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Noise-enabled species recovery in the aftermath of a tipping point
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The beneficial role of noise in promoting species coexistence and preventing extinction has been recognized in
theoretical ecology, but previous studies were mostly concerned with low-dimensional systems. We investigate
the interplay between noise and nonlinear dynamics in real-world complex mutualistic networks with a focus on
species recovery in the aftermath of a tipping point. Particularly, as a critical parameter such as the mutualistic
interaction strength passes through a tipping point, the system collapses and approaches an extinction state
through a dramatic reduction in the species populations to near-zero values. We demonstrate the striking effect
of noise: when the direction of parameter change is reversed through the tipping point, noise enables species
recovery which otherwise would not be possible. We uncover an algebraic scaling law between the noise
amplitude and the parameter distance from the tipping point to the recovery point and provide a physical
understanding through analyzing the nonlinear dynamics based on an effective, reduced-dimension model.
Noise, in the form of small population fluctuations, can thus play a positive role in protecting high-dimensional,
complex ecological networks.
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I. INTRODUCTION

Ecological systems in the real world, in addition to being
fundamentally nonlinear [1–3], are constantly subject to var-
ious random forces, rendering relevant and important studies
of the effects of noise on ecological phenomena predicted in
the purely deterministic framework [4–13]. For example, the
benefits of noise to the health of low-dimensional, patch type
of ecological systems were previously recognized [7,8] where,
in a spatial environment, inferior but rapidly moving species
can coexist with superior but relatively stationary species,
provided that there are spatiotemporal variations in the fitness.
A seminal theoretical work on a competition model of two
species, one inferior and another superior, in a two-patch en-
vironment demonstrated that deterministic chaotic dynamics
can provide the required random or stochastic spatiotemporal
variations in fitness [14]. With two populations in two patches,
the model is a four-dimensional discrete-time nonlinear map.
The dynamical mechanism underlying the coexistence was
later found to be desynchronization and intermittency [15,16]:
when the population evolution of the inferior species syn-
chronizes with that of the superior species, the abundance of
the former tends to decrease. In fact, long-term synchroniza-
tion can make the inferior species extinct. However, due to
asymmetry and chaos, desynchronization bursts occur in an
intermittent fashion, effectively preventing the population of
the inferior species from collapsing. For this low-dimensional
system, the presence of noise was demonstrated to be ben-
eficial to coexistence, and a stochastic-resonance type of
phenomenon was uncovered in which an optimal level of
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noise can significantly enhance the coexistence and thereby
promote species diversity [7,8].

The concept of stochastic resonance was originally pro-
posed [17] to explain the Quaternary glacial problem. Gen-
erally, it is a phenomenon in which the presence of internal or
external noise in a nonlinear system can enhance the response
of the system output [17–28]. The paradigmatic setting to
demonstrate stochastic resonance is a bistable system, which
occurs when a periodic force is applied in the presence of
a large broadband random force (e.g., noise). The system
response is driven by a combination of the two forces of com-
petition and collaboration, switching the system between two
stable states. In mutualistic systems, additive white Gaussian
noise constantly stimulates the system in the extinction state
to drive it to a normal state.

Real-world ecological systems typically involve a large
number of species and thus are high-dimensional, whose
description often requires, e.g., hundreds of coupled nonlinear
differential equations. In view of the demonstrated positive
role of noise in low-dimensional systems, two pertinent ques-
tions arise: (1) Can the benefits extend to high-dimensional
ecosystems? and (2) If the answer is affirmative, in what quan-
titative way? Generally, this is a difficult problem because
of the scarcity of reasonably detailed mathematical models
and the difficulties of analyzing and even simulating such
models in the presence of noise. However, we find one class
of recently developed ecological models: complex mutualistic
networks [29–37] for which a generic, detailed mathematical
description is available. To take advantage of this model and to
investigate the effects of noise in a concrete way, we focus on
the problem of species recovery in the aftermath of a tipping
point transition.
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Mutualism is a close relationship between organisms of
two different species in which both species benefit from the
interactions [38,39]. Mutualistic networks are widely found in
ecosystems. There are two typical relationships of mutualis-
tic interactions: service-resource and service-service relation-
ships. Typical species in the service-resource relationship are
pollinators and plants, such as bees and plants, where plants
provide the bees with pollen, guaranteeing their survivability,
and the pollen stuck in the bee’s hairy body pollinates the
next plant. In a service-service relationship, species provide
service to each other, such as clown fish and anemone, where
anemones afford shelter to clown fish to protect them from
their predators and, because of the presence of clown fish,
anemones are protected from the butterfly fish.

Nonlinear ecological systems can exhibit a tipping point
at which a transition from a normal to a catastrophic state
occurs when a system parameter passes through a critical
point [32,36,40–53]. Complex mutualistic networks of pol-
linators and plants present a paradigmatic class of such sys-
tems [32,36]. The gradual deterioration of the environment as
a result of human activities can cause some system parameters
to drift. Depending on the specific parameter, there can be dis-
tinct scenarios of system recovery in the aftermath of a tipping
point transition [54]. For example, a tipping point can occur
when the mutualistic interaction parameter is reduced through
a critical point, below which the species abundances become
near zero, driving the system effectively into an extinction
state. In this case, if the environment is improved as character-
ized by an increase in the mutualistic parameter back through
the tipping point, without external influences the system will
not be able to recover even when the parameter value has been
restored into the originally healthy regime of coexistence.

