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Mean local autocovariance provides robust and versatile choice of delay for reconstruction
using frequently sampled flowlike data
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The first step in nonlinear time-series analysis can be selecting a delay for reconstruction. The most popular
choices of this delay are the first zero of the autocovariance and the first minimum of the mutual information.
An advantage of the first method arises from the robustness to noise of the autocovariance function, while an
advantage of the second is that the first minimum of the mutual information provides a useful choice of delay
for a wide range of nonlinear systems. We propose a method to choose a delay for frequently sampled flowlike
data based on a mean local autocovariance function and compare its performance to methods based on the
autocovariance and the mutual information. In addition, we compare the novel method to an established method
based on cross-validatory mean-square errors of predictors corresponding to different choices of delay. The mean
local autocovariance combines the versatility of the mutual information with some of the robustness to noise of
the autocovariance.
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I. INTRODUCTION

There exist few real-world systems for which the assump-
tion of linearity could be expected rigorously to be correct.
Nonlinear time-series analysis proceeds without making the
limiting assumption of linearity, and has found employment
in a wide range of areas. Applications of nonlinear time-
series analysis include separating the heartbeat of a fetus
from that of its host [1, pp. 193–196], predicting epileptic
seizures [2], exploring the mechanisms underlying sunspots
[3] and geological features [4], and characterizing fluctuations
in commodity prices [5,6].

Nonlinear time-series analysis of a real scalar time series
of M data (si )M

i=1 ⊆ R often begins with uniform time-delay
reconstruction. This proceeds according to a time-delay map
given by

vi = (si, si+τ , . . . , si+(m−1)τ )T ,

where m is called the reconstruction dimension and τ is
called the delay, and leads to M − (m − 1)τ delay vectors
(vi )

M−(m−1)τ
i=1 ⊆ Rm. Takens [7] (see also Sauer et al. [8])

proved that, in some sense, the delay τ does not typically
matter. Specifically, when the time-series arises from a dy-
namical system on a compact n-dimensional manifold N , as
long as the reconstruction dimension m is greater than or equal
to 2n + 1, almost all observation functions and delays τ will
typically lead to a time-delay map which embeds N in Rm

[7].

*jackmoore@tongji.edu.cn

This result only applies directly to systems which evolve
and can be observed without any extraneous stochastic or
dynamical disturbances, conditions which cannot be guaran-
teed in observations of experimental or real-world systems.
However, Stark [9] identified a wide range of conditions
under which, assuming that observations are independent of
deterministic external influences which unfold on a compact
p-dimensional manifold P , a time-delay reconstruction of
dimension 2(n + p) + 1 or greater embeds in Rm the manifold
M × P . Further, Stark et al. [10] showed that for systems
which are stochastically, rather than deterministically, forced,
or which are observed amid noise, under a wide range of
conditions the dimensional requirement for reconstruction
dimension is the same as in the case without disturbances:
m � 2n + 1.

Only for a time series of infinite length can the results of
Takens [7], Stark [9], or Stark et al. [10] provide direct support
that a time-delay map will faithfully represent geometry. In
practice, for finite data length M, if the delay τ is too small,
then successive coordinates of a delay vector are strongly
correlated, so that most delay vectors deviate little from the
straight line in Rm along which all coordinates would be
equal [11]. However, when the delay τ is too large successive
coordinates can practically be independent [12], which leads
to diffuse and confusing structure.

There exist numerous means [1,13,14] of choosing a delay
τ for uniform delay reconstruction from frequently sampled
flowlike data. Two of the most popular each involve choosing
the first delay τ which locally minimizes the mean redundancy
between pairs of successive coordinates. The first of these in-
volves minimizing locally the linear redundancy by choosing
τ as close as possible to the first zero of the autocovariance
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function

C
[
(si )

M
i=1

]
(τ ) = 1

M − τ

M−τ∑
i=1

[(s(i) − s̄[1,M−τ ] )

× (s(i + τ ) − s̄[τ+1,M] )],

where s̄[k,l] is the mean s̄[k,l] = 1
l−k+1

∑l
j=k s( j). The second

[15] involves minimizing locally the mean redundancy of the
time series after it has in some way been discretized [16]. For
i = 1, 2, . . . , M, let ai denote the state to which the datum si

is discretized, so that the full discretized sequence is (ai )M
i=1.

The second approach involves choosing the smallest τ which
is a local minimum of the mutual information

I (τ ) = 1

M − τ

M−τ∑
i=1

log

[
P0,τ (ai, ai+τ )

P0(ai )Pτ (ai+τ )

]
,

where, for j = 0, τ , Pj (a) is the probability of occurrences
of the symbol a in the symbolic time series (ai+ j )M−τ

i=1 , and
P0,τ (a, b) is the probability of occurrences of the ordered pair
(a, b) in the time series [(ai, ai+τ )]M−τ

i=1 .
The method of uniform delay reconstruction has received

criticism [17,18]. A more general recipe for delay reconstruc-
tion in dimension m is nonuniform delay reconstruction given
by

vi = (si+τ1 , si+τ2 , . . . , si+τm )T ,

where 0 � τ1 < τ2 < . . . < τm. For fixed reconstruction di-
mension m, this method of delay reconstruction has m free pa-
rameters. In contrast, a uniform delay reconstruction contains
only one free parameter, τ . There is little reason to believe that
a uniform delay reconstruction would generally be optimal.
In addition, the method of mutual information is sometimes
criticized [17] because discretization of continuous data often
involves a tuning parameter; for example, a histogram bin
width.

