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Bifurcation structure of a swept-source laser
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We numerically analyze a delay differential equation model of a short-cavity semiconductor laser with an
intracavity frequency-swept filter and reveal a complex bifurcation structure responsible for the asymmetry of
the output characteristics of this laser. We show that depending on the direction of the frequency sweep of a
narrow-band filter, there exist two bursting cycles determined by different parts of a continuous-wave solutions
branch.
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I. INTRODUCTION

Optical coherence tomography (OCT) has enabled the
fast and reliable visualization of various tissues for medical
assessment [1]. Swept-source OCT is a technology that relies
on coherent lasers that can scan hundreds of nanometers in a
few microseconds to enable real-time videos and, as a result,
has found a wide range of medical applications in areas such
as ophthalmology and cardiology [2]. To obtain such per-
formance, researchers have developed novel frequency-swept
light sources, such as Fourier domain mode-locked lasers
(FDMLs) [3], short external cavity lasers [4–7], vertical cav-
ity surface-emitting lasers (VCSELs) with microelectrome-
chanical system (MEMS) driven filters [8–11], multisection
semiconductor lasers [12], and photonic integrated circuit
devices [13]. The underlying operation principle of these
devices relies on laser cavities incorporating a broad-band
gain medium and a fast tuning mechanism. Semiconductor
quantum well active media can be engineered to deliver broad-
band gain amplification; however, the development of a fast
tuning mechanism is a challenge because it may degrade the
laser emission. FDMLs have a kilometer-long ring cavity con-
taining an intracavity filter that is driven in resonance with the
round-trip time. At the other extreme, VCSELs have a cavity
length of a single optical wavelength, and their tunability is
achieved by a slight modification of the cavity length.

Nonlinear dynamical regimes in FDML devices can be
theoretically modeled by partial differential equations gov-
erning the spatiotemporal evolution of the complex envelope
of the electric field [14,15]. Another powerful method to
describe these lasers is based on the use of delay differential
equations (DDEs) [16,17]. In particular, the experimentally
observed asymmetry in the output dynamics between the
filter sweeping from shorter to longer wavelengths and the
filter sweeping from longer to shorter wavelengths has been
successfully explained using the DDE FDML model [16].
It was shown that instabilities observed in FDMLs can be
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related to short- and long-wavelength modulation instabilities
commonly found in nonlinear spatially distributed systems.
The same model was able to describe the appearance of the
so-called “sliding frequency mode locking” in short-cavity
frequency swept lasers [18]. Shorter cavity length devices
are appealing as comparably inexpensive and compact swept
OCT sources and have recently attracted significant attention
[7,11–13]. These lasers, however, demonstrate a wide range of
dynamical regimes during the filter sweeping [18] detrimental
to the performance of OCT sources, which were observed
only in numerical simulations. Therefore, further analysis and
understanding of the dynamical properties of such devices is
important for the improvement of their characteristics neces-
sary for future applications.

Unlike Ref. [16], where the asymmetry of the FDML was
studied in the long-cavity limit, in this paper we consider the
case when the cavity length is relatively small and the free
spectral range is larger than the bandwidth of the tunable
filter. We show that in this case the experimentally observed
asymmetry of the laser output with respect to sweep direc-
tion is related to the presence of a fold and Andronov-Hopf
bifurcations of a very asymmetric branch of continuous wave
(CW) regimes. Furthermore, we present a detailed bifurcation
analysis of the model equations, discuss coexisting dynamical
regimes such as longitudinal mode hopping, quasiperiodic
pulsations, and chaos, and compare the results with those
obtained earlier [16] for a long-cavity laser.

II. THE MODEL

We consider a DDE model [16] for the normalized complex
amplitude of the electrical field Ẽ and the time-dependent
dimensionless cumulative saturable gain G:

γ −1 dẼ

dt
+ (1 + i�)Ẽ = √

κe
1−iα

2 GẼ (t − 1), (1)

η−1 dG

dt
= J − G − (eG − 1)|Ẽ (t − 1)|2, (2)

where t ≡ t ′/T , t ′ is time, and T is equal to the cold cavity
round-trip time. The attenuation factor κ describes the total
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nonresonant linear intensity losses per cavity round trip, α

is the line-width enhancement factor in the gain, and γ is
the bandwidth of the intracavity spectral filtering multiplied
by the round-trip time T . γ < 1 (�1) corresponds to the
short (long) cavity. J is the pump parameter, and η = O(1)
is the ratio of the cold cavity round-trip time and the car-
rier density relaxation time. The time-dependent parameter
� = �(t ) defines the detuning between the central frequency
of the narrow-band tunable filter and the reference frequency,
which coincides with the frequency of one of the laser modes.
After the coordinate change Ẽ = Ee−i

∫ t
0 �(x) dx, Eqs. (1)–(2)

are transformed into

γ −1 dE

dt
+ E = √

κe
1−iα

2 G−iφ(t )E (t − 1), (3)

η−1 dG

dt
= J − G − (eG − 1)|E (t − 1)|2, (4)

where φ(t ) = −i
∫ t

t−1 �(x) dx. Note that Eqs. (3)–(4) are in-
variant with respect to the shifts φ → φ + 2πn, where n =
0,±1,±2, . . . , is an integer number. Therefore, all bifurca-
tion diagrams studied here are 2π -periodic on φ.

