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Mixing by cutting and shuffling can be mathematically described by the dynamics of piecewise isometries
(PWIs), higher dimensional analogs of one-dimensional interval exchange transformations. In a two-dimensional
domain under a PWI, the exceptional set, Ē , which is created by the accumulation of cutting lines (the union
of all iterates of cutting lines and all points that pass arbitrarily close to a cutting line), defines where mixing is
possible but not guaranteed. There is structure within Ē that directly influences the mixing potential of the PWI.
Here we provide computational and analytical formalisms for examining this structure by way of measuring
the density and connectivity of ε-fattened cutting lines that form an approximation of Ē . For the example of
a PWI on a hemispherical shell studied here, this approach reveals the subtle mixing behaviors and barriers to
mixing formed by invariant ergodic subsets (confined orbits) within the fractal structure of the exceptional set.
Some PWIs on the shell have provably nonergodic exceptional sets, which prevent mixing, while others have
potentially ergodic exceptional sets where mixing is possible since ergodic exceptional sets have uniform cutting
line density. For these latter exceptional sets, we show the connectivity of orbits in the PWI map through direct
examination of orbit position and shape and through a two-dimensional return plot to explain the necessity of
orbit connectivity for mixing.
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I. INTRODUCTION

The mathematical foundation of cut-and-shuffle mixing
is the piecewise isometry (PWI), which cuts a domain into
pieces that are rearranged to reform the original domain [1–6].
Mixing by cutting and shuffling arises in several natural
systems such as granular materials [7–12], valved fluid
flows [13,14], and imbricate thrust faults in geology [15–17].
In these systems and others, cutting and shuffling is not the
only mixing mechanism (chaotic advection and diffusion can
also be present), but it is presently the least understood.
Here we present techniques to investigate the mixing of a
particular class of hemispherical PWIs related to the mixing
of granular particles in a spherical tumbler [8–10,18]. Our
goal is not to study the wide range of PWIs, which can
occur in one, two, and three dimensions (or higher) [6], but
instead to develop computational and analytical approaches
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to identify invariant ergodic subsets that result in barriers to
mixing. And, more importantly, the results we will describe
are largely independent of the choice of (almost everywhere
invertible) PWI.

PWIs act isometrically (i.e., as a distance-preserving trans-
formation) on each of a finite number of pieces, or “atoms,”
Pi of a domain. For this paper, PWI dynamics are examined
near the boundaries of these pieces where the map is dis-
continuous. Following previous work [10,11,19,20], the PWI
here is defined as a multivalued map acting on the power set
(the set of subsets, which allows multivalued boundaries) such
that the different, but overlapping, boundaries of the pieces
of the domain are allowed to have different actions under the
map. This is to say that, under the map, atoms that touch each
other retain a copy of their mutual boundary under the map.
This is an identical treatment to our previous papers [10,20],
although it was not emphasized in the arguments presented
there. Atom boundaries are essential elements of some of
the arguments presented in this paper, and it is a point that
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FIG. 1. (a–d) Illustration of the rotations that define the hemi-
spherical PWI studied here. (a) Initial condition of the hemispherical
shell (S). (b) Rotation about the z axis by α (arrow shows direction
only). (c) Rotation about the x axis by β. (d) Reformed S. (e), (f)
Equivalent PWI for the (α = 57◦, β = 57◦) protocol results in four
atoms, P1, P2, P3, P4, with cutting lines D1 and D2. (g) Accumulation
of pre- and postimages of ε-fattened (ε = 10−3) cutting lines D after
N = 20 000 iterations, viewed from the negative y axis, approximat-
ing the true exceptional set Ē as Ẽε,N using color to indicate cutting
line density as explained in Sec. III. A Lambert azimuthal equal area
projection is used [29].

requires special care. Other treatments define dynamics on
cutting lines such that the map is not multivalued [2,3,5,21–
25], and single-valued cutting lines are sufficient for some
arguments here (the computational methods are ultimately
indifferent to the treatment of the boundaries).

The specific system we study as an example is inspired by
a physically realizable spherical tumbler half-filled with gran-
ular matter and rotated in a periodic sequence about two per-
pendicular axes [8,26,27], though the approach described here
to identify barriers to mixing could be applied to any PWI. In
the equivalent hemispherical shell PWI example we consider
here [9–11,18,20,22,23,26–28], the lower unit hemispherical
shell, S = {x = (x, y, z) ∈ R3 : ‖x‖ = 1, y � 0}, in Fig. 1(a)
is rotated by angle α ∈ [0, π ) about the z axis and then by
angle β ∈ [0, π ) about the x axis, as shown in Figs. 1(b)
and 1(c) to remake S in Fig. 1(d). The equator provides
the cutting action as the pieces of the hemisphere that are
flipped across the boundary separate from neighboring points.
This rotational procedure, i.e., Figs. 1(a)–1(d), motivates the
equivalent PWI map Mα,β , referred to as M except where
α, β need to be specified, corresponding to the protocol (α, β )
shown in Figs. 1(e) and 1(f).