Chan and Tong [19] (see also Cheng and Tong [20])
describe an approach to identify coordinates for a nonuniform
time-delay reconstruction through cross-validation of λ-step
ahead predictors F̂ : Rm → R given by

F̂ (v) =
∑M−(K−1+λ)

i=1 si+K−1+λ φ
(

v−vi
h

)
∑M−(K−1+λ)

i=1 φ
(

v−vi
h

) ,

where φ : Rm → R is a kernel function, h ∈ R is a band-
width, K is the length of the reconstruction window, and
terms with which to predict si+K−1+λ are sought from among
si, si+1, . . . , si+K−1. They consider the leave-one-out cross-
validatory mean-square error, which with prediction horizon
λ is given by

Vλ(T ) =
∑M−(K−1+λ)

i=1 [si+K−1+λ − F̂ (i)(vi )]2

M − (K − 1 + λ)
,

where T = (τ1, τ2, . . . , τm) ∈ Rm is the vector of de-
lays, which satisfy 0 � τ1 < τ2 < . . . < τm < K , and for

i = 1, 2, . . . , M − K , F̂ (i) : Rm → R given by

F̂ (i)(v) =

∑M−(K−1+λ)
j=1
j �=i

s j+K−1+λ φ
( v−v j

h

)
∑M−(K−1+λ)

j=1
j �=i

φ
( v−v j

h

)
is a version of the predictor which is not trained to predict the
value si+K−1+λ. For a stationary bounded sequence (si)M

i=1 the
cross-validatory method has an advantage in terms of math-
ematical rigour [19]. For fixed K ∈ Z+, as M grows large, if
h = M−μ(m)/m for some μ(m) increasing in m then the proba-
bility approaches one that the cross-validatory method iden-
tifies the indices 0 � τ1 < τ2 < . . . < τm < K defining any
least-squares optimal set of regressors si+τ1 , si+τ2 , . . . , si+τm

for si+K−1+λ.
This cross-validatory approach can also be adapted to the

simultaneous selection of uniform delay and reconstruction
dimension [21]. This procedure allows simultaneous selec-
tion of a delay and a reconstruction dimension, which has
the potential to provide better results then performing these
tasks sequentially. Of course, the best choice of embedding
parameters could also depend on the purpose to which the
reconstruction will be applied [1].

Despite its limitations and the availability of a mathemat-
ically rigorous means to choose simultaneously dimension
and delay(s), the process of first choosing a delay and sub-
sequently choosing a reconstruction dimension suitable for
this delay remains a popular choice for nonlinear time-series
analysis [22–26]. In part this may be because of its simplicity
and ease of implementation, or due to its exposition in im-
portant textbooks [1,12]. Also, a researcher in nonlinear time-
series analysis might be reluctant to have the effectiveness
of a method rely on implementation of precisely the optimal
nonuniform delay reconstruction. Hence, this limitation of
uniform time-delay reconstruction is coupled with a strength;
many people, wary of overfitting, would be willing to sacrifice
a significant amount of performance to reduce the number of
parameters of a model from m to 1.

The two most popular methods of selecting a uniform
delay have relative strengths and weaknesses, which will be
outlined now and illustrated in Sec. III. Mutual information
allows selection of useful delays for systems for which the
method of autocovariance fails. However, the autocovariance
is far more robust to noise than is the mutual information.
We consider a function, the mean local autocovariance, which
combines the versatility of the mutual information function
with some of the robustness to noise of the autocovariance
function. Furthermore, the method avoids tuning parameters.
We compare the mean local autocovariance method not only
to the autocovariance and mutual information methods, but
also to versions of the cross-validatory method applicable to
choosing uniform delay reconstructions.

II. METHODS

A. Mean local autocovariance

Underlying the proposed method is the principle that if
consecutive nonoverlapping intervals of duration τ are inde-
pendent then, in particular, two data separated by duration τ
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will be independent. That is, independence of these intervals
would imply that τ satisfied the property for which we seek
a zero of the autocovariance or a minimum of the mutual in-
formation. Also, over a short interval 2τ , the dynamics could
be approximated linearly, so that independence of consecu-
tive nonoverlapping intervals of data (si )

j+τ−1
i= j and (si)

j+2τ−1
i= j+τ

could be sought by seeking linear independence. This would
involve seeking a root of the autocovariance C[(si )

j+2τ−1
i= j ](τ )

of the short time series (si )
j+2τ−1
i= j .

The discussion of the preceding paragraph considers only
a particular segment of the time series. The best delay τ for
the time series as a whole is sought by calculating the mean
of the autocovariances at delay τ of all intervals of length 2τ ,

L(τ ) = 1

M − 2τ + 1

M−2τ+1∑
j=1

C
[
(si)

j+2τ−1
i= j

]
(τ ),

called the mean local autocovariance. The proposed method
involves seeking the first root of the mean local autocovari-
ance L(τ ) which satisfies τ > 1 and at which there is a
negative slope.

We note that the mean local autocovariance will not usually
exactly satisfy L(τ ) = 0 for any integer τ > 1. Usually, there
will be a delay τ ∗ for which L(τ ∗) > 0 and L(τ ∗ + 1) < 0.
The mean local autocovariance method involves choosing the
delay τ = τ ∗ or τ = τ ∗ + 1 for which L(τ ) has a value closer
to zero. Such a delay τ will be referred to as the first interior
root of the mean local autocovariance.

The condition τ > 1 arises because the mean local au-
tocovariance always satisfies L(1) = 0. It can be hard to
tell whether transitions from positive to negative sign which
occur for small τ are meaningful and will lead to appropriate
delays. Hence, this method is only suitable for determining
reconstruction delays for frequently sampled flowlike data.
Although roots at which there is a negative slope which
occur for small delay τ might not be meaningful, we do not
complicate our heuristic by attempting to distinguish further
between small and large τ .

The stipulation of a negative slope requires some expla-
nation. For a delay τ much smaller than the delay which
leads to maximal independence we would expect similarity
between one sequence of τ data and the next, and hence, a
positive value of L(τ ). If the first root which satisfies τ � 2
has a positive slope, then for small delay τ � 2 the mean
local autocovariance must be negative. This could be the case:
(1) because the delay which minimizes redundancy is less
than two, or (2) because of noise, a short sample size or
other sources of imprecision or inaccuracy. When we know
that we are dealing with frequently sampled flows we would
not expect the optimal delay to be τ = 1 and, ruling out
the first case, we presume that noise has impacted the mean
local autocovariance in the small τ part of its domain. The
requirement of a negative slope increases the probability that
the mean local autocovariance method selects a meaningful
delay for frequently sampled flowlike data, but this extra
condition might not be appropriate when the data are not
known a priori to arise from a frequently sampled flow.