We first consider Eqs. (3)–(4) for the static φ(t ) = φ0 and
define the CW cavity mode solution as E = √

Iseiωt with
time-independent intensity Is and the constant gain G = g.
Different CW solutions correspond to different longitudinal
modes of the laser. The relation between the field intensity Is

and the value of the saturable gain g is given by

Is = J − g

eg − 1
. (5)

By solving this equation with respect to the gain, g = g(Is),
we obtain two values of the modal frequency corresponding
to a given value of the intensity Is:

ω = ±γ [κeg(Is ) − 1]. (6)

Finally, substituting Eq. (6) into the transcendental equation

φ0 = −ω − αg(Is)

2
− arctan

(
ω

γ

)
+ 2πn, (7)

with n = 0,±1,±2, . . . , we get an implicit equation relating
the intensity Is and the parameter φ0. The branch of CW
solutions defined by Eqs. (5)–(7) with n = 0 is shown in Fig. 1
for the case of a long-cavity (a) and short-cavity (b) laser. All
other CW branches can be obtained by a shift φ0 → φ0 + 2πn
with integer n. It is seen that in a long-cavity laser studied in
Ref. [16], the CW branch is almost symmetric with respect to
the reflection φ0 → −φ0.

In a short-cavity laser, the CW branch can be very asym-
metric with a foldover, which is generally characteristic for
nonlinear resonators [19,20]. The fold bifurcation points in the
Fig. 1(b), corresponding to the extrema of the function φ0(ω)
defined by (7), can be found by solving dφ0/dω = 0 and read

ωLP = [−α ±
√

α2 − 4γ (γ + 1)]/2. (8)

Inequality α2 > 4γ (1 + γ ) defines the condition for appear-
ance of the foldover. One of the two fold points defined by (8)
corresponds to the small intensity and another to the large
intensity, as can be seen in Fig. 1(b). The latter fold bifurcation

I s
I s
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FIG. 1. Branch of CW solutions in a long-cavity (a) (γ = 100)
and short-cavity (b) (γ = 0.25) laser. Other parameter values are J =
10, κ = 0.35, and α = 5.

is responsible for the stability loss of a CW regime in a laser
with adiabatically slowly increasing φ0.

III. SWEEPING DYNAMICS

Let us now explore the effect of a slowly varying φ(t ) =
±εt , ε � 1, which corresponds to the frequency sweep in
opposite directions with a sweeping rate which is much slower
than one wavelength per round trip. Time trace in Fig. 2
results from direct numerical integration of Eqs. (3)–(4),
and demonstrates well-known asymmetry of the dynamical
response to the frequency sweep. The bifurcation diagram of
the steady and periodic solutions in Fig. 3 has been computed
using a numerical continuation technique [21] and displays
the cavity mode branches for n = 1 and n = 2 in the range
0 < φ0 < 4π. Because of the periodicity in φ0, the cavity
mode branch for n = 2 is the same as the one for n = 1 but
shifted by 2π along the φ0 axis. The low-amplitude tail of
the branch for n = 2 overlaps with the large-amplitude part
of the branch for n = 1. This overlap is important for under-
standing the two types of the bursting dynamics which appear
with frequency sweeping in opposite directions. Each branch
contains two important bifurcations marked in Fig. 3 as H
and LP, and a stable steady-state laser operation is possible
only in the interval between these points. LP corresponds
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FIG. 2. Numerical simulation of the model equations (3)–(4)
displaying mode-hopping events in the positive sweep direction.
The frequency sweeping in the negative direction exhibits chaotic
dynamics. The zero point on the x axis is the turning point of the
sweep, and the sweeping function φ(t ) is shown (in red) above the
intensity. The parameters are η = 1, γ = 0.25, ε = 0.01. The other
parameter values are the same as in Fig. 1.

to a fold bifurcation from a cavity mode that is responsible
for the mode-hopping sequence as we progressively increase
φ0. The mode-hopping sequence forms large-amplitude bursts
which are similar the to neuromorphic design of square-wave
bursting oscillations [22].