The main point of this paper is that, in the aftermath of
a tipping point transition, if random noises in the form of
stochastic fluctuations in the species abundances are present,
then species recovery will be possible. In particular, let γ > 0
be the normalized mutualistic interaction strength and γt p

be its critical value at the tipping point transition, as shown
schematically in Fig. 1. For γ < γt p, both the pollinator and
plant species are in the extinction state in that their abundances
are near zero. Intuitively, for species recovery to occur, it
is necessary only to increase the value of γ beyond γt p.
However, since the network system is already in the extinction
state, recovery will not be possible simply by strengthening
the mutualistic interaction beyond the tipping point value. We
find that, when random noise is present, species recovery is
possible when the value of γ exceeds γt p. Let σ be the noise
amplitude and γc be the recovery point that depends on σ :
γc = γc(σ ). Furthermore, let �γ (σ ) ≡ γc(σ ) − γt p. Qualita-
tively, a more significantly improved environment means a
larger value of the mutualistic interaction strength. Likewise,
a small value of �γc(σ ) means that species recovery can be
achieved even without substantial and dramatic improvement
in the environment, which is desired. The quantitative result
of this paper is the following algebraic scaling law between
�γ (σ ) and σ :

�γ (σ ) ∼ σ−p, (1)

where p > 0 is the algebraic scaling exponent. (Numerically,
we find that, for real-world mutualistic networks, the value of

FIG. 1. A schematic illustration of tipping point transition and
species recovery in a mutualistic network. We illustrate the behavior
of the abundance of a typical species in the network versus the
normalized strength γ of mutualistic interaction. A tipping point
transition occurs as the value of γ is decreased through a critical
value γt p, at which the species abundance decreases to a near-zero
value. Recovery in the aftermath of the tipping point means increas-
ing γ from a value less than γt p to some value above it. In the absence
of noise, recovery is not possible, as stipulated by the fundamental
nonlinear dynamics responsible for the tipping point transition (see
Fig. 10 below and explanations). When noise of sufficient amplitude
σ is present, species recovery in a finite time can occur at the point
γc that depends on σ . The main result of this paper is scaling law (1),
which governs how the parameter difference �γ ≡ γc − γt p scales
with the noise amplitude.

the exponent is about one.) The significance of the scaling
law (1) is that the value of �γc(σ ) can be reduced by in-
creasing the noise amplitude, making recovery more effective.
We uncover the scaling law (1) through simulations of a
detailed population model of pollinator and plant species for a
number of high-dimensional, empirical mutualistic networks.
We then obtain a physical understanding of the scaling law
through a nonlinear dynamics-based argument and insights
from a reduced, two-dimensional model [36]. The analysis
also predicts the value of the algebraic scaling exponent p.
Our results establish the beneficial role of noise in high-
dimensional ecological systems in a quantitative way, with
implications to ecosystem management, conservation, and
biological control. More broadly, since tipping point is a
general phenomenon in nature [55], our work provides useful
insights into the significant problems of mitigating tipping
point transitions and recovering from the aftermath in a variety
of natural and engineering systems through exploiting random
noise or controlled stochastic perturbations.

II. MODEL OF COMPLEX MUTUALISTIC NETWORKS

Mathematically, a pollinator-plant mutualistic network can
be described [29–36] by the Holling type of dynamics [56,57].
When the network is subject to independent Gaussian white
noises, the mathematical equations governing the evolution of
species abundances are

dXi

dt
= α

(X )
i Xi −

SX∑
j=1

β
(X )
i j XiXj +

∑SY
k=1 γ

(X )
ik Yk

1 + h
∑SY

k=1 γ
(X )

ik Yk

Xi

+μX + ηi(t ), (2)
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dYi

dt
= α

(Y )
i Yi −

SY∑
j=1

β
(Y )
i j YiYj

+
∑SX

k=1 γ
(Y )

ik Xk

1 + h
∑SX

k=1 γ
(Y )

ik Xk

Yi + μY + ξi(t ), (3)

where Xi and Yi are the abundances of the ith pollinator
and ith plant, SX and SY are the numbers of pollinator and
plant species, respectively, α

(X )
i and α

(Y )
i are the intrinsic

growth rate in the absence of intraspecific competition and
any mutualistic effect, βii and βi j (i �= j) are parameters char-
acterizing intraspecific and interspecific competition, respec-
tively, and the parameters μX � 0 and μY � 0 characterize
species migration. For the pollinator-plant system, intraspe-
cific competition is typically stronger than interspecific com-
petition [32,33]: βii � βi j . The saturation effect is quantified
by the half-saturation constant h. Saturation describes the
situation where the beneficial effect of the mutualistic interac-
tions on the population growth saturates when the mutualistic
partners have a high abundance. It is characterized by the
half-saturation density of Holling type-II functional response.
The key parameters γ

(X )
ik and γ

(Y )
ik are the strength of the mutu-

alistic interaction, with γ
(X )

ik = 0 and γ
(Y )

ik = 0 corresponding
to the case of absence of mutualistic interactions. In general,
the mutualistic interaction strength depends on the degree of
the node as [36]

γi j = ai j
γ

(Ki )ρ
, (4)

where γ is the normalized strength and ai j are the elements of
the network adjacency matrix: ai j = 1 if there is an interaction
between pollinator i and plant j; otherwise ai j = 0. The pa-
rameter Ki is the number of mutualistic links associated with
species i, and ρ determines the strength of the trade-off be-
tween the interaction strength and the number of interactions.
If there is no trade-off (i.e., ρ = 0), the network topology will
have no effect on the strength of the mutualistic interactions.
In contrast, a full trade-off (ρ = 1) means that the interaction
strength is weighed by the nodal degree so the network
topology will affect the species gain from the interactions. The
terms that involve the mutualistic interactions for each species
can then be written as [36]

SY∑
j=1

γ
(X )

i j Yj =
SY∑
j=1

γ(
K (X )

i

)ρ ai jYj, (5)

SX∑
j=1

γ
(Y )

i j Xj =
SX∑
j=1

γ(
K (Y )

i

)ρ ai jXj . (6)

In Eqs. (2) and (3), ηi(t ) and ξi(t ) are independent Gaussian
white noise with the following statistical properties:

〈ηi(t )〉 = 0,

〈ηi(t )ηi(t )′〉 = 2σ 2δ(t − t ′),
(7)〈ξi(t )〉 = 0,

〈ξi(t )ξi(t )′〉 = 2σ 2δ(t − t ′),

where σ is the noise amplitude and δ(t ) is the δ function. The
phase space dimension SX + SY of the mutualistic networked

system as described by Eqs. (2) and (3) is typically high,
making a mathematical analysis difficult. However, an effec-
tive, two-dimensional reduced model is available [36], which
captures the essential dynamics associated with a tipping point
transition. The reduced model subject to noise can be written
as

dx

dt
= αx − βx2 + 〈γx〉y

1 + h〈γx〉y x + μ + η(t ), (8)

dy

dt
= αy − βy2 + 〈γy〉x

1 + h〈γy〉x y + μ + ξ (t ), (9)

where x and y are the effective or average abundances of the
pollinator and plant species, respectively, α is the effective
growth rate for the reduced system, β accounts for the com-
bined effects of intraspecific and interspecific competition,
and μ characterizes the migration effect of the species. The
key parameters are the two effective mutualistic interaction
strength 〈γx〉 and 〈γy〉, which are obtained through properly
weighed averages of the strength γ

(X )
ik and γ

(Y )
ik in the original

empirical network [36].
For both the full and reduced models, we use the stan-

dard, second-order algorithm for solving stochastic differen-
tial equations [58] to investigate the effect of noise on system
recovery in the aftermath of a tipping point transition.