A different method to identify the mean local autocovari-
ance function, which is more relevant where the delay τ is

large, is related to the total squared error involved in using
a translation and possibly a reflection (by which we mean
a multiplication by “−1”) of each segment of τ consecutive
observations (si)

j+τ−1
i= j to describe the next segment of τ

consecutive observations (si )
j+2τ−1
i= j+τ . The optimal translation

would map the mean of each (possibly reflected) segment to
the mean of the next, and the resultant summed square error
would be

S j =
j+τ−1∑

i= j

(α × ŝ[ j+τ, j+2τ−1](i + τ ) − ŝ[ j, j+τ−1](i))
2

=
j+τ−1∑

i= j

[(ŝ[ j+τ, j+2τ−1](i + τ ))2 + (ŝ[ j, j+τ−1](i))
2

− 2α × ŝ[ j, j+τ−1](i)ŝ[ j+τ, j+2τ−1](i)],

where ŝ[ j,k](i) � s(i) − s̄[ j,k] is the difference from the mean
over the interval [ j, k] and α = −1 when a reflection has taken
place, while otherwise α = +1. If the time series is stationary
with variance σTS

2 and τ is not too small, then each of the
first two terms in the summand can be approximated by τσTS

2.
Hence, the total summed squared error in this case is

S =
M−2τ+1∑

j=1

S j

= 2τ (M − 2τ + 1)σTS
2 − 2(M − 2τ + 1)α × L(τ )

= 2τ (M − 2τ + 1)σTS
2 − |2(M − 2τ + 1)L(τ )|,

where the final equality arises from allowing minimization of
S to dictate whether or not to include a reflection in all the
transformations of one segment to the segment which follows.
This sum involves τ (M − 2τ + 1) error terms, and so, subject
to the assumptions and approximations we have used, the
mean-square error of these transformations is

1

τ (M − 2τ + 1)
S = 2σTS

2 − 2
τ
|L(τ )|.

Thus, attempting to minimize the redundancy between suc-
cessive segments by maximizing the mean-square error in-
curred by these transformations is equivalent—subject to our
approximations—to minimizing 1

τ
|L(τ )|, and this will be

minimized at a root of the mean local autocovariance.
The preceding sketch did not motivate, but instead was

motivated by, our initial investigation of the mean local au-
tocovariance as a means to identify delays for reconstruction.
Other similar variational approaches might feel like more
natural ways to minimize redundancy. For example, instead
of choosing a single α ∈ {−1,+1} a distinct least-squares
optimal factor α j ∈ {−1,+1} could be chosen for each j =
1, 2, . . . , M − 2τ + 1. This approach could suggest minimiz-
ing not the sum of covariances but the sum of absolute values
of covariances. In turn, choosing a least-squares optimal se-
quence α1, α2, . . . , αM−2τ+1 ∈ R could suggest minimization
of a sum of squares of covariances. Our limited investigation
of the functions identified via these arguably more obvious
variational approaches suggested that they did not exhibit
roots—they are, after all, sums of nonnegative terms—and
such minima as they exhibited were not stable with respect to
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observational noise. We will not present detailed results from
these heuristics.

B. Calculation of mutual information

Following Abarbanel [12], Kantz and Schreiber [1],
and Small [13], we discretize the time series (si)M

i=1
with bins of identical width which partition the interval
[min [(si )M

i=1], max [(si)M
i=1]]. If this region is spanned by B

bins, then the joint probability P0,τ must be estimated for
B2 distinct symbols. Although methods have been developed
which can estimate entropies with less bias [27], the histogram
approach seems popular in nonlinear time-series analysis
[1,12]. There exist sophisticated ways to select a good bin
width with which to estimate a probability distribution [28].
However, Kantz and Schreiber [1] suggest that since the
variation of mutual information is of more interest than its
absolute value, the most critical requirement when using a
histogram to estimate the mutual information is to choose bins
wide enough that I (τ ) varies stably with τ . For simplicity, but
fairly arbitrarily, the width of each bin is chosen such that the
mean number of data per estimate is about eight. Specifically,
B is chosen as B = �√M/8	, where, for z ∈ R, �z	 denotes
the smallest integer greater than or equal to z.

C. Calculation of cross-validatory mean-square error

Following Chan and Tong [19], we linearly scale the
data such that it has unit variance before calculating the
leave-one-out cross-validatory mean-square error (CV). Since
we are focusing on uniform delay reconstruction, following
Giannerini and Rosa [21], we consider only sets of delays
of the form τi = (i − 1)τ , i = 1, 2, . . . , m. We calculate the
cross-validatory error for two distinct prediction horizons λ

which will be detailed later (Sec. II E), for each combina-
tion of dimension m = 1, 2, . . . , 8 and uniform delay τ =
1, 2, . . . , τmax, where, as detailed in Sec. II D, τmax depends
on the system under consideration. Following Chan and Tong
[19], we use a “data-driven” bandwidth h. Specifically, we
consider a geometric sequence of 120 potential bandwidths
beginning at 2−20 and ending at 210, with each candidate
bandwidth separated by a factor of 21/4 from that which
precedes it. We note that the total number of bandwidths is
similar to the number, 100, considered by Chan and Tong
[19]. Furthermore, the logarithmic interval between succes-
sive bandwidths is similar to the mean logarithmic separation
of the bandwidths which Cheng and Tong [20] list when
they describe their mean-square error calculation. The final
bandwidth used for each dimension m is that which mini-
mizes the cross-validatory error. Again following Chan and
Tong [19], we employ a Gaussian kernel φ : Rm → R, v 
→
exp (− 1

2‖v‖2
2).

D. Data

The autocovariance, mutual information, cross-validatory
and and mean local autocovariance methods for choosing
delays are evaluated on three well-established chaotic flows
as well as a quasiperiodic system with a tunable parameter
a. Also considered is a ±10 mV electrocardiogram (ECG),
sampled at 250 Hz and a resolution of 12 bits [29], comprising

the first M = 5 000 data of the first channel of the digitized
recording “chf10” obtained from the BIDMC Congestive
Heart Failure Database [30,31]. The chaotic flow data com-
prised the x coordinates of the Rössler [32] system⎛

⎜⎝
ẋ

ẏ

ż

⎞
⎟⎠ =

⎛
⎜⎝

−z − y

x + ay

b + z(x − c)

⎞
⎟⎠,

with a = 0.15, b = 0.20 and c = 10.0, sampled with step size
�t = 0.1; the Lorenz [33] system⎛

⎜⎝
ẋ

ẏ

ż

⎞
⎟⎠ =

⎛
⎜⎝

σ (y − x)

−y + rx − xz

−bz + xy

⎞
⎟⎠

with r = 28, b = 8/3 and σ = 10, sampled with step size
�t = 0.01; and the Moore and Spiegel [34] system⎛

