic boundary condi-
tions at the top and bottom. To simplify notation, we assume
nanowires have fixed length l , but our approach generalizes
naturally to having a random distribution over wire length.
Each nanowire is described by an (x, y) coordinate pair and
an angle θ , where the coordinate pair represents the location
of the wire center and θ is the angle relative to the horizontal.
The coordinates and the angle are sampled randomly, where
all values are assumed independent and each nanowire in
a network is assumed to be independent. We denote the
sampling distributions of x, y, θ by X ,Y,�, respectively.

The primary electrical property of interest for random
nanowire networks is the sheet conductivity σ , which is a ran-
dom variable. Sheet conductivity transitions sharply from be-
ing zero with overwhelming probability to being greater than
zero with overwhelming probability at a particular number of
nanowires that is a function of l , known as the percolation
threshold [30]. The dimensionless quantity

CN := N |l|2, (1)

where N is the number of nanowires in an network and |l| in-
dicates the wire length normalized by dividing by box width,
is often used as a normalized concentration of nanowires
because it allows direct comparison to the percolation thresh-
old [10]. We assume that our nanowire networks are well
above the percolation threshold so that they are guaranteed
to have conductivity greater than zero. We focus on modeling
the expected value of the sheet conductivity Eσ , because the
variance of sheet conductivity is typically small relative to the
expected sheet conductivity for large N [9,10].

Figure 1 displays how the sheet conductivity is physically
defined, using a network sampled with nanowire positions and
orientations both distributed uniformly. We place electrodes
at the left and right boundary of the network (x = 0 and
x = 1) and calculate the current when 1 V is applied. This
current can then be used to calculate the sheet conductivity.
In general, there are three sources of resistance in nanowire
networks which determine the conductivity along with the
geometry: the resistance of wires themselves, the resistance
at the junctions between two wires, and the resistance at
the junctions between a wire and an electrode. In many real
nanowire networks, the wire resistance is small compared to
the resistance at junctions [9]. We assume that this is the
case and choose to ignore the wire resistance moving forward.
However, our method can be generalized to account for wire
resistance, and we discuss this in Sec. V. We set the resistance
between two wires to be a constant 1� and set the resis-
tance between a wire and an electrode to be a constant

1
100�. The conductivity of a particular network is determined
solely by the ratio between these two quantities up to scaling.
We expect the wire-wire resistance to be multiple orders of
magnitude larger than the wire-electrode resistance, and these
quantities are thus reasonable.

In this setting, σ can be calculated exactly for a particular
network from the symmetric (N + 2) × (N + 2) adjacency
matrix of the electrical network, which we denote as A. The
first N rows of this matrix each corresponds to a single wire,
while the last two rows correspond to the left and right border
electrode. An off-diagonal element of the matrix is 1 if the two

FIG. 1. The sheet conductivity of a nanowire network is calcu-
lated by computing the current when 1 V is applied by electrodes
spanning the left and right border of the network. We assume that
nanowire network resistance is dominated by junction resistance and
ignore wire resistance. The x direction is defined as the direction of
current flow, and the y direction is perpendicular.

corresponding objects touch, and all diagonal elements are 0.
From A, we can use the two resistance values to construct
the Laplacian matrix of the nanowire network L, of the same
shape as A. This is the matrix that, when multiplied by the
vector of node voltages V , gives the vector of node net current
flow J as given in Eq. (2) and is a linear function of A [31]:

LV = J. (2)

We can then calculate the current flowing from the left elec-
trode by setting the voltages at the left and right electrodes in
the vector V and solving for the remaining voltages. Dividing
this current by the applied voltage yields the sheet conduct-
ivity [31].

B. Model definition

The expected sheet conductivity Eσ has most often been
studied by direct sampling of nanowire networks [9–17]. This
procedure involves numerous steps. For each network, N
nanowires are sampled according to the distributions X ,Y,�.
Then the adjacency matrices A for the networks are generated.
From these matrices, observations of the sheet conductivity
can be calculated by applying Kirchhoff’s laws, which are
then averaged to yield an estimate. We denote this empirical
estimate by σ̂ , defined in Eq. (3), where σ (Ai ) refers to
the sheet conductivity of the network represented by the
adjacency matrix Ai:

σ̂ = 1

M

M∑
i=1

σ (Ai ). (3)
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While this approach converges rapidly to Eσ as the number
of sampled networks M increases, it has a number of draw-
backs. First, it is slow: calculating the adjacency matrix A
from a list of wire coordinates and angles requires checking
all pairs of nanowires for intersection, as well as computing
a Cholesky decomposition of an N × N matrix. While there
are methods to speed up both of these steps, the procedure is
still at least O(MN2), and so collecting many samples for high
conductivity films is slow. In addition, this sampling-based
procedure makes interpretation of observed effects difficult,
which limits physical intuition.

