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Laminar chaos in nonlinear electronic circuits with delay clock modulation
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We study laminar chaos in an electronic experiment. A two-diode nonlinear circuit with delayed feedback
shows chaotic dynamics similar to the Mackey-Glass or Ikeda delay systems. Clock modulation of a single delay
line leads to a conservative variable delay, which with a second delay line is augmented to dissipative delays,
leading to laminar chaotic regimes. We discuss the properties of this particular delay modulation and demonstrate
experimental aspects of laminar chaos in terms of power spectra and return maps.
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I. INTRODUCTION

Delay systems have been studied in the last decades across
various disciplines [1–4]. Mathematically, a delay system is a
dynamical system with a retarded argument, which is signifi-
cantly different from the corresponding undelayed system, for
instance, by its infinite dimensionality [5]. The close relation-
ship between delay systems and spatially extended systems
has been elaborated, and often the delay representation leads
to new insights into the dynamical properties [4,6–8]. A
variety of physical origins leads to different types of delays,
but a common characteristic is the signal propagation with
finite speed between spatially separated parts of the system, or
the temporary storage of information [9–11]. Nonlinear laser
dynamics has been a major subject driving the field, because
the fast timescales involved make the propagation delays
inevitably relevant [3,12]. A second branch worth mentioning
is time-delayed feedback control, in which a delay term acts
as a desired control force [13–15].

From the plethora of delay models and corresponding
real-world systems documented in the field nowadays, we
distinguish the following classes. A simple (single) delay
system is given by ẋ(t ) = f (x(t ), x(t − τ )), where x ∈ RN is
the state vector of the system, which may be considered a
network of low-dimensional oscillators. The function f is gen-
erally nonlinear, and often takes the form f (x(t ), x(t − τ )) =
f0[x(t )] + kfτ [x(t − τ )], where the delay term plays the role
of feedback to a node, or coupling between different nodes in
the network. One distinguishes between small, intermediate,
or large delays, relative to a characteristic timescale of the
dynamics, for instance, a correlation or Lyapunov time, or
the period of an orbit [16,17]. Extensions of the simple case
are given by multiple delays, with either a finite or an infinite
number of delay terms, and variations in the arrangement
of the different lags τn [18]. An example is the result of
multiple reflections in a resonator, where τn = τ0 + nτ , and
the weights of the terms are exponentially decreasing with n.
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Further generalization leads to distributed delays, where the
system typically contains a continuous delay kernel g(τ, x).
The common property of the mentioned delay systems is that
the delay dependency is constant.

A form of time-varying delays is given by state-dependent
delays of the type ẋ(t ) = f (x(t ), x{t − τ [x(t )]}). This resem-
bles a situation in which a node switches between inputs from
other nodes at different distances [19,20]. However, also the
general form of delay modulation is being considered [21–24],
and will be the subject of our present investigation:

ẋ(t ) = f (x(t ), x[t − τ (t )]). (1)

Typically, τ (t ) > 0, and other constraints may apply depend-
ing on the situation, like continuity of the modulation, peri-
odicity τ (t ) = τ (t + T ), or a limited change rate τ̇ (t ) < 1.
In the limit of T → 0 and a finite modulation amplitude, the
distributed delay case is recovered, with the distribution re-
flecting the relative occurrence of delays from the modulation.
The intermediate case of delay modulations on the timescale
of the dynamics remains a challenging subject, in which novel
phenomena can be expected due to the nontrivial interaction
of the modulation, the mean delay, and the oscillatory modes
of the nonlinear system. Recently, a distinction between con-
servative delays and dissipative delays has been introduced
[25,26]. A conservative delay modulation allows a transfor-
mation to a constant delay, whereas for dissipative delays this
is not possible. Dissipative delays have been characterized by
their signature in the Lyapunov spectrum.