⎜⎝
ẋ

ẏ

ż

⎞
⎟⎠ =

⎛
⎜⎝

y

z

−z − (T − R + Rx2)y − T x

⎞
⎟⎠

with, following Sprott [35, p. 77], T = 6 and R = 20, sam-
pled with step size �t = 0.01. The final, quasiperiodic flow
comprised a series of values x = ax1 + (1 − a)x2 where 0 �
a � 1 and for i = 1, 2,(

ẋi

ẏi

)
= ωi

[(
−yi

xi

)
+ (

1 − xi
2 − yi

2
)(xi

yi

)]
,

where ω1 = 2π is the slower angular frequency and ω2 = 20
is the faster angular frequency. For i = 1 or 2, in the absence
of noise, the trajectory described by the coordinates xi, yi

tends towards motion along the unit circle with constant speed
ωi. Hence, in the absence of noise, x = ax1 + (1 − a)x2 tends
towards a quasiperiodic signal, and when a = 0 or a = 1
this signal is periodic with period 1 or π/10, respectively.
This flow is sampled with step size �t = 0.01, and so when
a = 0 or 1 the period of x is T1 � 100 sampling periods or
T2 � 10π ≈ 31 sampling periods, respectively.

Each system was integrated using a Runge-Kutta (4, 5)
method [36]. The three chaotic systems were integrated from
the initial condition (1, 0, 0)T , while the limit cycle was
integrated from an initial condition each coordinate of which
was chosen independently and uniformly at random from a
Gaussian distribution with mean zero and unit variance. To
allow convergence onto the attractor, in each case the first
10 000 values were discarded. Time series of length M = 500,
5 000, and 50 000 were considered.

The optimal delay according to each method was selected
from among τ = 1, 2, . . . , τmax, where τmax = 20, 30, 80, 50
and 25 for data from the Rössler [32] system, the Lorenz [33]
system, the Moore and Spiegel [34] system, the quasiperiodic
system and ECG, respectively.

1. Noise

To each set of flow (but not ECG) data was added Gaussian
observational noise with mean zero and standard deviation
equal to ε = 0%, 10% or 50% of the population standard
deviation of the original time series.
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Since dynamic noise led to numerical issues or divergence
for the Rössler [32] and Moore and Spiegel [34] systems, this
was added only to the Lorenz [33] and quasiperiodic systems.
Gaussian dynamic noise was added, at a relative level ε = 5%,
10%, or 20% and independently to each of coordinate, in
the following manner. To generate a time series of length M
with dynamic noise of level ε, first, the system was integrated
from the usual initial condition for M + 10 000 time steps,
and the first 10 000 data for each coordinate was discarded.
The population standard deviation σi of each coordinate i was
calculated. Next, the system was integrated from the same
initial condition for M + 10 000 time steps, adding to each
coordinate i, after each time step, Gaussian noise with mean
zero and standard deviation εσi. Dynamic noise was added
only after observation.

E. Evaluation

In the absence of noise the first minimum of the mutual
information is a trusted means to choose a sensible delay for
uniform delay reconstruction. Although we do exhibit and
examine reconstructions which arise from competing delays,
to some extent the assessment of different methods is based on
how well they can maintain, in the presence of noise, a value
of delay which is close to that obtained with clean data and
using the mutual information method.

For the quasiperiodic attractor, at least when a = 0 or 1, we
can identify an unambiguously optimal value for the delay.
A delay equal to a quarter of the period—τ = 25 for a = 0
and τ = 5π/2 ≈ 7.85 ≈ 8 when a = 1—leads to a circular
embedding which leads to wide separation of distinct regions
of state space. As a increases from 0 to 1 we might naively
expect an appropriate delay to increase monotonically from
τ = 8 to τ = 25.

To facilitate comparison, before they were plotted the
values of the autocovariance, mutual information, cross-
validatory error and mean local autocovariance were scaled
linearly. Specifically, for each distinct noise level ε and length
M of data the values of the autocovariance, mutual informa-
tion, and mean local autocovariance were individually scaled
linearly to span an interval of unit length. Because only their
minima, and not their roots, were sought, before they were
plotted the mutual information and cross-validatory error were
also shifted by a constant such that they spanned the interval
[0, 1].

Three of the methods which we consider could be thought
of as arising through restricting attention to reconstruction
dimension m = 2. Hence, for the fourth method—the cross-
validatory method—in some cases we consider restricting
the reconstruction dimension to m = 2. However, we do also
present Vλ(τ ) versus τ for the dimension for which the
minimal cross-validatory error is achieved. We write m̂ for
the error-minimizing reconstruction dimension. For the three
chaotic flows and for ECG data we consider predictions either
λ = 1 steps ahead or a number of steps λ equal to the re-
construction delay selected via the mean local autocovariance
method when no noise is added by us. For the quasiperiodic
data we consider predicting a number of steps ahead given by
the integer closest to a quarter of the period corresponding to
linear interpolation between the frequencies of the noiseless

signals for a = 0 and a = 1,

λ = nint

(
1

4

{
�t

[
a + (1 − a)

10

π

]}−1
)

, (1)

where nint(·) denotes rounding to the nearest integer.

III. RESULTS AND DISCUSSION

A. Flow data

Figure 1 pertains to M = 5 000 observations of the Rössler
[32] system made amid ε = 0%, 10% or 50% added Gaussian
measurement noise. Figures 1(a), 1(b) and 1(e) show that
three of the methods, autocovariance, mutual information, and
mean local autocovariance, produce similar results for this
time series, which has a strong almost-periodic component.
The delays suggested by the autocovariance and mean local
autocovariance methods, τ = 15 and τ = 14, respectively, are
stable with respect to noise level. It is hard to discern from the
figure, but the mutual information method suggests delay τ =
15 for ε = 0% and 50%, and suggests τ = 14 for ε = 10%.
It would be difficult to infer confidently from Fig. 1(c), but
for a clean time series the minimum of the cross-validatory
error for prediction horizon λ = 1 (for the error-minimizing
reconstruction dimension m̂ = 2) occurs at time delay τ = 2.
In the presence of observational noise ε = 10% or ε = 50%
the location of the minimum of V1 for m = m̂ is instead τ = 5.
For reconstruction dimension m = 2 the minimum of V1 is less
stable as nonvanishing noise levels vary: its location changes
from τ = 19 to τ = 1 as observational noise increases from
ε = 10% to ε = 50%. Figure 1(d) shows that, when consid-
ering the longer prediction horizon λ = 14 and reconstruction
dimension m = 2, the minimum of the cross-validatory error
increases from τ = 5 to 12 and through to 15 as the level
of observational noise increases from ε = 0% to 10% and
through to 50%. The figure also shows that for m = m̂ the
minimum of V14 remains stable at τ = 4 as the noise level
varies.