It is worth clarifying the difference between the ecolog-
ical systems, the modeled networks and the models used to
describe the system’s dynamics. In this regard, the purpose
of this paper is to develop a mathematical and computational
framework to study real-world empirical bipartite mutualistic
networks of pollinators and plants with a particular focus on
the effect of noise on the recovery from an extinction state to a
normal abundance state. In a bipartite network, the nodes are
divided into two disjoint sets in which every link connects a
node in one set to a node in the other. The bipartite mutualistic
networks that we study are an idealized but effective model
of the natural system, and, of course, it cannot represent
completely a real empirical system. For instance, mutualistic
interactions differ among different pollinator-plant combina-
tions. This difference is mainly manifested in the following
aspects [59]: the pollinator abundances, the differences in a
pollinator’s preference for plants, and whether a pollinator
can visit plants of a given species as well as the distance of
movement for the visiting process [60,61]. The first aspect is
the most important because it is indicative of the pollinator’s
effectiveness to pollinate large abundance of plants. The other
two aspects involve the characteristics of the pollinators. One
could get quantitative information about the characteristics
of every pollinator based on the mutualistic links [62] in
the empirical networks. However, the pollination ability of
a give pollinator is complicated. Not only do the pollination
abilities of different pollinator species differ, but the ability
of the same pollinator species is time and state dependent.
Consequently, measuring the actual pollinator characteristics
is difficult, and its inclusion in the model is not straight-
forward [63]. Our Eqs. (2) and (3) are the proper model to
investigate the pollinator-plant bipartite mutualistic network
including stochastic effects. The pollinator-plant network is
best described by Holling type-II dynamics [29–36,56,57].
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III. NOISE-ENABLED SPECIES RECOVERY
AND SCALING LAW

A. Numerical demonstration of noise-enabled
species recovery and scaling law

1. Empirical mutualistic networks

We study in detail four real-world mutualistic networks
derived from empirical data collected from four different
geographic regions [64]: (1) network A (SX = 61 and SY = 17
with the number of mutualistic links L = 146) from Hicking,
Norfolk, United Kingdom [65], (2) network B (SX = 38,
SY = 11, and L = 106) from Tenerife, Canary Islands [66],
(3) network C (SX = 44, SY = 13, and L = 143) from North
Carolina, USA [67], and (4) network D (SX = 42, SY = 8,
and L = 79) from Hestehaven, Denmark [68]. A schematic
illustration of one of the networks is presented in Fig. 2.

We numerically demonstrate the phenomenon of noise-
enabled species recovery and the algebraic scaling law (1). We
choose the range of noise to be [10−4, 10−1]. In the aftermath
of a tipping point transition, i.e., γ < γt p, the abundances of
all species approach some near-zero values. In this case, when
one attempts to recover the species by strengthening the mu-
tualistic interactions (e.g., through significant improvement
of the environment) so that the value of γ becomes larger
than γt p, without noise the network remains in the extinction
state with near-zero abundance values determined by the small
migration effect quantified by the near-zero migration param-
eters μX and μY . However, with noise the species recovery
can occur as the value of γ exceeds γt p, as shown in Fig. 3,
effectively a bifurcation diagram for both the full network and
the reduced model. Representative time series of the species
abundances associated with the recovery process are shown
in Fig. 4. For the particular value of the noise amplitude used
(σ = 0.1), recovery occurs in relatively short time (comparing
with the total simulation time T = 400).

The model contains a large number of parameters. We
choose to vary the most sensitive parameters that best high-
light the dynamical behavior of the empirical network for
the recovery process. The ones with fixed values are rather
insensitive, not changing the scaling law and the results when
varied. For instance, we have changed the parameter h, but
its value does not affect the final result and the algebraic
scaling law. The value of β has no effect on the scaling
law either. We choose five different negative values of α to
present the scaling law. The abundances of all species do
recover, as shown in Figs. 3 and 4, where the term “recovery”
is used to describe the situation where all the species must
recover from an extinction state. The critical value of γ is
one that leads the abundances to recover to the values in a
normal state. Figure 3 shows that, with the increase of γ ,
the abundances of all the species will increase and exceed
the values at the tipping point. The light red and light blue
curves represent all the species of pollinators and plants in a
full network, respectively. The dark red and dark blue curves
are the average abundances of all the pollinators and plants
in the network, respectively. Figure 4 demonstrates that the
abundances will recover by noise perturbation. Moreover,
when the unstable steady state is overcome, the abundances
will escape from the low-abundance stable state (extinction
state) to the high-abundance stable state (normal state) and

FIG. 2. Illustration of a representative real-world mutualistic
network. Upper panel: bipartite network structure of network C
(from North Carolina, USA, as described in the text) with SX =
44 pollinators (red dots), SY = 13 plants (blue dots), and L = 143
mutualistic links (black lines). The size of a red or a blue dot is
proportional to the degree of this node. The actual photo images
of seven pollinator and three plant species are presented. Lower
panel: matrix representation of the network, where the vertical and
horizontal indices represent pollinator and plant species, respectively.
A yellow cell means the existence of a specific mutualistic link while
a dark green cell indicates lack of such a link. Species are ordered
according to their number of interactions.