Within dissipative delays, the same authors have subse-
quently discovered the phenomenon of laminar chaos [27].
Chaotic dynamics is common in delay systems and has been
studied extensively for the case of large delays [28]. A
distinction between strong and weak chaos has been made
based on the sub-Lyapunov exponent of the delay system
[29]. Weak chaos is a precondition for laminar chaos, be-
cause in strong chaos the leading instability is generated
at the level of the nonlinear nodes driven by time-delayed
signals, which makes them less susceptible to the effect of
delay modulation. In essence, if the dissipation generated
by the delay modulation overcomes the instability under-
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lying the chaotic dynamics, the output of the system will
show the laminar chaotic patterns. The dynamics in laminar
chaos is characterized by subsequent plateaus of constant
output, which vary in a chaotic way according to a nonlinear
map, and switching between the plateaus is accompanied
by a short irregular burst. Recently, also the first experi-
mental evidence was reported in an electro-optic experiment
with delay modulation from field-programmable gate array
circuits [30].

In this paper, we investigate laminar chaos in a fully
electronic experiment with a focus on the locking regimes and
the spectral properties. An electronic circuit with diode non-
linearities and digital delay lines allows for delay modulations
which support both conservative and dissipative delays. The
circuit generates chaotic dynamics in a wide parameter range,
which for certain modulations of the delay leads to laminar
chaos. We present and discuss the experimental characteristics
of laminar chaos in terms of signatures in the power spectra,
spectral entropy, and return maps. We further explore the
relationship between delay modulation and chaotic instability
by means of numerical simulations of the temporal dynamics,
matching the experimental results with high accuracy. We
finally discuss how to distinguish laminar chaos from similar
experimental time series with a different mechanism. The
theoretical basis is summarized in Sec. II as far as it applies
to the experiment. The experimental setup is introduced in
Sec. III, and the different experiments are described and
discussed in Sec. IV, before we present our conclusions.

II. THEORETICAL BACKGROUND

We consider the variable-delay system according to Eq. (1)
with a delay modulation of the form

τ (t ) = τ̄ + τ̂ s(t ).

The modulation is periodic with s(t ) = s(t + T ), and the time
dependence fulfills −1 � s(t ) � 1 and 〈s(t )〉t = 0, where 〈·〉t

denotes the temporal average. The mean delay is τ̄ > 0, and
with the modulation amplitude τ̂ < τ̄ the delay is positive at
all times. We adapt the notation in Ref. [27] and define the
access map as the retarded argument of Eq. (1):

R(t ) = t − τ (t ).

With the limitation τ̇ (t ) < 1, the access map is invertible. The
access map describes the times, at which the delayed signal
originates, whereas the inverse access map R−1(t ) refers to
the future times at which a currently emitted signal will be
injected into the dynamical system. Regardless of how the
dynamical system maps its current input to the output, the
inverse access map describes how a point in time iteratively
visits the dynamical node. Assuming the signal transformation
was explicitly given and summarized by a map xn = F(xn−1),
where xn = x(tn) and xn−1 = x[tn − τ (tn)] = x(tn−1), the cor-
responding positions in continuous time would be given by

tn = R−1(tn−1). (2)

The map R−1 is a circle map, and as such exhibits either
quasiperiodic dynamics or mode locking, which is quantified
by a certain rotation number ρ = 〈tn − tn−1〉n/T . These dy-
namical regimes define conservative and dissipative delays,

respectively. Dissipation refers to the stability of the locking
orbit, which means that there are absorbing points on the time
axis which attract their neighborhood. Consequently, a stable
orbit is accompanied by an unstable orbit, both originating
from a tangent bifurcation, if the map is continuous. This
means that in dissipative delays there is an interplay of ex-
pansion and contraction of time intervals both forward and
backward in time. This property excludes a transformation of
the time axis towards a constant-delay system, whereas for
conservative delays such a transformation is possible, because
despite finite-time distortions all time intervals stay constant
on average [25,27].