Figure 1(f) shows the Rössler [32] attractor reconstructed
[37] in dimension m = 2 from clean observations using delays
τ = 4 and 14. The delay τ = 14 is suggested by the mean
local autocovariance method, while τ = 4 is suggested by
cross-validation from reconstruction in the error-minimizing
dimension m̂ when using a prediction horizon λ = 14. The fig-
ure shows that under τ = 14, the delay suggested by the mean
local autocovariance method, the two-dimensional reconstruc-
tion of the attractor occupies a larger fraction of its convex
hull than is the case under τ = 4. This will tend to allow
clearer separation of distinct points and distinct trajectories in
state space reconstructed in two dimensions. However, τ = 14
does lead to an additional intersection in m = 2 dimensions
(evident at the top right of the reconstruction) which τ = 4
avoids. Hence the delay τ = 4 may be more appropriate than
τ = 14.

Figure 2 presents results for M = 5 000 observations of the
Lorenz [33] system made amid ε = 0%, 10% or 50% added
Gaussian observational noise. Figures 2(b)–2(e) show that
three of the methods, mutual information, cross-validation and
mean local autocovariance, can produce from clean observa-
tions of the x-coordinate of this system the same choice of
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FIG. 1. For M = 5 000 observations of the Rössler [32] system made amid ε = 0%, 10%, or 50% added Gaussian measurement noise,
the variation with delay τ of: (a) autocovariance (C), (b) mutual information (I), (c) cross-validatory mean-square error with prediction
horizon λ = 1 (V1) for reconstruction dimension (left) m = 2 and (right) m = m̂, (d) cross-validatory mean-square error with λ = 14 (V14)
for (left) m = 2 and (right) m = m̂, and (e) mean local autocovariance (L). For each distinct noise level ε, each function has been scaled
linearly such that it spans an interval of unit length. In addition, for each distinct noise level ε, I, and Vλ have been shifted to span [0, 1]. (f)
Time-delay reconstructions of a clean time series using the delays τ = 4 and τ = 14 suggested by the minimum of the cross-validatory error,
using prediction horizon λ = 14 with the optimal reconstruction dimension m̂, and the first interior root of the mean local autocovariance,
respectively.

delay: τ = 17. The first interior root of the mean local auto-
covariance is stable as observational noise is increased to ε =
50%. In contrast, it is hard to discern minima in the mutual in-
formation produced from noisy observations. Close inspection
might reveal that for ε = 10% the first minima is at τ = 20
and for ε = 50% the first minima is at τ = 15. Figure 2(c)
shows that when reconstruction dimension restricted to m =
2, the minimum of the cross-validatory error using prediction
horizon λ = 1 is fairly stable as observational noise increases

from ε = 0% to ε = 10%; the minimum shifts from τ = 17 to
τ = 20. However, if observational noise increases to ε = 50%
or if the error-minimizing reconstruction dimension m = m̂ is
used then the minimum shifts dramatically, into the interval
1 � τ � 4. When using instead prediction horizon λ = 17
and with reconstruction dimension restricted to m = 2, as
Figure 2(d) suggests, the minimum of the cross-validatory
error remains at τ = 16 or 17 as the level of observational
noise varies. If the error-minimizing reconstruction dimension
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FIG. 2. (a–e) Figures analogous to Figs. 1(a)–1(e), but for M = 5 000 points from the Lorenz [33] system and using, in (d), prediction
horizon λ = 17. (f) Time-delay reconstructions of a clean time series using the delays τ = 11 and τ = 17 suggested by the minimum of the
cross-validatory mean-square error using prediction horizon λ = 17 with the optimal reconstruction dimension m̂ and the first interior root of
the mean local autocovariance, respectively.

m = m̂ is used, then the minimum shifts dramatically, from
τ = 11 to 18 to 4 as the noise level increases from ε = 0%
to 10% to 50%. Figure 2(a) shows that the autocovariance
curve is admirably stable with respect to noise, but that it
does not achieve a root (and thus suggest a delay) over
0 � τ � 30.

The Lorenz [33] attractor reconstructed in dimension m =
2 from clean observations using delays, τ = 11 and 17, ap-
pears in Fig. 2(f). The delay τ = 17 was identified using the
mutual information and mean local autocovariance methods
as well as several incarnations of the cross-validation method,
while τ = 11 was the minimum of the cross-validatory error
using clean observations, a prediction horizon λ = 17 and
the error-minimizing reconstruction dimension m̂. The figure

suggests that τ = 17 unfolds the Lorenz [33] attractor accept-
ably throughout most of the two-dimensional reconstruction
space. However, the figure also suggests that the smaller delay
more clearly separates distinct points which appear at the
top right and bottom left of the portrait. Thus, τ = 11 may
correspond to a time delay better than τ = 17.

Figure 3 relates to M = 5 000 observations of the Moore
and Spiegel [34] system made amid ε = 0%, 10%, or 50%
added Gaussian measurement noise. Figure 3(a) shows that
the autocovariance curve is impressively stable with respect
to noise, but that it does not achieve a root (and thus suggest
a delay) over 0 � τ � 80. As Fig. 3(b) shows, the curve of
mutual information is less stable with respect to noise, and
even for the curve of mutual information produced from clean
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FIG. 3. (a–e) Figures analogous to Figs. 1(a)–1(e), but for M = 5 000 points from the Moore and Spiegel [34] system and using, in
(d), prediction horizon λ = 51. (f) Time-delay reconstructions of a clean time series using delays τ = 38 and τ = 51 suggested by the first
minimum of the mutual information and the first interior root of the mean local autocovariance, respectively.