In this PWI, the hemispherical domain S is split into at
most four atoms, {P1, P2, P3, P4}, as shown in Fig. 1(e), which
are mutually disjoint but overlap at their shared boundaries,
D1 and D2. These atoms are rearranged according to the
rotations in Figs. 1(a)–1(d) as shown in Fig. 1(f). Repeating
the PWI, i.e., cutting and shuffling over and over, reveals the
singular set, E , which is defined as E = ⋃∞

n=0 Mn(D1 ∪ D2)
and is the accumulation of cuts produced by the PWI map M
(all multivalued points of the map and the union of forward
iterates of cutting lines) [19]. As previously defined, the
singular set and its limit points define the closure of E called

the exceptional set, Ē , which is E and all points that pass
arbitrarily close to E under the PWI map.1

For generic protocols, it has been conjectured that Ē is a
fat fractal [30,31], and there is strong numerical evidence that
Ē has nonzero measure for almost all protocols [1,2,10,23,32]
(that is, a finite fraction of the domain passes arbitrarily close
to the cutting lines under the PWI map) except for those
protocols that produce polygonal tilings [11,20]. Instead of
an exact representation of Ē , an N-iterate approximation [20]
to the exceptional set using ε-fattened cutting lines, Ẽε,N , is
used here; for the PWI in Figs. 1(e) and 1(f), this approx-
imation is shown in Fig. 1(g). An obvious feature of the
exceptional set is the open circular regions, or cells, which
are periodic nonmixing regions that rotate about an internal
elliptic periodic point and are never cut by the cutting lines
of the PWI [10,11,20,22,23,25,28]. The fractional coverage
of the hemispherical shell’s area contained in the associated
fat fractal is denoted � and its limiting value is denoted
�∞ [10,11,20,28]. A key point is that while the exceptional
set indicates where mixing is possible, mixing is not guaran-
teed within the exceptional set [20].

The purpose of this paper is to investigate invariant ergodic
subsets within Ē that do not intermix. By ergodic set, we mean
that every orbit (i.e., the set of all pre- and postimages of a sin-
gle point, e.g., X = {Mn(x) : −∞ < n < ∞} is the orbit of x)
from the set either exists in a lower dimensional set (zero
measure, e.g., a finite number of periodic points or curves) or
fills out the entire ergodic set (full measure); a set that is only
partially filled by an orbit is not ergodic, but the subset that is
filled may be ergodic on its own [33]. In this case, minimally
invariant sets (orbits under the PWI and their closures) with
nonzero measure are also ergodic due to the dynamics of
PWIs [31]. In other words, an ergodic set is one in which,
under the PWI map, an orbit passes arbitrarily close to every
point within the set infinitely often (Poincaré recurrence) and
with equal frequency (with respect to an invariant measure)
throughout the set. The closure of every orbit that has nonzero
measure under the PWI is invariant under the map and defines
an ergodic subset of the domain (due to the dynamics of
PWIs). If the exceptional set Ē can be split into multiple,
separate ergodic subsets, then there are additional barriers to
mixing within the exceptional set. We present tools to examine
invariant subsets in Ē and definitively determine that Ē is not
always ergodic and instead contains many ergodic subsets for
some PWIs.

Our goal in doing this is to answer two specific questions
about the physical nature of solid mixing by cutting and shuf-
fling. First, do more cuts necessarily generate more mixing?
We demonstrate that this is not the case, and, in fact, variation
in the density of cuts at different locations throughout the

1The limit points of a set define all the points for which there is
a sequence of points within the set that approach the limit point
with arbitrary closeness. In this case, E is the set of all points x for
which the minimum distance between {Mn(x) : −∞ < n < ∞}, i.e.,
the orbit of x, and D is exactly zero; minn d (Mn(x,D)) = 0 for a
distance metric d . The limit points of E are all points for which the
infimum of this distance is zero, but this distance is never exactly
zero; infn d (Mn(x,D)) = 0 and d (Mn(x,D)) > 0.
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domain is an indicator of barriers to mixing. Second, do
nontrivial cutting actions necessarily produce any mixing at
all? We demonstrate, by use of a modified recurrence plot,
that there exist invariant subsets of cut regions which indicate
barriers to mixing, potentially barring global mixing. Both
of these results are likely to be of importance for practical
applications of solids mixing.

II. MATHEMATICS OF PIECEWISE ISOMETRIES

Mathematically, a PWI on a metric, measure space S is a
map � : P (S) → P (S), where P (S) denotes the power set of
S (the set of subsets of S). S consists of a finite number of
tiles or atoms {P1, . . . , Pm} with nonempty interiors that form
a tiling of S, and � consists of isometries on these atoms
(metric-preserving maps):

φk : Pk → S, 1 � k � m.

Although not a requirement for PWI in general, the
PWI studied here is almost everywhere invertible such
that {φ1(P1), . . . , φm(Pm)} is also a tiling of S, i.e.,
S = ⋃m

k=1 φk (Pk ) = ⋃m
k=1 Pk , and, as such, both tilings,

{P1, . . . , Pm} and {φ1(P1), . . . , φm(Pm)} overlap only on their
boundaries, ∂Pk and ∂φk (Pk ) respectively, which are measure
zero. The single PWI map, �:P (S) → P (S), is the combina-
tion of these isometries,

�(x) := φk (x), when x ∈ Pk, 1 � k � m,

which is multivalued and discontinuous on the overlapping
boundaries of Pk . We use D to denote the collection of
these multivalued points (which are discontinuities in the
PWI), specifically D = ⋃

i �= j Pi ∩ Pj . The red cutting line
D1 (due to the first rotation by α) and the black cutting
line D2 (due to the second rotation by β) together form
this multivalued, zero measure set in Figs. 1(e) and 1(f).
In many definitions [2,3,5,21–25], PWIs are defined on D
in such a way as to avoid multivalued mappings, but orbits
originating from this set, D, and nearby are used in this paper
to understand the mixing regions adjacent to E . Atoms that
share a boundary each retain a copy under the map, which will
later be described as each retaining a side of the discontinuity.