When chaos occurs in a delay system, one distinguishes
between strong and weak chaos [29]. This distinction is based
on the sign of the leading sub-Lyapunov exponent (sub-LE),
which is a measure of the conditional stability of the nonlinear
node to the time-delayed feedback. Thus it does not directly
depend on the type of delay, but is affected by the properties
of the delayed signal, which in principle allows one to switch
between strong and weak chaos through the type of modula-
tion. For the system considered in the present paper, however,
the sub-LE is in good approximation a fixed property of the
dynamical node and independent of the feedback signals.
Moreover, the sub-LE is always negative, which corresponds
to weak chaos and is a necessary condition for laminar chaos
[27,28]. In weak chaos, the response of the dynamical node
exhibits a functional dependency to its time-delayed drive,
similar to the map F above, whereas strong chaos generates
a level of inconsistency in the mapping between delay cycles
[31–33]. It was shown that the emergence of laminar chaos
depends on the competition between the temporal (horizontal)
dynamics of the mode-locking access map, and the amplitude
(vertical) dynamics of the chaotic return map. If the negative
Lyapunov exponent (LE) of the access map overcomes the
positive LE of the chaotic map, the dynamics collapses to
a sequence of plateaus, where a short burst accompanies
the switching between subsequent plateaus. This chaotic se-
quence of laminar phases has been defined as laminar chaos.
If the access map is conservative, or if its dissipation is lower
than the chaotic instability, no plateaus occur as if in ordinary
delay chaos, and the dynamics has been coined turbulent
chaos.

III. EXPERIMENTAL SETUP

Laminar chaos does not depend on the dimensionality of
the system. Scalar delay systems have been a subject of in-
vestigation in the community throughout several decades. The
Mackey-Glass system and the Ikeda system are well-studied
candidates of this type [34–36]. We set up an electronic circuit
experiment to realize a scalar delay system. The dynamical
node of our circuit contains diodes as a source of nonlinearity.
The circuit diagram of the nonlinear element is shown in
Fig. 1. It consists of two signal processing stages. The first ap-
plies an instantaneous nonlinear function to the input, where
instantaneous response means that the bandwidth of the circuit
is much larger than the frequency range of typical signals.
This bandwidth separation is guaranteed by the second stage,
which is a dynamical element to introduce a characteristic
timescale, for which we selected a low-pass filter with a
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FIG. 1. Circuit diagram of the double-diode delay oscillator.
(a) First processing stage with diode nonlinearities. (b) Second stage
with low-pass filter. Operational amplifiers are all TL084.

sufficiently low cutoff frequency. Figures 2(a) and 2(b) show
the signal transformation after each stage. Two diodes con-
nected in opposite direction create a symmetric nonlinearity
out of their dc characteristics. The conduction threshold is
shifted with a bias voltage, such that both diodes are not
conducting in an input voltage range of about −4V < U1 <

4V . Within this range, the circuit transmits linearly through an
inverting operational amplifier with a total amplification factor
of 2, whereas outside the linear range the diodes effectively
invert the slope of the map. This leads to a profile of two
concatenated tent maps. The motivation for this design lies

-10 0 10U
1
 (V)

-10

0

10

U
2
 (

V
) (a)

-10 0 10U
1
 (V)

-10

0

10

U
3
 (

V
) (b)

-10 0 10U
1
 (V)

-10

0

10

U
3
 (

V
) (d)

0 5 10t (ms)
-10

0

10

U
3
 (

V
) (c)

FIG. 2. Nonlinear and dynamical characteristics of the circuit in
Fig. 1. (a), (b) Response to a triangular waveform. (c), (d) Chaotic
delay dynamics. (a) Response of first stage, modulation 100-Hz 9Vp.
(b) Response of both stages with memory effect, modulation 500-Hz
9Vp. (c) Output time series in chaotic regime with delay line τ =
1.5 ms. (d) Input vs output in chaotic regime, time series same as in
panel (c).

in the robust chaos found in the tent map, with little tendency
to lock into a stable orbit. Moreover, slopes and extrema of
the curve are set such that oscillations are constrained to the
operating voltage ranges of all devices.