observations it is hard to identify by eye the delay suggested
by the mutual information method. However, for clean data
the mutual information exhibits subtle local minima at τ =
38, 42, 45, 51, 58, 64, 70, 77, and 80. Figure 3(c) illustrates
that with reconstruction dimension restricted to m = 2, the
minimum of the cross-validatory error with prediction horizon
λ = 1 is fairly stable as observational noise is added; the
minimum shifts from τ = 2 for clean observations to τ = 1
for noise levels of either ε = 10% or ε = 50%. However, if
the error-minimizing reconstruction dimension m = m̂ is em-
ployed, then the minimum is less stable. Specifically, as obser-
vational noise increases from ε = 0% to 10% then increases
again to ε = 50% the delay increases from τ = 2 to 11 then
decreases to τ = 1. As Fig. 3(d) shows, when using the larger

prediction horizon λ = 51 and reconstruction dimension m =
2, the minimum of the cross-validatory error increases from
τ = 12 to 38 to 59 as the level of noise increases from ε = 0%
to 10% to 50%. When the error-minimizing dimension is used
instead, the minimum of the cross-validatory error is more
stable, and increases from τ = 65 to 72 to 78 as noise changes
from ε = 0% to 10% to 50%. Figure 3(e) reveals that the
choice of delay suggested by the mean local autocovariance
remains stable as the level of observational noise increases
from ε = 0% to 10%; for each of these noise levels the mean
local autocovariance method suggests the delay τ = 51. For
noise ε = 50% the mean local autocovariance has several
zeros in the interval shown, but the general trend remains
similar to that for clean data and, after smoothing, the mean
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FIG. 4. Figures analogous to Figs. 1(b)–1(e), respectively, but for M = 5 000 observations of the Lorenz [33] system with ε = 0%, 5%,
10%, or 20% added Gaussian dynamic noise and using, in (c), prediction horizon λ = 17.

local autocovariance method could suggest a delay similar to
that which it suggests for clean data.

Figure 3(f) presents the Moore and Spiegel [34] attractor
reconstructed in dimension m = 2 from clean observations us-
ing delays τ = 38 and 51. For the delay, τ = 51, obtained us-
ing the mean local autocovariance method, the majority of the
attractor is unfolded clearly and its structure becomes more
easily interpretable. However, when the delay is decreased
to τ = 38—the delay suggested by the mutual information
and also by the cross-validatory method in the presence of
ε = 10% observational noise when using a prediction horizon
λ = 51 and reconstruction dimension m = 2—unnecessary
intersections disappear. Hence, a delay smaller than that sug-
gested by the mean local autocovariance method may lead to
better reconstruction in two dimensions.

Figure 4 pertains to dynamical instead of observational
noise. The figure shows the mutual information, cross-
validatory error, and the mean local autocovariance calculated
from M = 5 000 observations of the Lorenz [33] system made
in the presence of ε = 0%, 5%, 10%, or 20% added Gaussian
dynamic noise. It would not be easy to discern reliably from
Fig. 4(a), but as noise increases from ε = 0% to 5% the
delay suggested by the mutual information method increases
from τ = 17 to τ = 18. For the higher level of dynamic
noise ε = 10% the minimum of the mutual information occurs
at the upper boundary of the domain considered, τ = 30,
while for ε = 20% a delicate minimum appears at τ = 26.
Figure 4(a) reveals that although the mutual information is,
in some sense, quite stable with respect to dynamic noise,
its subtle minima are easily obscured. Figure 4(b) shows that

when the cross-validatory error is restricted to m = 2 and
while considering a prediction horizon λ = 1, its minimum
changes monotonically as noise increases, from τ = 17 to
13 to 11 and through to 7 as ε increases from 0% to 5% to
10% and through to 20%. Increasing levels of dynamic noise
correspond to shorter correlation times. In contrast, when
using the error-minimizing reconstruction dimension m = m̂,
the location of the minimum of the cross-validatory error does
not consistently decrease with noise level. As the level of
dynamic noise increases the minimum moves from τ = 17 to
27 to 28 and, finally, back to 27. Figure 4(c) shows that similar
patterns are present when instead a longer prediction horizon
λ = 17 is employed. When embedding dimension is restricted
to m = 2, the first interior zero of the cross-validatory error
changes monotonically as dynamic noise increases; from τ =
17 to τ = 11 to τ = 11 through to τ = 8 as ε increases from
0% to 5% to 10% through to 20%. However, when using
the error-minimizing reconstruction dimension m = m̂, as the
level of dynamic noise increases the minimum moves from
τ = 11 to 23 to 30 and, finally, decreases to 26.

Figure 5 shows how trends in the mean local autoco-
variance vary with data length M for observations of the
Lorenz [33] system made amid ε = 0%, 10%, or 50% added
Gaussian observational noise. From Fig. 5(a) it can be seen
that, when M = 50 000 observations are available, the trends
of the mean local autocovariance remain stable as noise
increases to ε = 50%, and the delay suggested by the mean
local autocovariance method remains fixed at τ = 17. Fig-
ure 5(b) shows that even when only M = 500 observations are
available, mean local autocovariance and the delay which it
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FIG. 5. Mean local autocovariance (L) versus τ for (a) M =
50 000 and (b) M = 500 observations of the Lorenz [33] system
made amid ε = 0%, 10%, or 50% added Gaussian observational
noise. For each distinct noise level ε and data length M, the mean
local autocovariance function has been scaled linearly such that it
spans an interval of unit length.

suggests remain stable for observational noise up to ε = 10%.
For the higher noise level ε = 50% there are several roots
over 0 � τ � 30, but the broad trend remains stable and,
after smoothing, the mean local autocovariance method could
suggest a delay similar to that which it suggests for clean data.

Figure 6 relates to delays selected using different methods
for M = 500 observations of the quasiperiodic system made
amid ε = 0%, 10%, 20%, or 50% added Gaussian observa-
tional noise for values of the parameter a in the interval
0 � a � 1. When a = 0 or 1 the signal is sinusoidal with
quarter-period 5π/2 ≈ 8 or 25 sampling intervals, respec-
tively, and so a robust method for selecting reconstruction
delay would presumably interpolate in some way between
τ = 8 when a = 0 and τ = 25 when a = 1. Figure 6(a) shows
that the autocovariance method does just this, although the
interpolation is not monotonic but curiously peaked around
a = 0.7 or 0.8. Figure 6(b) reveals that in the presence of
noise the mutual information method appropriately selects a
delay close to τ = 8 when a = 0, but on average suggests
a delay of only about τ = 10 when a = 1. Without noise,
the mutual information method interpolates from an average
delay of τ = 2 when a = 0 to a delay of τ = 3 when a = 1.
In Fig. 6(c) are shown the delays suggested by the cross-
validatory method using a prediction horizon λ defined by
Eqn. (1) and the error-minimizing embedding dimension m =
m̂. Applied to clean data, this method interpolates from a
mean delay of τ = 7.1 when a = 0 to τ = 15.8 when a = 1,