The multivalued map for the hemispherical shell PWI is
formally defined as a rotation for each atom independently,

Mα,β (x) = {Ri(x):x ∈ Pi}, (1)

where the four rotation isometries Ri for each Pi are

R1(x) = Rx
βRz

αx, (2)

R2(x) = Rx
βRz

α+πx, (3)

R3(x) = Rx
β+πRz

αx, (4)

R4(x) = Rx
β+π Rz

α+π x, (5)

and Ra
θ is a rotation about axis a by angle θ [11,20]. Rotations

are applied right to left such that rotation about the z axis
is first and rotation about the x axis is second. Additional
rotations by π are included where the specified atom crosses
the (periodic) equator.

This PWI is orientation preserving (free of reflections)
and almost everywhere invertible except for the points that
map to the equator after either rotation (atom boundaries)
which map to two locations. The pre-image of the points
that encounter the equator during the rotation procedure in
Fig. 1 are labeled D1 (first rotation about the z axis) and
D2 (subsequent rotation about the x axis) in Fig. 1(c). Since
MD2 = ∂S, the same blue color is assigned to ∂S, D2, and
their pre- and postimages in later figures to aid visualization.
Likewise, the pre- and postimages of D1 are red in later
figures. Figure 1(g) shows Ẽ0.001,20 000 (N = 20 000 iterations
of cutting lines given half-width ε = 0.001), for the (57◦, 57◦)
protocol, an approximation of the exceptional set, Ē , which
is the accumulation of all possible pre- and postimages of
the cutting lines using this red-blue coloring viewed from the
negative y axis and flattened to a disk using a Lambert az-
imuthal equal-area projection [29]. This projection preserves
the relative areas of features and is used in Sec. III B to evenly
sample across the shell (an evenly spaced grid is projected
onto the hemisphere) [20].

The hemispherical shell, S, can be partitioned into dis-
tinct invariant sets with respect to the PWI. O ⊂ S is the
collection of periodic islands, maximally open neighborhoods
about central periodic points, which almost always, with the
exception of degenerate protocols without periodic islands,
has positive Lebesgue measure, i.e., two-dimensional (2D)
area. Periodic islands are never cut by the PWI. In contrast, E
is the countable union of pre- and postimages of the cutting
lines, D, and, as a collection of great circle arcs, has zero
Lebesgue measure. E can contain periodic points, but since
M is treated as a multivalued map on D, it may be that only
one of the multiple images of a point in E is actually periodic.
Ē , the closure of E , is called the exceptional set. While E may
contain periodic points, the remainder of Ē outside of E , E ′ =
Ē \ E , necessarily cannot contain any periodic points [32].2

Since E has zero measure as a collection of thin arcs, all of the
measure associated with a fat fractal Ē is from E ′. These three
sets, E , E ′ and O are all invariant under M (and, of course,
Ē = E ∪ E ′ is trivially invariant as the union of two invariant
sets).3

In general, O is not minimally invariant (containing no
smaller invariant subset), as each periodic cell can only map
to cells of the same size [11]. For any given protocol, it is not
clear whether Ē is minimally invariant (containing no smaller

2Take periodic orbit X (such that every x ∈ X is a periodic point)
and the distance metric d (a, B) = infb∈B d (a, b) � 0 which is the
minimum distance between a point a and a set B. If d (x,D) > 0
for all x ∈ X , then there exists a δ > 0 such that d (x,D) > δ for all
x ∈ X and, therefore, there exists a neighborhood around each x ∈ X
constituting a periodic cell with nonzero measure such that X ⊂ O.
If d (x,D) = 0 for some x ∈ X , then there is at least one point y ∈ X
such that d (y,D) = 0 and y ∈ D, which implies X ⊂ E . Therefore,
there are no periodic points in E ′.

3E is invariant by definition as it is the smallest set containing D
that is invariant. O is also invariant as the image of any periodic cell
is another cell. E ′ = S \ (O ∪ E ) must then also be invariant. If it
were not invariant, there would exist x ∈ E ′ such that M(x) /∈ E ′,
i.e., M(x) ∈ E ∪ O, which violates the invariance of E or O.
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FIG. 2. Approximate exceptional sets, Ẽ0.001,2×104 , for
(a) (45◦, 45◦) and (b) (57◦, 32.75◦) protocols viewed from
below using a Lambert equal area projection (see Sec. III for
explanation of how the hue is computed). Corresponding mixing of
initial condition in (c) for (d) (45◦, 45◦) and (e) (57◦, 32.75◦) after
2 × 104 iterations of Mα,β .

invariant subsets within them), but the existence of distinct,
positive measure, minimally invariant subsets in Ē introduces
barriers to the mixing induced by the PWI. Orbits in Ē can be
approximated by nearby trajectories in E , but due to roundoff
error, no numerically evaluated orbits will ever enter E .