will not go down again unless the noise amplitude becomes
unreasonably large. From the point of view of nonlinear
dynamics, this is a multistable system since there are two
attractors for γ > γt p with their own basins of attraction:
one is the high-abundance stable state corresponding to the
normal state, and another is the low-abundance stable state
corresponding to the extinction state. The reason for species
to remain in the high-abundance stable state lies in the bistable
nature of the dynamics away from the tipping point. The
relationship between the noise strength and mutualistic inter-
actions allows for hopping between both stable asymptotic
states. An unstable steady state sits between the two stable
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FIG. 3. Noise-enabled species recovery for the four empirical
mutualistic networks. (a)–(d) The recovery curves of species abun-
dances for networks A–D described in the text, respectively. The
light red and light blue curves are the pollinator and plant abundances
versus the normalized mutualistic interaction strength, respectively,
as it is increased from a value below the tipping point (in the after-
math of a tipping point transition). The transition points for networks
A–D are approximately 0.45, 0.54, 0.47, and 0.58, respectively.
The parameter values of the full system are α

(X )
i = α

(Y )
i = −0.1,

β
(X )
ii = β

(Y )
ii = 1, h = 0.2, ρ = 0.5, μX = 10−4, and μY = 10−4. The

noise amplitude is σ = 0.1. The values of the species abundances
are collected after a long simulation time (T = 400) that guarantees
the convergence of the networked system to a stable steady state.
The dark red and blue curves with error bars are the results from the
corresponding 2D reduced model. The generic parameter values of
the reduced model (same for all the networks) are α = −0.1, β = 1,
h = 0.2, μ = 0.0001, and σ = 0.1, and the initial conditions are
X (0) = 10−3 and Y (0) = 10−3. The effective mutualistic parameters
for the four empirical networks are (A) 〈γx〉 = 12.638 and 〈γy〉 =
5.118, (B) 〈γx〉 = 10.036 and 〈γy〉 = 5.672, (C) 〈γx〉 = 12.118 and
〈γy〉 = 6.092, and (D) 〈γx〉 = 12.638 and 〈γy〉 = 5.118.

steady states serving as the boundary separating the two basins
of attraction. The tipping point transition marks the collision
between the unstable state and the stable state species abun-
dances. When the system approaches asymptotically a stable
state, if the external interference of the system has not been
increased, it will not cross the boundary to approach another
state. As a result, the species are kept in the high-abundance
stable state after transiting through the tipping point in the
recovery process.

Examples of the algebraic scaling law (1) are shown in
Fig. 5, where five sets of data points and their linear fits from
both the full network and the reduced model are shown for five
respective values of the intrinsic growth rate α. The reason to
choose negative α values is that, when the species are in an
extinction state, all the abundances are zero or nearly zero. In
an adversarial environment with no mutualistic interactions,
a negative growth rate is more ecologically meaningful. For
instance, intensive agricultural activities, changes in land use,
pesticides, alien invasive species, diseases, pests, and climate
change—all these impacts in a local ecological system will
cause a negative growth of pollinators.

The impacts of plants and pollinators in the natural envi-
ronment are different. To address this issue, we compare two
different conditions: (a) plants having smaller σ values than

FIG. 4. Examples of noise-enabled species recovery. Panels (a)–
(d) correspond to networks A–D, respectively. For a given network,
the time series of all pollinators (red curves) and plants (blue curves)
are shown, where the initial abundances of the species are near-zero
values determined by the small migration effect (corresponding to the
low-abundance stable state; see Fig. 10 below), which are randomly
chosen from the small interval [0, 10−3]. For all cases, the value of
the normalized mutualistic interaction strength is γ = 0.8. Without
noise, species recovery does not occur because all the abundances
remain at near zero values. We show the recovery behavior for σ =
0.1. The generic network parameters are α

(X )
i = α

(Y )
i = −0.1, β (X )

ii =
β

(Y )
ii = 1, h = 0.2, ρ = 0.5, μX = 0.0001, and μY = 0.0001.

pollinators and (b) individual species in the empirical net-
works having different σ values, e.g., chosen from the range
[10−4, 10−1]. Figure 6 shows the recovery process for plants
and pollinators under different noise strengths. In mutualistic
networks, pollinators are insects like bees, which are more
environmentally affected than most plants. We thus associate
small noise strength with plants and larger noise with pollina-
tors. For illustrative purposes, we consider three combinations
of plant and pollinator noise: (10−2, 10−1), (10−3, 10−1), and
(10−4, 10−1). For these three cases, while the recovery slopes
are slightly different, the species abundances and the essential
results remain unaffected. We also consider a more complex
situation where, in the natural state, species receive different
noise inputs, which is implemented by choosing the noise
strength of each species in the empirical network randomly
from the range [10−4, 10−1]. Calculating the recovery and
collapse curves for the four empirical networks, we obtain
essentially the same results, indicating that the characteristic
features of species recovery and collapse are not affected by
the amount of noise received, provided that the noise strength
is within a reasonable range.

2. Random mutualistic networks

We address the issue of nestedness in ecological networks
by comparing the recovery dynamics between random and
empirical mutualistic networks. Nestedness is biogeographic,
and it is another important characteristic of empirical net-
works [38,69,70], which has been associated with the mutual-
istic interactions from different species. It was thought that
nestedness can promote biodiversity in mutualistic systems
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FIG. 5. Scaling law quantifying noise-enabled species recovery
in complex mutualistic networks. We show the scaling law (1) for
networks A–D in panels (a)–(d), respectively, where the relevant
quantities �γ and σ are displayed on a logarithmic scale. For each
network, two sets of data are shown: those from the full network
model (black) data points and the corresponding linear fits and those
from the reduced model (orange) data points and the corresponding
linear fits). For each set, five different cases corresponding to five
different values of α, α

(X )
i = α

(Y )
i = −0.5, −0.4, −0.3, −0.2, −0.1

for the full network model and α = −0.5, −0.4, −0.3, −0.2, −0.1
for the reduced model, are shown. The generic network parameters
are β = 1, β

(X )
ii = β

(Y )
ii = 1.0, h = 0.2, and ρ = 0.5. For each value

of the noise amplitude σ , simulations are carried out for a long time
interval (T = 400), which guarantees that the system has approached
a stable steady state by then. The reasonably good linear fits suggest
the algebraic scaling law (1), and the partial overlap between the
black and orange regions indicates the ability of the reduced model
to capture the essential dynamics of the full networked system.

through increasing the capability of the pollinator populations
to withstand harsh conditions. In Ref. [38] a spectral graph
approach was proposed based on the quality of bipartite
networks to study nestedness, with the result that nested mutu-
alistic networks have the minimal stability. Another result was
that the binary nested quantitative preference of complex eco-
logical networks is non-nested, indicating limited pollinator