and exhibits a distinct peak at a = 0.3. For noisily observed
data the technique suggests average delays higher than τ = 8
when a = 0. However, when a = 1 the technique suggests for
noise levels ε = 20% and 50%, on average, delays τ = 25.5
and 28.3, respectively, which are close to the target τ = 25.
Finally, as can be seen from Fig. 6(d), for noise levels 20%
or less, the mean local autocovariance method interpolates
correctly and monotonically from τ = 8 to an average delay
close to τ = 25. For the highest noise level, ε = 50%, roots
of the mean local autocovariance which occur for low delay
τ [Fig. 5(b)] mean that the mean local autocovariance method
suggests an average delay of only τ = 2.9 when a = 1.

Figure 7 relates instead to dynamical noise. Specifically,
the figure presents delays selected for M = 500 observations
of the quasiperiodic system for 0 � a � 1 made amid ε =
0%, 10%, 20%, or 50% added Gaussian dynamical noise.
The results are quite similar to those obtained for obser-
vational noise and presented in Fig. 6. Figure 7(a) shows
that the autocovariance method successfully moves from τ =
8 when a = 0 to τ = 25 when a = 1, although there is a
surprising peak around a = 0.7 or a = 0.8. Figure 7(b) reveals
that in the presence of noise the mutual information method
appropriately selects a delay close to τ = 8 when a = 0,
but on average suggests a delay much lower than τ = 25
when a = 1. Figure 7(c) presents delays suggested by the
cross-validatory method using a prediction horizon λ defined
by Eq. (1) and the error-minimizing embedding dimension
m = m̂. For noisy data the technique suggests average delays
higher than τ = 8 when a = 0 and higher than τ = 25 when
a = 1. Figure 7(d) shows that for dynamical noise of levels
10% or less, the mean local autocovariance method on average
interpolates monotonically from τ = 8 to an average delay
close to τ = 25. For the highest level of dynamical noise,
ε = 20%, the mean delay suggested by the mean local auto-
covariance method consistently lies below the delay suggested
for less noisy data.

B. Electrocardiogram (ECG) data

Figure 8 relates to the M = 5 000 ECG data described
in Sec. II D. In Fig. 8(a) the data are shown plotted against
time. Figures 8(b)–8(d) show the variation with delay τ of
the autocovariance, mean local autocovariance, mutual infor-
mation, and cross-validatory error. Careful inspection of the
figures may reveal that two of the methods, autocovariance
and mutual information, suggest the same choice of delay;
the first zero of the autocovariance and the first minimum of
mutual information coincide at τ = 18. The cross-validatory
and mean local autocovariance methods suggest quite dif-
ferent choices of delay. The first interior root of the mean
local autocovariance occurs at τ = 4, while the minimum of
the cross-validatory error for prediction horizon λ = 1 and
reconstruction dimension m = m̂ = 2 occurs at τ = 2. When
using the prediction horizon λ = 4, the global minimum of
the cross-validatory error is located at τ = 3 when using
reconstruction dimension m = 2 and at τ = 24 when using the
error-minimizing reconstruction dimension m = 6. However,
when using the error-minimizing reconstruction dimension
m = 6 and the prediction horizon λ = 4, the cross-validatory
error does have another clear local minimum at delay τ = 4,
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FIG. 6. Delays chosen using the methods of (a) autocovariance (C), (b) mutual information (I), (c) cross-validation using the error-
minimizing reconstruction dimension m = m̂ and prediction horizon given by Eq. (1), and (d) mean local autocovariance (L), based upon
M = 500 observations of the quasiperiodic system with parameter 0 � a � 1, made amid ε = 0%, 10%, 20%, or 50% added Gaussian
observational noise. Markers and error bars show, respectively, the mean and sample standard deviation over 10 independently and randomly
chosen initial conditions.

and this occurs in a region where the cross-validatory error
is varying less erratically than around the global minimum
τ = 24.

Figure 8(e) shows the ECG time series reconstructed in di-
mension m = 2 using the delays, τ = 2, 4, and 18, suggested
by the cross-validatory method with prediction horizon λ = 1
and reconstruction dimension m = 2, the novel mean local au-
tocovariance method and the established autocovariance and
mutual information methods. Bradley and Kantz [14] mention
that it is impossible to unfold efficiently all aspects of ECG
dynamics using a single delay reconstruction. Figure 8(e) may
suggest that τ = 18 makes accessible an aspect of the ECG
dynamics different from that made accessible by τ = 2 or τ =
4. However, for τ = 18 the two-dimensional reconstruction
exhibits extended regions of self-intersection; one oriented
horizontally, and the other vertically. These particularly overt
overlaps are avoided when using the delays, τ = 2 and τ = 4,
prescribed by the cross-validatory and mean local autoco-
variance methods, respectively. Of these two delays, τ = 4
appears to spread out points more effectively.

C. Discussion

The autocovariance curve proved robust to high levels
of observational noise. However, it seemed more useful for

suggesting a delay for the Rössler [32] data than for the
Lorenz [33], Moore and Spiegel [34], or ECG data. The mu-
tual information method provided useful results for noiseless
versions of the Rössler [32] and Lorenz [33] chaotic flows.
However, its subtle minima are easily obscured by either ob-
servational or dynamic noise. The autocovariance and mutual
information methods each suggested a surprisingly high value
for the delay with which to reconstruct an ECG time series.

The cross-validatory method produced useful results for
some systems and levels of noise, but in other cases, suggested
delays which were less intuitive. Some issues should be
expected when using a prediction horizon λ = 1 because of
the high sampling rate with which the chaotic flows were
observed. Modulo certain conditions, the cross-validatory
method is mathematically guaranteed to identify correct pa-
rameters in the limit of an infinite number of observations,
but when data are oversampled good results may require a
long time series. Indeed, the cross-validatory method with
prediction horizon λ = 1 led to more intuitive results for the
Rössler [32] system (at least when observed amid noise) and
for the ECG times eries, each of which featured more full
oscillations over 5 000 observations than did data from the
Lorenz [33] or Moore and Spiegel [34] systems.