With this background, we begin by examining an approx-
imation to the natural invariant measure of Ē and the numer-
ical considerations in representing orbits via color coding in
Sec. III. In Sec. IV we examine how images of D return to
D using a type of return plot and draw conclusions about
invariant subsets within Ē that can create barriers to mixing.
Again, our goal is not to attempt to characterize the infinite
range of possible PWIs on the hemispherical shell, which has
been done previously [10,11,20,28], but instead to develop
approaches to understand the mixing characteristics of PWIs
in general by considering a few specific hemispherical shell
PWIs as examples.

III. COLOR CODING INVARIANT SUBSETS

Previous studies on the hemispherical PWI [11,20] used a
correlation [10] between the measure of Ē (2D area) and the
intensity of segregation due to Danckwerts [34], a measure
of mixing, to compare the degree to which two different
protocols mix. Some PWIs have ergodic exceptional sets [35],
some PWIs produce weak mixing within their exceptional
sets [36], and other PWIs have exceptional sets containing
separate invariant subsets that do not mix between each
other [37,38]. In general, it cannot be predicted whether a
given PWI will have an ergodic exceptional set, and, as a
result, the measure of Ē is not always an accurate indicator of
mixing. Compare, for example, the protocols (45◦, 45◦) and
(57◦, 32.75◦), shown in Figs. 2(a) and 2(b), respectively, both
of which have exceptional sets that cover roughly 41% of S,
i.e., �∞ ≈ 0.41 [10,11,20]. For both protocols, the N-iterate
approximation to Ē , Ẽε,N , shown in Figs. 2(a) and 2(b) is
formed by using N = 2 × 104 iterations of fattened cutting
lines with width 2ε = 0.002 (ε on either side of the line).

Using this approach, ε-fattened cutting lines subject to the
PWI completely cover Ē in a finite number of iterations [20].

It is illustrative to compare the mixing for these two
protocols. The continuously varying initial condition shown
in Fig. 2(c) is partially mixed by both protocols as shown in
Figs. 2(d) and 2(e). As expected, nonmixing cells do not mix
with the rest of the domain, but, surprisingly, the (45◦, 45◦)
protocol in Fig. 2(d) generates noncircular regions inside of
Ẽε,N that do not mix with the rest of the domain. Previous
measurements of fractional coverage [10,11,20] count all of
Ē as mixing, yet there appear to be regions within Ē that are
isolated from one another. The most obvious example is the
zigzag band across the upper right and lower left of Fig. 2(d).
Some parts of this band are collections of periodic cells that
travel together, but more interesting is that the parts of this
band outside of these cells are completely self-contained, in-
dicating a separate invariant subset within Ē . This zigzag band
appears to be an interval exchange transform embedded into
the PWI [38]. An interval exchange transformation is the one-
dimensional (1D) version of cutting and shuffling in which
a line segment (or other 1D object) is split into pieces that
are reordered [39–45]. A closer examination of the (45◦, 45◦)
protocol in Sec. IV reveals many other self-contained invariant
subsets in Ē , each of which represents an isolated mixing
region and a barrier to mixing that also indicates Ē is not
ergodic as a whole. In contrast, the (57◦, 32.75◦) protocol
in Fig. 2(e) produces good mixing (gray regions), except for
the unmixed cells corresponding with the white regions in
Fig. 2(b). Thus, this protocol does not appear to have any
structure outside of the nonmixing islands, which suggests
that there are no smaller invariant subsets in in Ē .

These examples show that although the fractional coverage
�∞ indicates what fraction of the domain is outside of non-
mixing cells, it fails to indicate the degree of mixing within
Ē . Hence, the fractional coverage of Ē only indicates how
much mixing is possible, not whether it occurs. In previous
work [1,3,5,10,11,20,23], exceptional sets for the hemispher-
ical PWI, as well as other PWIs, have been constructed
without considering the dynamics within them. However, in
the process of generating the approximation Ẽε,N , the local
amount of cutting in the exceptional set, which will be sub-
sequently defined as the density, ρ, can be approximated by
layering ε-fattened (finite width 2ε) cutting lines on top of one
another. Variation in this ε-fattened cutting line density reveals
the subtle nonmixing structures within Ē , as described in
this section.

Two conditions must be true for an exceptional set to be
completely ergodic on its own, that is, without separate er-
godic subsets. First, since the PWI is composed of isometries
(which are nondistorting), the entire ergodic exceptional set
must encounter the cutting lines, D, with equal frequency or
density (i.e., the local distribution of cuts is uniform). That is,
if one point encounters a cutting line more often than another,
the two points must lie on different orbits (and therefore differ-
ent invariant sets) within the exceptional set. Second, almost
any point in an ergodic exceptional set (with the exception of
measure zero orbits, e.g., periodic points) necessarily has an
orbit dense in the entire exceptional set which includes the
initial cutting lines, D, such that any point in Ē will have a
trajectory that falls arbitrarily close to every point along the
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entire length of D, and, in conjunction with the first condition,
encounters all of D with equal frequency or density. These two
conditions motivate the following measurement of the cutting
line density.