FIG. 7. Noise-induced recovery in random networks with differ-
ent numbers of plant and pollinator species. (a, b) Recovery curves
of species abundances for two different random networks: one with
61 pollinators and 17 plants, and another with 44 pollinator and
13 plants. The light red and light blue curves are the pollinator
and plant abundances versus the normalized mutualistic interaction
strength, respectively. The parameter values are α

(X )
i = α

(Y )
i = −0.1,

β
(X )
ii = β

(Y )
ii = 1.0, h = 0.2, ρ = 0.5, and μX = μY = 10−4. The

noise strength is σ = 0.1. The values of nestedness from the top
to the bottom panel are 0.2, 0.5, and 0.7 respectively. The dark red
and blue curves are the average abundance of pollinators and plants,
respectively.

overlap of favored plants in mutualistic networks. Ecological
systems could avoid species competition by dividing the
species preferences with the condition of binary constraint,
which is beneficial to resource allocation in the system.

We study the difference among random networks with
different numbers of species, as shown in Fig. 7. As the level
of nestedness [38] is increased (see Appendix B for a method
to systematically vary the network nestedness), the value of γ

in the recovery process decreases. For networks with different
species abundances, the recovery process is similar: in the
presence of noise, a tipping point transition occurs when the

FIG. 6. Recovery process when pollinator and plant species are subject to different levels of noise. For empirical network A, pollinator
(light red) and plant (light blue) abundances versus the normalized mutualistic interaction strength under the following three combinations of
plant and pollinator noise: (a) (10−2, 10−1), (b) (10−3, 10−1), and (c) (10−4, 10−1). Parameter values are α

(X )
i = α

(Y )
i = −0.1, β

(X )
ii = β

(Y )
ii =

1.0, h = 0.2, ρ = 0.5, and μX = μY = 10−4. The dark red and blue curves are the average abundance of plants and pollinators, respectively.
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FIG. 8. Comparison between recovery process in random and
empirical network. (a, b) Recovery curves of an empirical net-
work and a random network with the same numbers of species,
respectively. The light red and light blue curves are the pollinator
and plant abundances versus the normalized mutualistic interaction
strength, respectively. The parameter values are α

(X )
i = α

(Y )
i = −0.1,

β
(X )
ii = β

(Y )
ii = 1.0, h = 0.2, ρ = 0.5, and μX = μY = 10−4. The

noise strength is σ = 0.1. The dark red and blue curves are the
average abundance of plants and pollinators.

value of γ decreases through a critical value γc that depends
on the noise amplitude σ . For a random network with two
groups of species, the dynamical behavior is qualitatively
the same as that of the empirical network. However, as the
network becomes more nested, the critical parameter value
causing the network collapse becomes smaller, and the value
of the network recovery point also becomes smaller.

A comparison between random and empirical networks is
illustrated in Fig. 8. The system recovery does not change as
one considers different networks, and the scaling law between
�γ and the noise strength σ does not change, as shown in
Fig. 9, where the red line is for the empirical network, and
the light blue and dark blue lines are for random networks
with strong and weak nestedness, respectively. The scaling
between �γ and σ for the random networks is algebraic, as
in the case of empirical networks.

For different empirical networks, the conditions for net-
work recovery are different. However, the number of links is
not the reason for the differences. For instance, for α

(X )
i =

α
(Y )
i = −0.1 and σ = 0.1, the global recovery points for

four empirical networks are 0.378, 0.394, 0.331, 0.354 for
networks A-D, respectively, where the respective numbers of
mutualistic links are 146, 106, 143, and 42. There is no direct
connection between the number of mutualistic links and the
recovery process.

FIG. 9. Comparison between scaling laws with noise-enabled
species recovery in empirical and random mutualistic networks. The
red line is for an empirical network, and the light blue and dark
blue lines are for random networks with a large and a small value
of nestedness, respectively. The parameter values are α

(X )
i = α

(Y )
i =

−0.1, β
(X )
ii = β

(Y )
ii = 1.0, h = 0.2, ρ = 0.5, and μX = μY = 10−4.

The noise strength is σ = 0.1.

B. Theoretical understanding of the scaling law

The key to developing a theoretical understanding of the
noise scaling law (1) is the fact that the generic dynamical
mechanism for the emergence of a tipping point, regardless
of the system dimension, is a saddle-node bifurcation, as
shown schematically in Fig. 10 where, for illustrative pur-
poses, the bifurcation parameter is taken to be the normalized

FIG. 10. A schematic illustration of the nonlinear dynamical
origin of a tipping point transition and the mechanism of noise-
enabled species recovery. The generic dynamical origin of a tipping
point transition in a complex mutualistic network, in spite of its
high dimension, is a saddle-node bifurcation at the transition point
that creates a high-abundance state (a high-abundance stable state)
and an unstable steady state for γ > γt p. The extinction state (a
low-abundance stable state) is a stable fixed point of the system that
exists in the whole range of the value of the mutualistic interaction
strength. For γ > γt p, there is bistability in the system in that there
are two coexisting stable steady states: one high and another low,
which are “separated” by the unstable steady state. (More precisely,
in the full phase space, the stable manifold of the unstable steady
state is the boundary that separates the basins of attraction of the low-
and high-abundance stable state.) As illustrated, in order to enable
species recovery, fluctuations in its abundance must be larger than the
value of the unstable steady state (“overcoming” the barrier), which
can be achieved with noise.
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mutualistic interaction strength γ . The bifurcation occurs in
the direction of increasing the value of γ , where the bifur-
cation point defines the tipping point γt p. For γ < γt p, the
system possesses only one stable steady state, one correspond-
ing to the extinction state in which the species abundances
assume near-zero values that are determined by the small
migration effect. For γ > γt p, there are three steady states
in the system: two stable and one unstable, where the low-
abundance stable state is a continuation of the extinction
state from γ < γt p, and the high-abundance stable state and
the unstable states are created at the saddle-node bifurcation.
There is then multistability [71–79] in the system in that there
are two attractors in the system for γ > γt p, each with its own
basin of attraction. In general, the boundary separating the
two basins of attraction is the stable manifold of the unstable
steady state [80,81].