In order to generate a closed loop, we use delay lines
as in Ref. [24]. The output U3 of the dynamical element
is connected to the input of the delay lines, and the output
of the delay lines serves as the input voltage U1 accord-
ingly. The delay lines are digital, meaning that after analog
conditioning an analog-to-digital converter converts the sig-
nal to 8-bit resolution, a first in first out (FIFO) memory
with 1-kB buffer size stores the information according to a
write/read clock, and a digital-to-analog converter converts
back to analog, which is then scaled and low-pass filtered.
A tailored additive noise source exploits the dithering effect
with the frequency band between the second-order filter at
20 kHz, and the clock frequency of up to 800 kHz, resulting
in an effective resolution of maximal 11 bits. A static clock
frequency creates a constant delay τ = τ0 + N/ fc, where N is
the buffer size, fc is the clock frequency, and τ0 ≈ 20 μs is
an offset delay arising mainly from finite response times of all
processing elements. Typical delay times are in the ms regime.
The resulting equation of motion for the closed-loop system
reads

ẋ(t ) = −κx(t ) + F [x(t − τ )], (3)

where x(t ) ≡ U3(t ) is the scalar output voltage of the circuit, κ
is the time constant of the low-pass filter, and F (·) is the piece-
wise linear function as shown representing the dependency in
Fig. 2(a), which is directly applied to the delayed feedback.
Due to the form of the instantaneous term, this system has
always a negative sub-LE [37], thus any chaotic trajectory
is of the weak chaos type, and the system is susceptible for
laminar chaos.

In most of the parameter settings of our experiment, the
dynamics of the delay system settles on a chaotic attractor,
such as is illustrated in Figs. 2(c) and 2(d). Signals are
recorded with a NI PXIe-6358 measurement device. We ob-
serve erratic waveforms with a limited bandwidth, where the
limit originates mainly in the low-pass filter of the circuit with
κ/2π = 1.6-kHz cutoff. The delay here is set to τ = 1.5 ms,
which is about double the filter time constant. Removing this
filter, we would observe a similar dynamics with a higher
frequency range, which is mainly limited by the bandwidth
of the delay line. Plotting output of the circuit against its
input yields an attractor representation which is familiar from
similar chaotic delay systems. One can recognize the shape of
the nonlinearity, blurred by oscillations from the dynamical
elements.

Delay modulation can be achieved through modulation of
the FIFO clock frequency, as the buffer size is fixed once
at initialization. In principle, modulation of write clock and
read clock separately would be possible, allowing for a wide
range of modulation shapes within the restrictions of buffer
size and maximum clock frequency. Our devices, however,
allow only for a simultaneous modulation of write and read
clocks, which are supplied from a common source. This
constraint leads to a conservative delay modulation, regardless
of buffer size and frequency modulation, which can be shown
analytically as follows. By construction, the delay modulation
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FIG. 3. Example of conservative delay modulation via clock
frequency modulation fc(t ) by a single delay line with buffer size
N , according to Eq. (4). The modulation is periodic with period T .
(a) Resulting modulation of the forward delay time θ (t ) = τ [R−1(t )]
for buffer sizes N = N1/4, N1/2, 3N1/4, N1 (line labels), where N1 is
the integral over fc(t ) for one period T such that N = N1 results in a
constant delay θ (t ) ≡ T ≡ τ (t ). (b) Corresponding rectangular clock
frequency modulation fc(t ) with two levels, fc ≡ f for duration T/3,
and fc ≡ 2 f for duration 2T/3. Switchings are indicated in panel
(a) as vertical dotted lines.

for a given frequency modulation fc(t ) and buffer size N is
given implicitly by

N =
∫ t

R(t )
dt ′ fc(t ′). (4)

Differentiation with respect to time yields

0 = fc(t ) − fc[R(t )]Ṙ(t ) ⇒ Ṙ(t ) = fc(t )

fc[R(t )]
.

The slope of the access map determines the local rate of ex-
pansion or contraction of time intervals, and thus the stability
of mode locking. We then follow a sequence of points in time
according to Eq. (2). For an orbit with rotation number p/q,
q iterations of the access map coincide with p modulation
periods. Linearization along the orbit gives the product

q∏
n=1

Ṙ(tn) =
q∏

n=1

fc(tn)

fc(tn−1)
= fc(tq)

fc(t0)
= 1.