An exact analytical model for the sheet conductivity would
fix these issues, but directly deriving an expression for Eσ is
very difficult even under the simplest distributions X ,Y,�.
A common approximation for this type of problem is to
move the expectation inside of the complicated function, as
shown in Eq. (4). The right side of this equation is defined by
treating EA as a weighted adjacency matrix; the Laplacian L
is constructed from EA by the same linear relationship as for
an ordinary adjacency matrix A, and the sheet conductivity is
calculated by solving the same matrix equation involving L:

Eσ (A) ≈ σ (EA). (4)

However, this naive approach fails catastrophically for ran-
dom nanowire networks. None of the spatial structure of the
networks is captured because all nanowires are indistinguish-
able according to EA. Using σ (EA) as a model results in
a massive overestimate of the sheet conductivity that is not
useful.

To develop our analytical model, we modify the approach
of moving the expectation inside the function to directly
capture spatial structure of random nanowire networks. We
first observe that σ is clearly invariant to reindexing the
wires in a network and recalculating the adjacency matrix A
accordingly. We choose to assume, without loss of generality,
that the wires are always reindexed according to increasing x
coordinate. Specifically, define the random matrix A∗ as

A∗
rank(i),rank( j) = Ai j, (5)

where the function rank(i) gets the placement of xi in the
list of x coordinates when sorted from smallest to largest and
leaves the electrode indices fixed. Our approximate model σ ∗
is then defined in Eq. (6), where σ (EA∗) is defined in the same
way as the right side of Eq. (4):

σ ∗ := σ (EA∗). (6)

Under slightly more restrictive assumptions, we can prove
that σ ∗ is greater than Eσ for all X ,Y,� using Jensen’s
inequality; details are presented in Sec. II C. Despite being an
upper bound, σ ∗ is able to capture the dependency of conduc-
tivity on both wire concentration and orientation distribution
due to the choice of assumed wire permutation; EA∗ encodes
most of the relevant spatial structure of the networks. We
illustrate this property of our model in Fig. 2 by plotting the
values of a random sorted adjacency matrix A∗ as well as the
values of EA∗ under the same distributions. Due to the sorted
order that is assumed, the matrices A∗ for sampled random
networks are banded, because wires near in index are also
near in x coordinate and therefore more likely to intersect. The

FIG. 2. The values of (a) the sorted adjacency matrix A∗ of a
random nanowire network and (b) the sorted expected adjacency
matrix EA∗ for the distributions that the sample was drawn from,
with N = 500 and l = 0.2. The sampled matrix is banded with
elements equal to 0 or 1, with 1 indicating an intersection between the
corresponding nanowires. The expected matrix has elements equal to
the probability of intersection between the corresponding nanowires
and captures the banded structure of the sampled matrices A∗. EA∗

has a small maximum value because even if two nanowires have no
x separation, the probability of them intersecting is small when l is
small.

expected adjacency matrix EA∗ reproduces this key property
well.

In the true system, nanowires that intersect are close in y
coordinate as well as in x coordinate. We encode this effect
only with respect to x coordinate and not y coordinate, but our
empirical results verify that our model is useful regardless.
This result has interesting implications which we discuss in
Sec. IV.

C. Proof that σ∗ is an upper bound

We argue that σ ∗ is an upper bound on Eσ under slightly
more restrictive assumptions. Note that the Laplacian matrix
L for a particular nanowire network is a linear function of
the sorted adjacency matrix A∗ [31]. It satisfies the Kirchhoff
current equation given in Eq. (2), where V is the vector of
voltages at each of the N + 2 objects and J , the net current
flowing into each node, is zero at all nodes other than the
electrode nodes. To reduce notation for units, we assume in
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this section that V is made dimensionless by dividing each
element by 1 V. L and J then both have units of inverse
resistance.

Under the assumed normalization of V , the sheet conduc-
tivity is equal to the current flowing out of the left border
electrode (node N + 1) when we set the voltage at the left
border to be 1 V and the voltage at the right border to be
0 V (VN+1 = 1, VN+2 = 0). With these values of V set, the
Kirchhoff current equation is given by Eq. (7):

L1:N,1:NV = −L1:N,N+1. (7)

We use the notation Bi: j,k:l to refer to the submatrix of B from
rows i to j and columns k to l . A single index indicates taking
a single row or column.