A. Cutting line density

Cutting line density is an invariant measure of how often a
region of the domain is cut. Using the ε-fattened cutting line
approximation [20], this can be thought of as layering paint
along each cutting line such that the paint thickness, when
normalized by the number of cuts painted, represents the local
density of cutting lines.

Before formally defining the cutting line density ρ, we
address some mathematical preliminaries. A mathematical
ball is used to consider neighborhoods of points (a point plus
points in the region surrounding it) such that given a point
x ∈ S, the closed ball of radius r > 0, Br (x) = S ∩ {z ∈ S :
‖x − z‖ � r}, contains all points z within distance r of point
x.4 This is generalized to the closed r-neighborhood of a set A
which is defined as Br (A) = S ∩ ⋃

x∈A Br (x) = S ∩ ⋃
x∈A{z ∈

S : ‖x − z‖ � r} and likewise is the set of all points z within
a distance r of A.

The ε-fattened cutting lines of the PWI are defined as
D1,ε = Bε(D1) and D2,ε = Bε(D2) for some small ε > 0.
Note that the 2D Lebesgue measure (L2(·), or area) of the
overlap is L2(D1,ε ∩ D2,ε ) > 0 for ε > 0 because there is
in fact a small region of overlap at the intersections of
the cutting lines D1,ε and D2,ε. The ε-fattened cutting lines
are used to define an ε-fattened E [20], which is called
Eε = ⋃∞

n=−∞ MnDε = Bε(E ) where Dε = D1,ε ∪ D2,ε, that
approximates Ē (contains E and its limit points as well as
extra points due to the ε-fattened cutting lines) since in the
limit as ε → 0, Eε → Ē (extra points are reduced and only E
and its limit points remain) [20,46]. It is not possible to apply
infinite iterations of M to completely construct Eε, so N iter-
ations are used to find an estimate of Eε: Ẽε,N = ⋃N

n=0 MnDε.
There always exists a sufficiently large N such that the ap-
proximation Ẽε,N composed of the ε-fattened cutting lines
completely covers Ē [20], and this estimate is increasingly
accurate as ε → 0 and N → ∞.

Before defining the cutting line density, we define the
fraction, F , of iterates for which x is contained in some set
A ⊂ S as

F (x, A) = lim
n→∞

No.{x ∈ Mi(A) : 0 � i < n}
n

(6)

= lim
n→∞

No.{M−i(x) ∈ A : 0 � i < n}
n

, (7)

where “No.” denotes the counting measure such that the
numerator is the count of iterates of x in A [47]. The “moving-
set” (M is applied to A) definition, Eq. (6), is equivalent to
the more useful (when considering orbits) “moving-point”
definition in Eq. (7). Equation (7) does not include limit points

4The geodesic distance on the unit sphere is used here. Geodesic
distance, dG, and Euclidean distance, dE , on the unit sphere are
related by d2

E = sin2(dG) + [1 − cos(dG)]2 and are equivalent in the
limit as dE or dG → 0.

arbitrarily close to the measurement set A, which makes it
a poor measure for orbits that are arbitrarily close to A. For
orbits arbitrarily close, but not contained in A, F is always 0.
To include these limit points, the density of the orbit starting
at x in a set A is defined as

ρ(x, A) = lim
r→0

F (x, Br (A)), (8)

such that limit points are included in this measurement. For at-
tracting maps, this density is identical to the natural invariant
measure of the set A under said attracting map [47–49].5

For any A ⊂ S it is straightforward to show that ρ(x, A) =
ρ(Mnx, A) for any integer n, i.e., ρ is invariant under the
map and constant along the orbit of any x in the domain. By
extension, if C ⊂ S is an ergodic subset, then ρ(z, D) will be
identical for every z ∈ C and any subset D ⊂ S as a direct
result of ergodicity, i.e., ρ is constant throughout an ergodic
set.

The sets of interest for measuring the density of the excep-
tional set are the ε-fattened cutting lines that generate the fat
fractal. In fact, limε→0 ρ(x,Dε ) is the natural invariant density
in D [47,49] but is zero for all nonperiodic x since the PWI has
no attractors.

Finally, the density of iterates of D1,ε at a point x ∈ S is
ρ(x,D1,ε ) (or equivalently, the density of the orbit of x in
D1,ε) and the density of D2,ε is likewise ρ(x,D2,ε ). As the
areas of D1,ε and D2,ε scale linearly with ε in the limit of
small ε and the map is composed of isometries, ρ(x,D1,ε ) and
ρ(x,D2,ε ) are also proportional to ε in the limit ε → 0. As a
consequence, density measurements are normalized by ε to
more easily compare densities across values of ε. The error in
this measurement is discussed in Appendix A. Normalizing in
this way gives, for nonperiodic orbits, the almost ε-invariant
quantity ρ/ε, which, as discussed in Sec. V and Appendix B,
is closely connected to the area of the corresponding orbit in
the limit as ε → 0.