The last step follows from tq − t0 = pT , meaning that there is
the same phase of the modulation after each orbit period. Thus
every orbit of this map is marginally stable. Alternatively,
one may consider an arbitrary orbit. Even if initial and final
frequency do not coincide, they are bound by their maximum
ratio. Since this is the maximum multiplicator for an arbitrary
number of iterations, the average growth rate must be zero.
Here, we assume that fc is strictly positive. We discuss briefly
the case of zero clock frequency at the end of Sec. IV.

We illustrate the conservative delay time modulation of
a single delay line by the example shown in Fig. 3. The
clock frequency is modulated in a rectangular way, switch-
ing between a base frequency, fc(t ) ≡ f , and double the

frequency. The higher frequency remains active for one-third
of the modulation cycle T , and the lower frequency remains
active for the other two-thirds. We measure the resulting delay
modulation by the forward delay θ (t ), which is the transit
time that a signal recorded at time t will spend until it passes
the delay line at R−1(t ). This transit time is related to the
access map by θ (t ) = R−1(t ) − t , and with the delay via
θ (t ) = τ [R−1(t )]. The limitation τ̇ < 1 in this representation
reads θ̇ (t ) > −1. The delay depends on the buffer size N
through Eq. (4). When the buffer equals the integral over one
period T , which we denote as N = N1, the delay becomes
constant, θ (t ) ≡ τ (t ) ≡ T . The delay modulations for N =
N1/4, N1/2, and 3N1/4 are T -periodic triangular waveforms
with clipping, where the maximum amplitude is achieved
for the middle value. For N > N1, the patterns repeat in the
same way. The only intersection of θ (t ) with multiples of
T , which corresponds to periodic orbits of the access map,
is when θ is a constant, which is equivalent to the delay
being conservative. This includes also higher orbits, because
iterations of the access map correspond to integer multiples of
N . Physically, this is related to the fact that the output of the
delay line is connected to its input via the nonlinear circuit,
and independently of the nonlinear dynamical properties the
sampling rates at both points are identical. This situation is
equivalent to adding further identical delay lines to the loop
while maintaining the conservative delay modulation.

IV. EXPERIMENTS

Chaotic dynamics with a conservative delay modulation is
not significantly different from the constant-delay dynamics
as shown in Fig. 2. The modulation signatures appear in
the power spectrum, and in the time series one can observe
stretched and squeezed intervals depending on the depth of the
delay modulation [see Fig. 4(a)]. These patterns are finite-time
phenomena which are unrelated to genuine laminar chaos.
A simple method to arrive at dissipative delays using our
devices is by adding a second delay line serially, which
creates a constant offset delay τ0. Such a delay is already
inherently present in each delay line, and in principle it would
be sufficient to push the access map through a shifted bisectrix
such that mode locking occurs. For delay offsets close to zero,
however, the locking becomes structurally unstable, so that
an artificial increase of τ0 is desired. In this configuration,
and with a sinusoidal frequency modulation of the variable
delay line, we were able to achieve laminar chaos. The typical
waveforms are shown in Figs. 4(b) and 4(c).

In order to get an overview of the locking regimes, we
investigate a range of different offset delays τ0. The mean
clock frequency of the variable delay line is chosen as f̄c =
200 kHz, and a sinusoidal frequency modulation fc(t ) = f̄c +
f̂c sin(2πt/T ) is applied with an amplitude of f̂c = 190 kHz
and a period of T = 10 ms. This leads to a delay modulation
around τ̄ ≈ 5 ms with an amplitude of τ̂ ≈ 2 ms. Note that
this delay modulation contains harmonics which would form
the conservative shape if only the single delay line was used.
By iteration of the corresponding access map for the total
delay of both lines, we first determine numerically the locking
regimes. Figure 5 shows the resulting Lyapunov multiplier μR

of the map as a function of the buffer size N of the modulated
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FIG. 4. Sample trajectories in turbulent (a) and laminar chaos (b,
c) for selected parameters as shown in Fig. 5. Modulation period T =
10 ms. Rotation numbers are ρ = 1 (b) and ρ = 1/2 (c). Signals x(t )
are the voltages U3(t ) of the circuit.

delay line, and the offset τ0 from the additional constant delay.
The multiplier is the exponential of the corresponding LE,
μR = exp(λR), and as such the geometric mean of the slopes
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FIG. 5. Numerically determined Lyapunov multiplier μR