Formation of the large-amplitude burst is detailed in Fig. 3
where the bifurcation diagram of the steady-state and periodic
solutions is shown together with the long-time solution of

FIG. 3. The power-dropout and power-recovery large-amplitude
cycle (dark gray) in the plane (I, φ0) is shown together with
the bifurcation diagram of the cavity modes n = 1 and n = 2 in
the interval 0 < φ0 < 4π. Green (red) lines correspond to the stable
(unstable) steady-state solutions. Blue (magenta) lines correspond to
the stable (unstable) periodic solutions. Circles and triangles mark an
Andronov-Hopf bifurcation point and a fold bifurcation, respectively.
The figure shows that the power-dropout and power-recovery cycle
follows a stable branch of periodic solutions until it reaches a
supercritical Andronov-Hopf bifurcation point H , then follows the
stable steady-state branch until it reaches a fold bifurcation point LP.
The black arrow indicates the direction of sweep. The values of the
fixed parameters are the same as in Fig. 2.

FIG. 4. Dynamical evolution of the intensity with sweeping fre-
quency in the positive direction (dark gray) in the plane (I, φ0)
is shown together with the bifurcation diagram in linear (a) and
logarithmic scales (b). The figure shows that the branch of periodic
solutions (dark gray) is emerging from supercritical Andronov-Hopf
bifurcation point H , follows a stable branch of periodic solutions,
undergoes a secondary Hopf bifurcation HLC , and develops into
chaos with various stability changes until it reaches a limit point of
limit cycles LPLC from where it jumps back to the vicinity of the
Andronov-Hopf bifurcation. The black arrow indicates the direction
of sweep. LP∗ is the CW solution fold bifurcation point at low-
intensity value. The coloring, the marks, and the fixed parameters
are the same as in Fig. 3.

Eqs. (3)–(4) (in dark gray) for the positive frequency sweep
direction relative to the filter profile φ(t ) = εt, ε = 0.01. The
single-mode steady state changes stability at the point H with
the increase of φ0, and the branch of stable periodic solutions
emerges from the supercritical Andronov-Hopf bifurcation
point at the relaxation oscillation frequency. LP marks a limit
point of steady states at which the power dropout happens.
The laser follows the steady-state branch n = 1 as φ0 in-
creases until it passes LP and then drops down to sustained
oscillations of the lower branch of periodic solutions at n = 2
and returns to the steady-state branch passing the Andronov-
Hopf bifurcation H. As is visible in Fig. 3, the Andronov-Hopf
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FIG. 5. Time-average extrema of I (t ) obtained numerically for
the negative direction of the frequency sweep for low-amplitude
bursting. The black arrow indicates the direction of sweep. The fixed
parameters and the marks are the same as in Fig. 4.

bifurcation transition to steady state can be delayed in the
absence of noise [23].

Let us now follow a low-amplitude bursting cycle which
appears at the branch n = 2 after a supercritical Andronov-
Hopf bifurcation H for the negative sweep direction φ(t ) =
−εt , ε = 0.01. It is shown in dark gray in Fig. 4. After the
transition to the stable periodic oscillations the laser follows
the branch n = 2 of limit-cycle oscillations as φ0 decreases
until it reaches LPLC . The laser then jumps up to the up-
per branch n = 1, starting a new bursting cycle. The jump
up may happen slightly before LPLC . The folding point of
the Andronov-Hopf bifurcation branch, which we denote by
LPLC in Fig. 4(b), is important for the formation of the low-
amplitude bursting. This point corresponds to a saddle-node
bifurcation of limit cycles below which neither stable nor
unstable periodic oscillations are possible. Different dynamics
between H and LPLC can be seen in Fig. 5, which shows the
extrema of the oscillations as we progressively decrease φ0

from H . After a secondary Hopf bifurcation HLC , quasiperi-
odicity, and weak chaos, the laser jumps up to the higher
branch. The response of the laser to the slowly sweeping
narrow band filtering thus takes the form of low-amplitude
bursts of spiking.

IV. CONCLUSION

In this paper, we have considered a delay differential
equation model for a laser with an intracavity swept fil-
ter, and theoretically analyzed the bifurcation structure of a
short-cavity swept source. Unlike the long-cavity devices, the
continuous wave solution of the model equations is strongly
asymmetric with a foldover similar to nonlinear resonance
curve with hysteresis [19,20]. The foldover allows coexistence
of single-mode branches, which changes the character of the
mode hopping compared to long-cavity devices. Additionally,
the foldover defines two bursting phenomena which form
sufficiently different laser outputs depending on the sweep
direction. Such a behavior is similar to that observed in
other swept sources; for this reason the increasing wavelength
sweep will lead to more coherent output but with mode
hops, while the decreasing wavelength sweep will lead to a
continuous sweep with a lower coherence length as for other
swept sources [16,18].
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