The dynamical origin of a tipping point transition can then
be understood, as follows. Say the environmental condition
is such that γ is above the critical value γt p and the system
is in the high-abundance stable state. Deterioration of the
environment weakens the mutualistic interaction, causing a
gradual decrease in the parameter γ . Insofar as the value of
γ stays above γt p, the system remains in the high-abundance
stable state in spite of a small decrease in the overall abun-
dance value. When γ decreases through the critical point
γt p, the high-abundance stable state disappears altogether
with its basin of attraction, leaving the low-abundance stable
state as the only attractor in the system with almost the
entire available phase space as its basin of attraction. The
system evolves into the extinction state with the abundances
of all its species decreasing to near-zero values in a relatively
short time.

Now consider the recovery process. In the aftermath of
the tipping point transition, the system is already in the low-
abundance stable state. As the value of γ is increased through
γt p, without any external influence, the system will remain in
this extinction state in spite of the coexistence of the high-
abundance stable state created at the saddle-node bifurcation.
In order for the species abundances to recover, some external
perturbation, e.g., noise, is needed to drive the system out
of the extinction state into the basin of the high-abundance
stable state. To accomplish this, the noise amplitude must be
sufficiently large to overcome the “barrier,” effectively the
phase space “distance” between the extinction state and the
unstable steady state, as shown in Fig. 10. Since the height
of this barrier decreases with γ , for a larger value of γ the
required noise amplitude for recovery is smaller. Likewise,
noise of a larger amplitude will enable recovery at a point
of γ (denoted as γc in Fig. 10) closer to the tipping point.
Thus, qualitatively, we expect �γ = γc − γt p to decrease as
the noise amplitude is increased.

Based on the nonlinear dynamical processes depicted in
Fig. 10, we can derive the scaling law (1), as follows. Let u
be the height of the barrier that the system must overcome
with the aid of noise as seen in Fig. 6. Under the influ-
ence of Gaussian white noise, in principle this will happen
for arbitrarily small noise amplitude if an infinite amount
of time is allowed. For the system to recover in a finite
time, the probability that the noise perturbation exceeds u
must be appreciable. For white noise, this probability is

given by

ε = 1√
2πσ

∫ ∞

u
exp

(
− x2

2σ 2

)
dx = 1

2
erfc(cu), (10)

where erfc(·) is the complementary error function and

c ≡ 1/(
√

2σ ). (11)

Using the following representation of the complementary
error function [82]:

erfc(x) � 1

2

√
2e

π

√
χ − 1

χ
e−χx2

,

where χ > 1 is a constant, we obtain

1

2

√
2e

π

√
χ − 1

χ
exp [−χ (cu)2] � ε.

This gives

(cu)2 � | ln δ|, (12)

where

δ ≡
√

2π

e

χ√
χ − 1

ε.

Utilizing the definition of the constant c in Eq. (11), we get

u

σ
�

√
2| ln δ|. (13)

Since ε � 0, we have δ � 0. The right side of Eq. (13) is thus
a constant on the order of unity.

As postulated in Fig. 10, the barrier height u depends on
�γ . What is the scaling relation between the two quantities?
To address this question, we have carried out a stability
analysis of the reduced model (see Appendix A), which gives
implicit but algebraically sophisticated relations between the
pollinator (Ux) and plant (Uy) abundances and �γ . Numerical
solutions of these relations for five representative values of α

(the same set of α values as in Fig. 5) are shown in Figs. 11
and 12 for the dependence of Ux and Uy on �γ , respectively,
from the corresponding reduced models of the four real-world
networks. In all cases, the dependence can be described by an
algebraic scaling law:

Ux or Uy ∼ (�γ )−q, (14)

for �γ not close to zero, where q > 0 is the algebraic scaling
exponent. Substituting Eq. (14) into Eq. (13), we obtain the
algebraic scaling law (1), with the scaling exponent p = 1/q.
Extensive numerical evidence supporting this inverse relation-
ship between the algebraic exponents in the scaling laws (1)
and (14) is presented in Figs. 13 and 14, where the exponent q
is obtained from the unstable steady solution of the pollinator
and plant species of the reduced model, respectively.

IV. DEMOGRAPHIC NOISE

Demographic stochasticity is of particular importance to
ecological systems [83–85] due to the random nature of the
biological processes such as birth, death, and mutual inter-
actions. Here we study the effect of demographic noise on
species recovery in mutualistic networks.
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FIG. 11. Scaling of the pollinator abundance associated with the
unstable steady state with the strength of mutualistic interaction
beyond the tipping point. Panels (a)–(d) correspond to networks
A–D, respectively. In each panel, the dependence of Ux on �γ for
five values of α is displayed. Different lines represent different values
of α. In all cases, the dependence can be fitted by an algebraic scaling
law with the exponent q, which assumes values close to unity.

A demographic stochastic process is a type of multiplica-
tive noise with amplitude proportional to the square root of
the fluctuating field due to uncertainties such as the tim-
ing of birth and death and the interaction relations among
the species. Demographic stochastic effects depend on the
intrinsic uncertainties associated with individuals’ reproduc-
tion, survival, and dispersal and are most influential in small
populations. Mathematically, demographic noise depends on
the dynamical variables of the system, i.e., the abundances
in our mutualistic networked system. Under demographic
noise, the governing equations of a mutualistic network can be

FIG. 12. Scaling of the plant abundance associated with the
unstable steady state with the strength of mutualistic interaction
above the tipping point value. Legends are the same as in Fig. 11.