We proceed by adding two minor assumptions. We first
assume that for fixed distributions X ,Y,�, the number of
nanowires crossing the left electrode is a constant integer M.
For the high-density networks we study, the variance of this
quantity is small with respect to its expected value and does
not cause much variance in sheet conductivity. Second, we
assume that the M nanowires that cross the left border are the
first M indices in A∗. Under the sorting that is used for A∗,
this is the most likely set of M wires to cross the left border,
and the variance of these indices also does not cause much
variance in sheet conductivity. This assumption can be viewed
as a definition of sheet conductivity where we attach our left
electrode to the leftmost M wires based on center location, as
opposed to based on left endpoint location.

Under these assumptions, the sheet conductivity is given
by Eq. (8), where Rew is the wire-electrode resistance in ohms
and EM is the N dimensional vector that is 1 in the first M
elements and 0 otherwise:

σ = 1

Rew

M∑
i=1

(1 − Vi )

= 1

Rew

(
M −

M∑
i=1

Vi

)

= 1

Rew

(
M − ET

MV
)

= 1

Rew

{
M + [

ET
M (L1:N,1:N )−1L1:N,N+1

]}
. (8)

The inverse of L1:N,1:N exists when the network is connected,
which is true because we assume that our networks are well
above the percolation threshold.

Since the first M nanowires cross our left measurement
electrode, L1:N,N+1 is given by

L1:N,N+1 = − 1

Rew
EM . (9)

We can use this value to write another expression for σ in
Eq. (10):

σ = 1

Rew

[
M − 1

Rew
ET

M (L1:N,1:N )−1EM

]
. (10)

Since M is assumed to be constant, the only randomness
in σ comes from L1:N,1:N . Since this matrix is positive definite
when the network is connected and is a linear function of A∗,

σ is a concave function of A∗. Jensen’s inequality then tells us
that for all X ,Y,�, σ ∗ is an upper bound on Eσ as shown
in Eq. (11):

Eσ (A) = Eσ (A∗) � σ (EA∗) = σ ∗. (11)

III. MODEL COMPUTATION

A. Methods for computing EA∗

The approximate model σ ∗ is useful because we can di-
rectly compute EA∗ in a wide variety of circumstances. This
eliminates the need for Monte Carlo sampling of networks and
solving a linear system of equations for each sample. Here
we present a method for computing EA∗ when X ,Y are the
uniform distribution, which is an assumption used throughout
the literature. This procedure is applicable for any orientation
distribution � that can be parameterized by a vector α.

Recall that A∗ is the sorted adjacency matrix of a random
nanowire network and has size N + 2 × N + 2. The first N
indices correspond to a nanowire, sorted by increasing x
coordinate, while indices N + 1 and N + 2 correspond to the
left and right border electrode. The elements of the expected
adjacency matrix EA∗ are thus the probability of intersection
between the objects of indices i, j. To compute the matrix, we
thus need to compute the probability of intersection between
every pair of wires, conditioned on the rank of the x coordinate
of each wire. We also need to calculate the probability of
intersection between each wire and the border electrodes,
conditioned on the rank of the x coordinate of the wire.
Because the matrix is symmetric, we need to do so only for
i > j, and we need to do the calculation only for a single
border electrode because the probabilities for the other border
electrode are symmetric.

We will first calculate the probability of intersection be-
tween any two nanowires. Denote a wire as w = (x, y, θ ) and
let w∗

i ,w
∗
j be the ith and jth wire according to the sorted

order based on x coordinate. The desired probability is then
denoted by P(w∗

i ∩ w∗
j ). The event of w∗

i intersecting w∗
j is a

deterministic function of the difference in x coordinates, the
difference in y coordinates, and the angles of the two wires.
Under our independence assumptions, we can thus calculate
EA∗

i j by calculating the distributions of x∗
i − x∗

j and y∗
i − y∗

j
and then using the known distributions of θi and θ j . For
brevity, we define

xi j = x∗
i − x∗

j , (12)

yi j = y∗
i − y∗

j . (13)