The high sampling rate might explain the low error-
minimizing reconstruction dimension, m̂ = 2, evidenced in
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FIG. 7. Figures analogous to Figs. 6(a)–6(d), but for ε = 0%, 5%, 10%, or 20% dynamic noise.

the legends of Figs. 1–3(c), for noiseless data from each
chaotic flow when considering prediction horizon λ = 1. A
linear approximation to the dynamics should allow accurate
prediction for sufficiently short time scales. Presumably, a
two-dimensional reconstruction and high sampling rate al-
lows, across the majority of each attractor, a reasonable linear
approximation to each of the chaotic flows which we consider.

With prediction horizon chosen using the mean local au-
tocovariance method, the cross-validatory method identified
useful reconstruction delays. In fact, reconstruction of state
space showed that the lower delays suggested by the cross-
validatory method for clean observations allowed clearer sep-
aration of distinct states of the Rössler [32] and Lorenz [33]
systems, and for the Rössler [32] system the suggestions for
the delay remained stable as observational noise was added.
However, the delay prescribed by the same method for the
Lorenz [33] and Moore and Spiegel [34] systems varied,
sometimes erratically, as noise level increased.

Chan and Tong [19] actually applied the cross-validatory
method to dimension estimation [20], and selecting recon-
struction delays may not be the precise purpose intended for
their framework. In fact, Chan and Tong [19, pp. 252–253]
suggest downsampling inconveniently finely sampled data
with a delay chosen using the mutual information method
[15], which is what led us to use the mean local autocovari-
ance method to choose prediction horizons λ.

The cross-validatory method may have benefited from the
consideration of higher embedding dimensions. Figures 1,
2, and 3 show that for the chaotic flow data, regardless of
the time series or exact noise level, in the presence of noise

the error-minimizing reconstruction dimension is m̂ = 8, the
maximum reconstruction dimension considered, suggesting
that reconstruction dimensions which were still higher might
have allowed lower cross-validatory error.

Such high values for the error-minimizing embedding di-
mension m̂ in the presence of noise may be surprising, but
are not entirely unreasonable. Stark [38] explored the idea
that selecting the parameters of a time-delay reconstruction
implicitly involves choosing the part of the observations
which we wish to describe as deterministic and which part
we are willing to attribute to noise. In the case of dynamic
noise, choosing a reconstruction dimension m = 8 presum-
ably represents an attempt to model deterministically the
high-dimensional noise. Stark [9] showed that n-dimensional
dynamics for which observations are subject to external dis-
turbances with p-dimensional dynamics can be reconstructed
in dimension 2(n + p) + 1. Since this upper bound increases
with the dimension p of the external disturbance, in the pres-
ence of high-dimensional noise it might not be inappropriate
to embed in a dimension as high as possible.

Two periodic systems (the special cases of a quasiperiodic
system with parameter a for a = 0 and a = 1) had known and
unambiguously optimal delays for time-delay reconstruction,
at least in m = 2 dimensions and in the absence of noise.
Of the four methods considered—autocovariance, mutual in-
formation, cross-validation, and mean local autocovariance—
only the autocovariance and mean local autocovariance meth-
ods could reliably achieve the known optimal delays. The
autocovariance method could more robustly retain the optimal
delays in the presence of noise, but, unlike the mean local
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FIG. 8. (a) An ECG time series of length M = 5 000, and the corresponding (b) scaled autocovariance (C) and mean local autocovariance
(L), (c) scaled and shifted mutual information (I) and cross-validatory mean-square error with prediction horizon λ = 1 (V1) using the
error-minimizing reconstruction dimension m = 2, and (d) scaled and shifted cross-validatory error with prediction horizon λ = 4 (V4) using
reconstruction dimension m = 2 and the error-minimizing reconstruction-dimension m = 6. (e) Time-delay reconstruction in reconstruction
dimension m = 2 using the delay τ = 2 suggested by cross-validation with prediction horizon λ = 1, the delay τ = 4 suggested by the mean
local autocovariance, and the delay τ = 18 suggested by the autocovariance and mutual information.

autocovariance method, interpolated between the two optimal
delays in a somewhat surprising, nonmonotonic way.

For clean data from chaotic flows, whenever the firmly
established autocovariance or mutual information methods
suggested an unambiguous delay in the interval considered,
the mean local autocovariance suggested a similar delay.
However, it appeared that reconstruction in m = 2 dimensions
could sometimes benefit from a delay lower than suggested

by these three methods, but often suggested by one of the
incarnations of the cross-validatory method. In the presence
of varying levels of observational or dynamic noise, the mean
local autocovariance method reliably provided reasonable
suggestions for the delay with which to reconstruct three
chaotic flows. Furthermore, the mean local autocovariance
method suggested a useful delay for uniform reconstruction
of an ECG time series.
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IV. CONCLUSION

Uniform delay reconstruction is a fundamental step in non-
linear time-series analysis. The autocovariance, mutual infor-
mation, and cross-validatory mean-square error are functions
important in choosing the delay used to define a reconstruction
of frequently sampled flowlike data. Our investigation of three
chaotic flows showed that the mutual information could be
used to determine appropriate delays for noiseless systems
for which the autocovariance method failed. However, the
autocovariance was more robust to observational noise than
was the mutual information. Under certain conditions the
cross-validatory method is guaranteed to identify appropriate
reconstruction parameters in the limit of a large number
of observations, and this theoretical result was reflected in
advantageous delays suggested for clean observations of the
chaotic flows which we considered and also for noisy ob-
servations of the Rössler [32] system. For other frequently
and noisily sampled chaotic flows which we considered, the
cross-validatory method may have required longer time series
to yield results which were robust to noise.

We proposed choosing the delay for uniform delay recon-
struction of frequently sampled flowlike data as the zero of
a function which is easy to define and calculate and which

we referred to as the mean local autocovariance. The mean
local autocovariance is more robust to noise than is the mu-
tual information, and more versatile than the autocovariance
method. Furthermore, the delay identified using the mean
local autocovariance revealed structure in an ECG time series
more clearly than did the delay reached via autocovariance
and mutual information. Not only does the mean local autoco-
variance provide a means of selecting delays which is versatile
and robust to noise, but it also avoids tuning parameters and
is simple to implement. Thus the mean local autocovariance
method shares advantageous features of the methods of delay
selection most widely represented in the nonlinear time-series
analysis literature.
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