FIG. 13. Comparison between the algebraic exponent p from
the scaling law (1) and the inverse of the algebraic exponent q
from (14) for the effective pollinator abundance. (a–d) Five values
of the exponent p for five different values of α in comparison with
the corresponding values of 1/q from the effective unstable pollinator
abundance in the reduced model for networks A–D, respectively.

written as

dXi

dt
= α

(X )
i Xi −

SX∑
j=1

β
(X )
i j XiXj + μX

+
∑SY

k=1 γ
(X )

ik Yk

1 + h
∑SY

k=1 γ
(X )

ik Yk

Xi + R−1√Xiζi(t ), (15)

dYi

dt
= α

(Y )
i Yi −

SY∑
j=1

β
(Y )
i j YiYj + μY

+
∑SX

k=1 γ
(Y )

ik Xk

1 + h
∑SX

k=1 γ
(Y )

ik Xk

Yi + R−1√Yiνi(t ), (16)

FIG. 14. Comparison between the algebraic exponent p from the
scaling law (1) and the inverse of the algebraic exponent q from (14)
for the effective plant abundance. Same legends as in Fig. 13 except
that the inverse exponent 1/q is calculated based on the effective
unstable plant abundance.
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FIG. 15. Noise-enabled species recovery for four empirical mu-
tualistic networks with additive white noise and demographic noise.
The purple and black curves are average abundances for all species
with additive white noise (of amplitude 0.1) and demographic noise,
respectively, versus the normalized mutualistic interaction strength
as it is increased from a value below the tipping point (in the
aftermath of a tipping point transition). The transition points for net-
works A–D under additive white noise are approximately 0.45, 0.54,
0.47, and 0.58, respectively. The transition points for networks A–D
with demographic noise are approximately 1.4, 1.5, 1.5, and 1.4,
respectively. The values of the transition point under demographic
noise are significantly larger than those under white noise. The
system parameter values are α

(X )
i = α

(Y )
i = −0.1, β

(X )
ii = β

(Y )
ii = 1,

h = 0.2, ρ = 0.5, μX = 10−4, μY = 10−4, σ = 0.1, and R = 4. The
values of the species abundances are collected after a relatively long
transient time (T = 400) at which the system has well converged
to a stable steady state. The initial conditions are X (0) = 10−3

and Y (0) = 10−3. All the simulations are based on 100 statistical
realizations.

where R is the order of magnitude of the population size
or the area of habitat in demographic randomness, which
affects the abundances of individual species, and ζi(t ) and
νi(t ) are white noise processes of zero mean and unit variance.
The multiplicative terms R−1

√
Xiζi(t ) and R−1

√
Yiνi(t ) rep-

resent demographic noises with state-dependent correlations.
We numerically solve Eqs. (15) and (16) using the standard
second-order method for integrating stochastic differential
equations [85,86].

The deterministic system underlying Eqs. (15) and (16)
possesses two stable steady states: one being the low-
abundance or extinction state that occurs for γ < γt p and
another being the high-abundance state for γ > γt p (denoted
as Xh and Yh). Under demographic noise, the abundances of
the pollinator and plant species fluctuate about one of the
steady states value with the standard deviations

√
Xh and

√
Xh,

respectively. Figure 15 shows a representative comparison
between the effects of additive white noise and demographic
noise, where both types of noise can drive the system to
the high-abundance state after collapse. However, the critical
point of recovery with demographic noise is larger than that
with additive white noise. In the initial extinction state with

abundances X (0) = 10−3 and Y (0) = 10−3, the demographic
noises are weak. After recovery, there are large fluctuations in
the species abundances, making demographic noise stronger.
Comparing with the case of white noise, under demographic
noise it is significantly more difficult to drive the system out
of the extinction state into the basin of the high-abundance
state. The main reason is that, when the system is in the
extinction state, the abundances are close to zero, rendering
infinitesimally small the amplitude of demographic noise. As
a result, practically the noise has little effect on the dynamics
and thus is not beneficial to species recovery. In order to
recover, much stronger mutualistic interaction is necessary.
Because of the dependence of the amplitude of demographic
noise on the state variables, a scaling law such as (1) for the
case of white noise cannot be defined.

V. DISCUSSION

The benefits of noise to nonlinear dynamical systems from
the viewpoints of understanding certain natural phenomena
and of engineering applications such as signal processing have
been known and extensively studied since the discovery of the
phenomenon of stochastic resonance [17–23] where, coun-
terintuitively, a certain amount of deliberately applied noise
can enhance and maximize the signal-to-noise ratio of the
output of the system. A related phenomenon is noise-induced
frequency [24] or coherence resonance [25–28] where noise
can be exploited to improve, sometimes significantly, the
temporal regularity of the output signal of a nonlinear oscil-
lator by inducing or enhancing a dominant frequency compo-
nent in its Fourier power spectrum. Ecological systems are
fundamentally nonlinear [1–3], but the approach of purely
deterministic modeling may not be sufficient to describe,
characterize, and understand ecological phenomena in the real
world due to the ubiquitous occurrence of various random
forces in nature [4,6,10,11]. It is thus imperative to study the
interplay between deterministic nonlinearity and stochasticity
in ecological systems [5,9,12,13]. In this regard, previous
studies revealed the beneficial role of noise in promoting coex-
istence [7,8] in a low-dimensional model of patch population
dynamics of dispersing species [14–16].

The main contributions of the present work are two: (1)
demonstration of the benefits of noise in high-dimensional,
real-world ecological systems modeled as complex mutualis-
tic networks, and (2) discovery of a scaling law characterizing
the advantages of noise in enabling species recovery in a
quantitative manner. The fundamental dynamics of an ecolog-
ical network with mutualistic interactions between two groups
of species, e.g., pollinators and plants, are of the Holling
type [29–36,56,57]. We have focused on the situation where
there is a tipping point in the networked system. In terms
of generic nonlinear dynamics, a tipping point transition is
essentially an inverse saddle-node bifurcation in the parameter
regime where the system exhibits multistability (bistability)
in spite of its intrinsic high dimensionality. In particular, in
a healthy state where all species coexist, the system “lives”
in a high-abundance stable state, even there is a coexisting,
low-abundance stable state corresponding to extinction. The
high-abundance stable state, together with an unstable steady
state that provides the boundary safely separating the basin
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of the high-abundance stable state from that of the low-
abundance stable state is created by a saddle-node bifurcation.
As the environment deteriorates continuously, the relevant
parameter changes in the opposite direction and the system
moves towards the original bifurcation point at which both
the high-abundance stable state and the unstable state are
destroyed simultaneously, leaving the extinction state as the
only stable state in the system. This signifies a tipping point
transition. In the aftermath of the transition, the abundances of
all the species in the system are near zero. The situation where
the system is locked in the extinction state will not change
without external influence or perturbations even when the
environment is being improved so that the bifurcation param-
eter now passes through the tipping point and multistability
is restored. Noise provides the necessary external influences
that can drive the system out of the extinction state towards
the high-abundance stable state with a nonzero probability,
enabling species recovery. The larger the noise amplitude, the
less demanding the extent of environmental improvement is,
thereby facilitating recovery even when the system has re-
turned to the bistability regime not far from the tipping point.
Quantitatively, the ease at which noise helps species to recover
is described by the scaling law (1) uncovered in this work.