(grayscale) as a function of the variable delay line buffer size N and
the delay offset τ0 from the second delay line. Standard sinusoidal
clock frequency modulation is applied, see text. Axes are normalized
to the values N1 and T , corresponding to the full modulation
period. Markers labeled (a)–(c) indicate parameter settings for time
series samples in Fig. 4. Upper and lower horizontal dashed lines
correspond to experimental section in Figs. 6 and 7, respectively.

of the inverse access map evaluated along the sequence of
points tn in time from Eq. (2):

λR = 〈log |Ṙ−1(tn)|〉n.

The choice of the multiplier over the exponent is more con-
venient for our setting. A multiplier of μR = 1 corresponds
to conservative delays, whereas 0 � μR < 1 are dissipative
delays with mode locking on a rational rotation number.
The laminar chaos condition expressed in multipliers reads
μRμF < 1, meaning that the contraction on the time axis
due to stable orbits of R−1 overcomes the expansion from
the chaotic map F (·) from Eq. (3) which acts on the system
trajectory. The displayed range shows the first “Brillouin
zone,” which is given by 0 � N � N1 and 0 � τ0 � T . The
value of N1 = 2000 corresponds to the aforementioned case
in which the buffer covers exactly one modulation period and
thus leads to a constant delay τ (t ) ≡ T . On the τ0 axis, a delay
offset equal to the period T maintains the type of modulation.
Thus the boundaries of the domain are conservative delays,
and the same pattern repeats for multiples of N1 and T ,
in N and τ0, respectively. The center of the domain shows
a large locking regime with rotation number ρ = 1. The
second largest structures are tongues with ρ = 1/2 (lower
left) and ρ = 3/2 (upper right), followed by smaller higher-
order tongues. Remarkably, there is a pronounced tendency
to suppress all mode locking in the vicinity of the domain
boundaries. We interpret this behavior as a general feature
of circle maps, which are constructed as a combination of a
conservative map and an offset.

For selected values of the buffer size N , we conduct the
electronic experiment and record time series for a range of τ0.
By means of the power spectra, we summarize the dynamics
for N = 1023 in Fig. 6. The frequency range shown includes
the first few harmonics of the modulation. There are clear
bands around τ0 = 5 and 15 ms, in which there are spectral
dropouts at integer multiples of the modulation frequency
100 Hz. These signatures correspond to laminar chaos of
the dominant mode locking with ρ = 1, as the wavelengths
of the plateau size are suppressed. The situation in the next
locking windows is the same, as they appear at multiples of
the modulation period. Differences in the remaining spectral
bands indicate the higher rotation numbers, which effectively
correspond to multiple phases of the return map being iterated
in parallel. In the turbulent chaos bands between the locking
regimes, the situation seems opposite. There are peaks related
to the mean delay time, which manifests in their hyperbolic
traces. The fact that the first peak shows at half the delay
frequency, 1/[2(τ0 + τ̄ )], is related to the negative input-
output correlation which appears at one loop cycle. In the
laminar chaos regimes, these peaks disappear in favor of the
dip signatures, whereas most of the spectral power accumu-
lates in a broad band at low frequencies, corresponding to
the timescale of the chaotic dynamics between the plateaus.
Finally, the timescale of the low-pass filter shows in the slow
overall decline of the spectrum in this range, which is less than
half of the cutoff frequency.

The corresponding section of the numerically determined
Lyapunov multiplier supports the experimental findings. In or-
der to estimate the boundaries of laminar chaos, we determine
the Lyapunov multiplier of the return map μF . The piecewise
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FIG. 6. Turbulent and laminar chaos, depending on delay offset
τ0, see text. (a) Power spectra with intensity (grayscale) normalized
to the highest peak in the shown range. Frequency resolution is
1 Hz. (b) Corresponding Lyapunov multiplier μR of the access map
for the modulation settings determined numerically. Vertical dashed
line: Inverse of the estimated average slope μ−1

F of return map as
shown in Fig. 2(a). Horizontal dashed lines in panel (a) correspond
to intersections of multipliers in panel (b).

slopes in Fig. 2(a) are determined, and a weighted average
assuming a uniform distribution in the typical amplitude range
reveals μF = 2.55. Laminar chaos as given by μR < μ−1

F is
indicated by the constant threshold. The determined regions
are in excellent agreement with the experimental results.