We consider two representations of this cutting line density.
First, a coloring method based on measurements of cutting
line density is used to create a colored exceptional set in
which the color intensity represents the cutting line density,
as described next. Second, a modified recurrence plot, called
a return plot, that captures localized density throughout the
approximate exceptional set is constructed and analyzed in
Sec. IV, revealing barriers to mixing and confined trajectories
within Ē .

B. Color coding the exceptional set

With this background, we consider the cutting line density
for an example protocol (45◦, 45◦) after 2 × 104 iterations.

5The natural invariant density is a global property (any starting po-
sition x will produce the same value) for attracting maps describing
the normalized fraction of “time” a typical orbit spends in A and can
be used as a measure on the attractor for attracting maps. Since PWIs
are nonattracting maps, this density can be measured throughout the
exceptional set and will produce different values for starting points
x that are in different invariant sets. The natural invariant density is
therefore not a global property of the map [e.g., ρ(x, E ) = 0 for all
x ∈ O since E and O are distinct invariant sets, E ∩ O = ∅].
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FIG. 3. Area-preserving projection of (a) the (45◦, 45◦) protocol
and (c) the (57◦, 32.75◦) protocol after N = 2 × 104 iterations using
a cutting line width of ε = 0.001 as viewed from below. (a), (c) Both
hue (relative density) and lightness (density) of cutting lines. (b), (d)
Scatter plot of hue, H , and cutting line density, ρ/ε, for colors shown
in (a) and (c) respectively.

Applying the PWI repeatedly, the cutting lines, D1 and D2,
are cut and shuffled around the domain forming a part of E ,
which has cutting lines overlapping only at individual points.
With ε-fattened cutting lines, cutting line intersections are
small patches instead of individual points, that is L2(Dε ∩
MiDε ) > 0. This is what contributes to density (individual
points do not contribute to density). These small overlapping
areas are categorized in two ways to make the overall coloring
shown in Fig. 3(a): the total density (of both fattened cutting
lines) is used for lightness and the relative density of the two
different cutting lines is used for hue. The hue measurement
alone is shown in Fig. 2(a). The different hues in Fig. 2(a)
demonstrate that some parts of the domain are cut mostly (or
even exclusively) by D1 (red), others are cut mostly by D2

(blue), and still others are cut by both D1 and D2 (magenta).
When the absolute density is also included as a lightness

with the hue, the image in Fig. 3(a) is produced. White areas
show cells in which there are no cutting lines at all (and
thus no cutting line density). The lightness of color in the
ε-fattened exceptional set in Fig. 3(a) reflects the total cutting
line density, ρ(x,Dε )/ε. Vivid color represents a high cutting
line density (many cuts), whereas pale color indicates low
cutting line density (few cuts).

Thus, in visualizing the exceptional set, two different color
dimensions are used: lightness based on the total cutting line
density, and hue based on the relative densities of the original,
red-blue cutting lines. An HSL [hue, saturation (constant),
lightness] color space is used to show both dimensions to-
gether. The lightness at a point x ∈ S is defined as the total

density of the two cutting lines,

L(x) = ρ(x,D1,ε ) + ρ(x,D2,ε ). (9)

As noted earlier, since L2(D1,ε ∩ D2,ε ) > 0 for ε > 0, this
lightness is not exactly density of Dε, L(x) �= ρ(x,Dε ), be-
cause L(x) double counts the region at the intersection of
ε-fattened cutting lines. However, since L2(D1,ε ∩ D2,ε ) is
roughly equal to 2ε2[csc(α) sec(α) + csc(β ) sec(β )] for small
ε, the two measurements are similar, L(x) ∼ ρ(x,Dε ), in the
limit of small ε for α, β � 0 (see Appendix A for more
discussion on the error incurred by this overlap). Hence, we
use the symbols ρ and L interchangeably to mean L(x) ≈
ρ(x,Dε ). For small values of α or β, this similarity breaks
down, because the overlap of D1 and D2 is large. For an
ergodic set, the lightness will be uniform throughout since
every point returns to the cutting lines with equal frequency.

The second color dimension is the hue. Hue is measured as
a fraction of interactions with one of the two cutting lines out
of the total interactions with both cutting lines,

H (x) = ρ(x,D1,ε )

ρ(x,D1,ε ) + ρ(x,D2,ε )
, (10)

which is undefined when both ρ(x,D1,ε ) and ρ(x,D2,ε ) are
zero (i.e., inside periodic cells). The range of H (x) is [0,1],
from blue to red. For an ergodic set, the hue is uniform
throughout the set since every point encounters either cutting
line with equal frequency.

As mentioned above, an ergodic subset B ⊂ S has the same
density, ρ(x,C) for all x ∈ B for any sample set C. Equal
densities in an ergodic set imply the same coloring according
to this visualization method. Although identical color cannot
be used to verify that a subset is indeed ergodic, differences
in color can be used to show that subsets are necessarily not
ergodic. The scatter plot of hue and lightness in Fig. 3(b)
clearly shows that the (45◦, 45◦) protocol is not ergodic since
color is not uniform in either hue or lightness. Similar color
coding has been used by Ashwin and Goetz [37] to color code
periodic cells based on their return frequency to a particular
atom of the PWI, ρ(x, Pi ).