The results of this work have the following implications.
While the principle of noise-enabled species recovery is gen-
eral, in practice it may not be feasible to “wait” for a random
burst in the species abundances to occur to push the system
above the critical level as determined by the unstable steady
state. This is the case where, in the aftermath of a tipping
point transition, the improvement in the environment is not
significant enough so that the system is in the bistability
regime not too much beyond the tipping point where the
probability for a large burst of abundances is exponentially
small so that the waiting time can be exponentially long.
However, one can deliberately apply a “controlled burst” by
introducing additional abundances through a balanced com-
bination of certain species in the system. How to calculate
an optimal perturbation to carry out the control strategy is an
open question at the present, but the insights gained from this
work, especially the dynamical analysis through the reduced
model of mutualistic networks, indicate that either pollinators
or plants can be controlled. However, biologically, pollinators
are more accessible to control.
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APPENDIX A: STEADY-STATE SOLUTIONS AND
STABILITY ANALYSIS BASED ON THE REDUCED MODEL

WITHOUT MIGRATION

The steady-state solutions of the reduced model [Eqs. (8)
and (9)] are determined by

dx

dt
= αx − βx2 + 〈γx〉y

1 + h〈γx〉y x = 0, (A1)

dy

dt
= αy − βy2 + 〈γy〉x

1 + h〈γy〉x y = 0. (A2)

There are five steady-state solutions. The first solution is given
by

xs1 = 0, ys1 = α

β
. (A3)

The second steady-state solution is

xs2 = −s1 + s2 − [(s1 − s2)2 − 4s3s4]1/2

2s4
, (A4)

ys2 = 1

s5

{
(〈γx〉 − 〈γ2〉α) − s6

2s4

−〈γx〉〈γy〉[(s1 − s2)2 − 2s3s4]1/2

2s4

−〈γx〉〈γy〉αh[(s1 − s2)2 − 2s3s4]1/2

2s4

−〈γy〉β[(s1 − s2)2 − 2s3s4]1/2

2s4

}
. (A5)

The third steady-state solution is

xs3 = −s1 + s2 + [(s1 − s2)2 − 4s3s4]1/2

2s4
, (A6)

ys3 = 1

s5

{
(〈γx〉 − 〈γ2〉α) − s6

2s4

+〈γx〉〈γy〉[(s1 − s2)2 − 2s3s4]1/2

2s4

+〈γx〉〈γy〉αh[(s1 − s2)2 − 2s3s4]1/2

2s4

+〈γy〉β[(s1 − s2)2 − 2s3s4]1/2

2s4

}
, (A7)

where

s1 = 〈γx〉〈γy〉 + 〈γx〉〈γy〉αh − 〈γx〉〈γy〉αh2,

s2 = 〈γx〉αβh − 〈γy〉αβh + β2,

s3 = 〈γx〉α + 〈γx〉α2h + αβ,

s4 = −〈γx〉〈γy〉β − 〈γx〉〈γy〉h2αβ − 〈γy〉hβ2,

s5 = 〈γx〉〈γy〉 + 〈γx〉〈γy〉hα + 〈γx〉β,

s6 = 〈γx〉2〈γy〉2(1 − 3hα + 3h3α2 + s7),

s7 = −〈γx〉2αh(1 + αh)

2h(〈γx〉 + 〈γx〉αh + β )

+〈γx〉(1 + αh)(〈γy〉 + 〈γy〉αh − β )

2h(〈γx〉 + 〈γx〉αh + β )

+ β(〈γyαh − β〉)

2h(〈γx〉 + 〈γx〉αh + β )
.

The fourth steady-state solution is given by

xs4 = 0, ys4 = 0. (A8)
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The fifth steady-state solution is

xs5 = α

β
, ys5 = 0. (A9)

The stability of the steady solutions is determined by the
Jacobian matrix:

J =
⎛
⎝

〈γx〉y
1+〈γx〉hy + α − 2βx − 〈γx〉2hxy

(1+〈γx]〉hy)2 + 〈γx〉x
1+〈γx〉hy

− 〈γy〉2hxy
(1+〈γy〉hx)2 + 〈γy〉y

1+〈γy〉hx
〈γy〉x

1+〈γy〉hx + α − 2βy

⎞
⎠.

(A10)

The third steady-state solution gives the unstable steady state.
For simplicity, we assume 〈γx〉 ∼= γ and 〈γy〉 ∼= γ , which give

xs3 = −r1 + r2 + [(r1 − r2)2 − 4r3r4]1/2

2r4
, (A11)

where

r1 = γ 2(ab + abαh − abαh2),

r2 = γ (aαβh − bαβh) + β2,

r3 = γ (α + α2h) + αβ,

r4 = −abγ 2(hβ + h2αβ ) + bγ hβ2,

and a similar formula for ys3, from which Figs. 11 and 12 are
obtained.

APPENDIX B: METHOD TO SYSTEMATICALLY
VARY NESTEDNESS

In order to vary the nestedness of a mutualistic network
systematically, we generate a random mutualistic network
and rearrange or rewire the interactions in the network until
a desired value of nestedness is achieved [32]. Specifically,
we start the rewiring process by randomly choosing an edge,
say one between species i and j. We then randomly select
another species k. If i is a pollinator, then j and k must be
plant species, and vice versa. If species k has more links than
species j, we connect species i with k; Otherwise, we leave the
interaction between i and j unchanged. After each successful
random rewiring iteration, we calculate the nestedness of the
whole mutualistic network defined as [87]

Nest =
∑SX

i< j DX
i j + ∑SY

i< j DY
i j

SX (SX − 1)/2 + SY (SY − 1)/2
, (B1)

where DX
i j = dX

i j /min(dX
i , dX

j ), DY
i j = dY

i j/min(dY
i , dY

j ), dX
i j is

the number of plant species that both pollinator species i and
j interact with (similarly for dY

i j , the corresponding quantity
for plant species), and dX

i and dX
j are the total numbers of

plant species that pollinator species i and j interact with,
respectively (similarly for dY

i and dY
j ). The rewiring process

stops when the nestedness of the network has reached the
desired value.
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