We will first analyze randomness solely in yi j by comput-
ing the intersection probability conditioned on xi j , denoted by
P(w∗

i ∩ w∗
j |xi j ). This is the probability that two wires intersect

if we know the difference in x coordinates between them. For
any pair of wires w∗

i ,w
∗
j with x separation xi j and angles

θi, θ j , we can define the horizontal range of overlap b as the
length of the interval of x coordinates that both wires lie in.
For particular values of b, θi, θ j , there is an interval of yi j

values for which wi and w j will cross. We denote the length
of this interval of by h. We illustrate these quantities with
example nanowire pair configurations in Fig. 3.
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FIG. 3. If two nanowires have known x separation of xi j and
angles θi and θ j , we can calculate the length of the horizontal region
of overlap b, which is the length of the x coordinates that both
nanowires enter. This quantity is visualized in the case where the
horizontal region of one nanowire is contained in the region of the
other (a) as well as the case where this is not true (b). We can then
use this quantity to calculate the length of the range of y separations
h for which the two nanowires would intersect, as visualized in (c).

Now observe that the distribution of yi j is identical for all
i �= j. Furthermore, because of our use of periodic boundary
conditions, since Y is the uniform distribution, yi j is in fact
the uniform distribution in the range [0, 1). Therefore, the
probability of intersection between wi and w j conditioned on
xi j is given by the conditional expectation of h:

P(w∗
i ∩ w∗

j |xi j ) = E [h|xi j]. (14)

We can calculate this conditional expectation by observing
that b and h can be calculated from xi j and θi, θ j , as in
Eqs. (15) and (16). Here ( f )+ is defined to be max{ f , 0}:

b(xi j, θi, θ j ) = min

⎧⎨
⎩

[(l/2)(cos θi + cos θ j ) − xi j]+
l cos θi

l cos θ j

, (15)

h(xi j, θi, θ j ) = b(xi j, θi, θ j )| tan θi − tan θ j |. (16)

In Eq. (15) the latter two cases correspond to the situation
when the interval of x coordinates that one wire lies in is
contained by the interval of x coordinates that the other lies
in, as in Fig. 3(a). The first case is taken when this situation
does not occur, as in Fig. 3(b).

The conditional expectation is then given by integrating out
θi and θ j drawn independently from �:

P(w∗
i ∩ w∗

j |xi j ) =
∫

h(xi j, θi, θ j )p(θi )p(θ j ) d (θiθ j ). (17)

Since we have assumed the wires are sorted by x coordinate,
the difference xi j is the difference in order statistics i and j
from the distribution X . Because X is the uniform distribu-
tion, xi j follows the β distribution with parameters i − j and
N − i + j + 1, if i > j [32]. However, for the networks with
large N which we study, these distributions become strongly
concentrated at their mean, which is i− j

N+1 . We thus assume that
xi j is equal to its expected value and empirically observe no
loss in accuracy. This yields a formula for the probability of

intersection between any two nanowires:

P(w∗
i ∩ w∗

j ) = P

(
w∗

i ∩ w∗
j |xi j = i − j

N + 1

)
. (18)

A similar argument can be used to calculate the probability
that any wire crosses the left border electrode, denoted by e1.
Observe that w∗

i intersects e1 if and only if (l/2) cos θi � x∗
i .

Assuming that x∗
i equals its expected value of i

N+1 , the desired
probability is then given by Eq. (19), where θ ∼ �:

P(x∗
i ∩ e1) = P

[
cos θ � 2i

l (N + 1)

]
. (19)

We can therefore calculate every element of EA∗ for any N
and any orientation distribution �, assuming wire positions
are uniform.

To use these expressions efficiently, we numerically com-
pute the integral in Eq. (17) over a grid of values for xi j and
the parameters α of the orientation distribution �. We then fit
a polynomial to the probability values on these grid points to
obtain an expression for P(w∗

i ∩ w∗
j ) that is extremely rapid to

use. We further describe the speed of our method in the next
subsection.

B. Analysis of computational speed

One of the significant advantages of our method is that it
replaces Monte Carlo sampling with an asymptotically faster
computation. Sampling-based models, which are the most
common approaches for studying random nanowire networks,
have two major components. First, a number of nanowire
networks M are sampled by directly sampling (x, y, θ ) for
each of N nanowires, and a collection of M adjacency matrices
are calculated. Second, the Kirchhoff current equation is
solved for each adjacency matrix to collect M observations of
sheet conductivity, and these observations are then averaged.
The first of these steps has complexity O(MN2). Within all
networks, each of the N nanowires must be compared with
a fixed fraction of all other nanowires for intersection to
compute the adjacency matrix A. The second step, meanwhile,
has complexity O(MN3), which is the cost of solving M
linear systems of equations each involving N variables. While
the second step has larger complexity, both steps require
significant amounts of time, and so speeding up either is
beneficial.