The hue of the (45◦, 45◦) protocol, calculated using
Eq. (10) and shown in Fig. 2(a), reveals large arrowhead like
structures that are exclusively red or blue that do not mix
with the rest of the domain. From the lightness, combined
with the hue in Fig. 3(a), it is clear that there are even
regions within these arrowheads that are not mixing within
themselves, notably their lighter borders have a low cutting
line density and do not mix with their darker cores, which
have a different (higher) cutting line density. Furthermore,
recall that Fig. 2(d) shows that the (45◦, 45◦) protocol has
invariant subsets within Ẽ that hinder mixing, such as the
zigzag bands across the upper right and lower left. When
using the normalized density in Fig. 3(a), these zigzag bands
are a light magenta indicating low cutting line density bands
that separate darker regions of high cutting line density in the
exceptional set from one another.

For a protocol to have an ergodic Ē , there are conditions
on what the coloring of Ẽε,N , the approximate exceptional
set can be. Ergodicity implies that dynamics within Ē should
have no bias in proximity to the two cutting lines. Since
the average color of D is a magenta halfway between red
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FIG. 4. (a) The (90◦, 60◦) protocol shown from below using an
equal-area projection to a disk. (b) Using the initial condition in
Fig. 2(c), mixed state after 2 × 104 iterations. (c) Hue and lightness
visualization of cutting lines for ε = 0.001 after 2 × 104 iterations of
the PWI.

and blue, the resulting stacked cutting lines should be this
same average hue of magenta [H (x) = 0.5, x ∈ Ē ]. Further,
since M is a PWI and therefore area preserving, all regions
within Ē should pass within ε of cutting lines with an equal
frequency. If Ē is ergodic, Ẽε,N should be a solid magenta
color without variation in intensity everywhere inside of Ē
(periodic cells will have single colored boundaries resulting
from an intersection between Eε and O). This does not mean
that a single magenta-colored Ẽε,N implies ergodicity, but it
does mean that if any portion of Ẽε,N ∩ Ē is not a single
magenta color, the protocol definitively produces a nonergodic
exceptional set. The distribution of colors using hue and
lightness for the (45◦, 45◦) protocol in Fig. 3(b) indicates that
neither hue nor cutting line density are uniform throughout the
exceptional set, each varying substantially, and therefore the
exceptional set for the (45◦, 45◦) protocol is not ergodic.

The differences in Ẽε,N for the (45◦, 45◦) protocol shown in
Fig. 3(a) and the (57◦, 32.75◦) protocol shown in Fig. 3(c) are
obvious. The lightness of cutting line intersections in Fig. 3(c)
shows no distinguishable pattern and is nearly uniform in
density. This does not imply that Ē is ergodic, but it does
not rule out ergodicity as it did for (45◦, 45◦). The hue of
overlapped cutting lines in Figs. 2(b) and 3(c) also shows no
discernible pattern within Ē , showing the entire hemispherical
shell is uniformly cut by both D1 and D2 throughout except,
of course, in the cells where there are no cuts. Although it
cannot necessarily be concluded that Ē is ergodic, it is likely
that Ē for the (57◦, 32.75◦) protocol has fewer ergodic sub-
sets than for (45◦, 45◦). We conclude that mixing within the
exceptional set in the (57◦, 32.75◦) protocol is quite different
from that for the (45◦, 45◦) protocol, despite both exceptional
sets occupying nearly the same fraction of the hemisphere,
due to the apparent absence of separate invariant subsets and
the barriers to mixing they create within the exceptional set in
the former. This is emphasized by the tight distribution of hue
and cutting line density in the scatter plot in Fig. 3(d).

Unfortunately, neither hue, H (·), nor density, ρ/ε, as de-
fined here completely identifies invariant subsets in Ē . To
illustrate this, consider the (90◦, 60◦) protocol shown in Fig. 4.
This protocol has coincident red and blue cutting lines, shown
in Fig. 4(a) with a red cutting line down the vertical diameter
for the initial cutting lines and a blue cutting line down
the vertical diameter. This creates poor mixing as shown in
Fig. 4(b), but this also makes separation of cutting lines by hue
as defined here impossible as shown in Fig. 4(c), since every
red cutting line maps to a blue cutting line and ρ(x,D1,ε ) =
ρ(x,D2,ε ). Notice that all points in Ẽε,N in Fig. 4(c) have the

same magenta hue, and the only variation is due to changes
in cutting line density. This protocol produces a left-right
barrier to mixing due to the coincident cutting lines [20] that
is obvious in Fig. 4(b) but not reflected in the hue-lightness
visualization, Fig. 4(c). In order to differentiate invariant
subsets in protocols like this, more information about orbits
within Ē is needed, as described in Sec. IV.

IV. CATEGORIZING INVARIANT SUBSETS
USING RECURRENCE

The coloring scheme in Sec. III B based on different col-
ors for cutting lines D1 and D2 is useful for understanding
which cutting lines are responsible for different parts of Ē ,
but this red-blue partitioning is somewhat coarse. Instead of
considering just D1 and D2 separately (by color), the cutting
lines can be decomposed into smaller pieces and ultimately
into a continuum of points with densities that indicate their
interactions.