We repeat the experiment for a section at N = 400, as
indicated in Fig. 5. Based on the same calculations as before,
we expect to observe the robust locking at integer values of ρ,
and the sidebands with ρ = p/2 at odd p. The power spectra
are again calculated as before and summarized by the spectral
entropy HS (see Fig. 7). We indeed observe clear drops in the
entropy at the corresponding locations, corresponding to the
lower bandwidth due to a lower number of active degrees of
freedom in laminar chaos. The integer locking regimes are
more pronounced because of the lower value of μR, which
leads to a suppression of noise in the plateaus of the time
series. See snapshots of the time domain in Fig. 4. Noise
is inherently present in the experiment and originates from
various sources. A detailed investigation of laminar chaos and
noise is given in Ref. [30].

The presence of noise, together with the time series as
the only access to the dynamics of the system, motivates the
question about the reliability of the identification of laminar
chaos, and the accuracy of the location of the bifurcation
points. Moreover, our setup allows for phases with zero clock
frequency, in which even for a single delay line a constant
output can be artificially generated, despite the delays being
conservative. Depending on the settings, such waveforms
might look similar to the laminar chaos outputs. A means
to identify laminar chaos in experiment, and to distinguish
it against pseudolaminar chaos from paused delay lines, is
the input-output map as shown in Fig. 8. The figure shows
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FIG. 7. (a) Numerical Lyapunov multiplier μR (solid line) and
μ−1

F (dashed line). (b) Spectral entropy HS from experiments. Stan-
dard modulation (sinusoidal, see text) with T = 10 ms corresponds
to section N = 400 (N1 = 2000) in Fig. 5.

a grayscale plot of the trajectory, in which the intensity
represents the relative frequency spent at a point. One can
recognize the profile of the static map of Fig. 2 clearly con-
trasted against a background of transients. These correspond
to the plateaus and the bursts of laminar chaos, respectively.
Each plateau corresponds to a single point on the static map,
accumulating to the entire portrait. The return map is largely
robust against noise, because most of the fluctuations on the
plateau are slow as compared to the bursts, thus contribut-
ing to the emergence of the static map. In contrast, for the
pseudolaminar chaos case the corresponding portrait would
be entirely blurred (not shown). This is the result of several

-5 0 5
U1 (V)
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0

5

U
3 (

V
)

FIG. 8. Input-output representation of laminar chaotic trajectory.
The grayscale encodes the relative frequency of the dynamics visiting
a point of the return portrait, with black (white) corresponding to the
maximal (minimal) frequency.
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iterations of the nonlinear map occurring in the remaining
clipping regimes of the access map (see Fig. 3), such that
the simple return map is never found between any subsequent
modulation cycles, whereas laminar chaos always reveals a
return map between corresponding iterates of the access map.

V. CONCLUSION

We have implemented an electronic circuit experiment
demonstrating laminar chaos. A double diode nonlinearity
with a low-pass filter forms the nonlinear dynamical element.
Digital delay lines with a bandwidth in the hearable range
allow for chaotic dynamics with delay modulation. We have
shown that using a single such delay line leads to only con-
servative delays because of the simultaneous write and read
clock modulation. An additional delay line creates a delay
offset which allows one to access the dissipative delays. The

special composition of the delay modulation leads to charac-
teristic suppression regimes of dissipation in the vicinity of the
main conservative mapping. We have found laminar chaotic
patterns within the most robust locking regimes in excellent
agreement with numerical results using only properties of the
access map and the chaotic return map. Moreover, we have
analyzed spectral properties of laminar and turbulent chaos,
and shown that the spectral entropy is a useful indicator of
both dynamics. Finally, we have discussed how the laminar
chaotic return map is distinguished from other similar dynam-
ical patterns in conservative delay lines with paused outputs.
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