Our model σ ∗ delivers a large asymptotic improvement to
the first step and delivers a large constant factor improvement
to the second step. Recall that the probability of intersection
between two wires under our model depends only on the
expected x separation between them. As a result, we need only
to directly compute two rows of EA∗ in order to produce the
entire matrix because the expected x separation between the
wires w∗

i and w∗
j is determined completely by the quantity

|i − j|. Equivalently, if we ignore the rows representing elec-
trodes, then all diagonals of EA∗ are constant. We therefore
must compute the first row of EA∗ to obtain the probability
of interaction between every pair of nanowires and also must
compute the last row of EA∗ to obtain the probability of inter-
action between every nanowire and an electrode. Therefore,
the cost of computing EA∗ is O(N ) with constant proportional
to the time it takes to compute P(w∗

i ∩ w∗
j ). We must still
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solve a single Kirchhoff current equation, and this step is
O(N3).

Numerically integrating to compute each evaluation of
P(w∗

i ∩ w∗
j ) is in practice quite slow. We therefore precom-

pute this function for a grid of values of xi j as well the
parameters α of the orientation distribution �, and then fit
a polynomial to the computed values. A polynomial fit is in
practice quite accurate because the probability in question
is smooth as a function of the parameters of interest. This
step makes computation of P(w∗

i ∩ w∗
j ) extremely rapid, but

the precomputation cost is exponential in the number of
parameters of the orientation distribution. For the majority of
interesting cases, the orientation distribution can be parame-
terized in one or two parameters, and this complexity is thus
not significant compared to other steps.

In total, our method has a small precomputation cost but
replaces the O(MN2) complexity of Monte Carlo sampling
with an asymptotically faster O(N ) computation. It also re-
duces the cost of solving linear systems by a factor of M,
the number of samples that are collected in a sampling based
approach. In our implementation, this allowed the model σ ∗
to be evaluated about 100 times faster than direct Monte Carlo
sampling.

IV. EMPIRICAL TESTS AND DISCUSSION

We examine the effectiveness of σ ∗ in modeling depen-
dency of network conductivity on both nanowire density and
orientation distribution. We assume, as in the previous section,
that X ,Y are both the uniform distribution. We implemented
direct sampling of σ under this assumption and our previ-
ously stated setting, while allowing the distribution � to be
arbitrary. We use our implementation of direct sampling of σ

as a baseline comparison for all tests, estimating Eσ with σ̂

with M = 30. Throughout these experiments, we use l = 0.1.
Larger values of M reduce the noise of σ̂ , while smaller values
of l reduce finite size error in σ̂ and σ ∗. The chosen values
of M and l were found empirically to be sufficient to largely
eliminate these errors; σ ∗ and σ̂ do not change much for
higher M or lower l , as long as CN is fixed.

A. Dependence on nanowire density

We first assume that � is the isotropic distribution (uniform
in [−90, 90] degrees) and explore the dependence of σ ∗ on
normalized concentration CN . Figure 4 shows a comparison
between normalized σ ∗ and σ̂ as a function of CN , starting
just above the percolation threshold, on both linear and double
log scales. Conductivities are normalized by multiplying by
junction resistance 1� so that they are unitless. It is a known
result that Eσ can be approximated as a power-law function of
the distance of normalized concentration from the percolation
threshold, with an exponent of around 1.75 at medium densi-
ties which moves close to 2 at high densities [9]. Our estimate
σ̂ matches these known relationships; the growth pattern of
conductivity in log space becomes linear as the subtraction
of the percolation threshold becomes negligible. Our model
σ ∗, however, displays a perfect power-law dependence on CN ,
with an exponent that matches the asymptotic exponent of Eσ .
Near the percolation threshold, the error is large, as we have

FIG. 4. Normalized conductivity as a function of normalized
wire concentration is shown for both the true empirical mean and
our approximate analytical model, on a linear scale (a) and a double
log scale (b). The model follows an exact power-law relationship and
corresponds to the high-density behavior of the true conductivity.
We emphasize that the model is not obtained by fitting to the true
conductivity.

assumed nanowire density above this threshold in developing
our model. However, the error in log space approaches zero as
concentration grows, and the model can thus be interpreted as
the limiting behavior of Eσ at high concentrations.

While σ ∗ is less precise than other recent models for
predicting dependency of conductivity on concentration at
small nanowire densities, the result that our approach yields
the correct limiting behavior is theoretically interesting. By
using EA∗, our model directly encodes clustering of nanowire
only in the x direction. However, this is sufficient information
to capture asymptotic behavior and, as we next show, capture
the effect of varying orientation distribution.

B. Dependence on orientation distribution

Our model σ ∗ is particularly valuable because it is able
to predict the effect of arbitrary orientation distributions on
sheet conductivity. The problem of optimizing orientation
distribution in random nanowire networks has been studied
numerous times via computational models, but there is no uni-
fied understanding of the observed effects [10,11,13,14,16].

We consider two families of distributions for �, each of
which is described by a single parameter. For each family, we
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FIG. 5. Nanowire networks drawn from (a) �1, with α = 45 and
(b) �2, with α = 60 are shown. In �1, all nanowires have orientation
at ±α degrees from the horizontal (x direction). In �2, nanowire
orientation is distributed uniformly in [−α, α] degrees from the
horizontal.

demonstrate that σ ∗ accurately captures the effect of varying
the distribution parameter on conductivity. The first family
�1(α) is given by

p(θ ) =
{

1
2 θ = α
1
2 θ = −α

(20)

for all 0 < α < 90. All probability mass is concentrated at ±α

degrees from horizontal. The second family �2(α) is given by

p(θ ) =
{ 1

2α
|θ | < α

0 o.w.
(21)

Probability density is uniformly distributed over [−α, α] de-
grees. Figure 5 shows a sample network from a single distri-
bution within each family. These two families were previously
studied, and it was found that while a conductivity gain over
isotropic networks could be achieved within �2, no gain could
be achieved within �1 [10].

Figure 6 shows a comparison between σ ∗ and σ̂ for deter-
mining the relationship between distribution parameter α and
normalized conductivity for both �1 and �2. The normalized

FIG. 6. Normalized conductivity is shown as a function of dis-
tribution parameter α for both the true empirical conductivity and
the approximate analytical model, for both (a) �1 and (b) �2, with
CN = 50. In both families, the shapes of the two curves match well
and the optimal values (vertical lines) are close. The model also
captures the fact that a gain over isotropic conductivity (horizontal
lines) can be achieved only in �2.

concentration is fixed at 50 in both cases. Within both fam-
ilies, the shape of the curve matches well, and the optimal
values are within a few degrees of each other. Moreover, the
predictions from σ ∗ match Eσ in that a gain over isotropic
orientation is attainable in �2 but not �1.

To the best of our knowledge, our model is the first to accu-
rately reproduce the effects of orientation distribution on sheet
conductivity without relying on Monte Carlo sampling in any
capacity. These results indicate that orientation effects can be
modeled by analyzing their effects on network connectivity in
a single direction, as our model A∗ takes into account positions
of nanowires only in the x direction.

V. CONCLUSION

We developed an approximate analytical model for sheet
conductivity of random nanowire networks that condenses
a large amount of their structure through a specific choice
of nanowire permutation. We showed that this model is an
upper bound and matches the asymptotic dependency of
the true sheet conductivity on wire concentration. We also
demonstrated that the model accurately captures the effects
of orientation on nanowire network conductivity, a result
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that has limited theoretical explanation in the literature. Our
model accurately captures the effects of arbitrary orientation
distributions on network conductivity and replaces Monte
Carlo sampling with an asymptotically faster computation.
These results and the structure of the model we developed
provide theoretical intuition about random nanowire network
conductivity. Namely, our results demonstrate that network
connectivity in the direction of current flow is the key factor
in determining the dependence of conductivity on wire den-
sity and orientation distribution, because our model encodes
connectivity information only in the x direction.

The most pressing direction for future research is to re-
lax our assumption of zero wire resistance, as recent work
has indicated that the junction resistance in silver nanowire

networks can be reduced to a comparable magnitude as the
wire resistance [18]. This could be done, for example, by
using an approximate function to calculate sheet conductivity
based on EA∗ in the presence of wire resistance. Various
recent analytical models for random nanowire network con-
ductivity have successfully used approximations about the
number of nanowires that a given nanowire will inter-
sect [25,29]. Rather than using approximations derived in
the setting of uniform wire orientation, these models could
instead use approximations obtained from EA∗ for an arbi-
trary orientation distribution. The success of these existing
models indicates that they would likely function as accurate
approximate functions to calculate sheet conductivity given
the information in EA∗.
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