Every intersection point of iterated cutting lines, MnD,
with the original cutting lines, D, is a recurrent point from D
to D. Points x ∈ D and Mn(x) are called recurrent if Mn(x) ∈
D. Each recurrent point necessarily occupies the same orbit
under the PWI. For most protocols, these recurrent points
appear to be dense in D, but there are only a countably infinite
number of them,6 meaning almost all of D is not exactly
recurrent. This concept of recurrence can be expanded to
the ε-fattened cutting lines to approximate the exact return
structure of the cutting lines. Orbits in Ē can then be grouped
by which points in D produce the same orbit. This allows in-
variant subsets in Ē to be uniquely identified by the segments
of D they intersect.

A. Parameterization of cutting lines

In order to separate orbits in Ē by their intersections
with D, every point in D needs a unique identifier. For the
hemispherical shell PWI, atom boundaries that make up D
are great circle arcs with finite length. This allows a simple
parametrization along atom boundaries to uniquely identify
each element of D. For almost all protocols, it is sufficient
to parametrize along the length of just the red and black
lines in Fig. 1(e) or just the red and blue lines in Fig. 1(f)
whose total length is 2π . However, some protocols, such as
(90◦, 60◦) shown in Fig. 4(a), have a pronounced “sidedness”
associated with the coincident cutting lines. This is evident in
the separation between the two sides of the vertical midline,
where the cutting lines are coincident, in Fig. 4(c), indicating
that each side of the same cutting line interacts only with its
own side of the domain. Because of this, a parametrization
should account for the different atoms on either side of the
cutting lines. To be clear, the two “sides” of a cutting line
are simply the two sets of dynamics assigned to the cutting
line, one for each neighboring atom Pk . This sidedness is

6Recurrent points can only arise due to intersected cutting lines
of which there are only ever a countably infinite number. That is,
although there are an infinite number of cutting lines in E , they can
be ordered according to the iteration of the map that generates them.
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FIG. 5. The (45◦, 45◦) PWI’s cutting lines’ (a) initial position,
(b) position after rotation about the z axis by α, and (c) position after
both rotations; shown orthographically from the negative y axis. The
black cutting line (and blue boundary) in (a) is parameterized by θ ∈
[0, 2π ) in (c). The red cutting line is parameterized by θ ∈ [2π, 4π )
in (b). The parametrization of the initial black cutting line in (a) is
broken by the equator, and the two pairs of matching points for the
parametrization are labeled with circles and squares, respectively.
The upper right half-filled diamond in (c) is a recurrent point lying on
the initial red cutting line (dotted red) and is the combined postimage
of the filled and unfilled diamonds in (a).

also prominent for any protocol that produces polygonal cells
whose sides return exactly to D, including those that produce
polygonal tilings, which are composed entirely of periodic
segments [11,20].

The (45◦, 45◦) protocol is used as an example to demon-
strate the parametrization of cutting lines, as shown in
Fig. 5(a). To parametrize along the initial red and black
cutting lines in a manner that accounts for the sidedness of
the cutting lines, the parametrization is specified based on the
orientation, with respect to the rotation procedure in Fig. 1,
that places the cutting line on the hemispherical shell equator.
Cutting lines are not multivalued when they lie on the equator,
which makes measurements accounting for sidedness natural.
Working backwards from the final orientation of the cutting
lines after one iteration in Fig. 5(c), the black cutting line
is parameterized first from θ ∈ [0, 2π ) starting at a point
coinciding with the second rotation axis [outer black circle in
Fig. 5(c)] such that inverting the rotation about the second axis
collapses this parametrization onto the black cutting line in
Figs. 5(a) and 5(b). This collapse is why, for protocols without
explicitly coincident cutting lines, a sided parametrization
often leads to redundant parameter values. The red cutting
line is treated similarly and is parameterized according to its
orientation when it lies on the equator [outer red circle in
Fig. 5(b)] from θ ∈ [2π, 4π ) which similarly collapses to the
single cutting line in Figs. 5(a) and 5(c). This parametrization
defines the arc-length parametrization of D which is referred
to as s(θ ):[0, 4π ) → D. Note that the equatorial circular arc
θ ∈ [0, 2π ) in Fig. 5(c) collapses to the two sides of the
black cutting line in Fig. 5(a) with two matching points in
the parametrization (broken by the PWI) labeled by a pair
of circles or squares, and that the equatorial circular arc θ ∈
[2π, 4π ) in Fig. 5(b) collapses to the two sides of the red
cutting line in Fig. 5(a). This parametrization is not unique
as any parametrization could be chosen for D, but this one
is selected for its connection to the single-valued orientation
of the original cutting lines and because it is an arc-length
parametrization.

The necessity for a sided or single-valued parametrization
is made clear by examining the points along D labeled by
filled and unfilled diamonds in Fig. 5. These two points in
Fig. 5(a) map to two opposite points on the equator in Fig. 5(b)
resulting in four total points. The sided parametrization allows
a distinction between these split points to be made before the
split occurs. Using a single-valued, or sided, parametrization
allows the tracking of all four points even when two of them
have collapsed onto one another as in Figs. 5(a) and 5(c).
Note that the upper right point in Fig. 5(c) has returned to
the original cutting line (the dotted red line) such that the
sided parametrization breaks down for the next iteration at this
point (since it is multivalued for yet another iteration). Despite
this breakdown at a single point, the sided parametrization
provides additional information about how the cutting lines
move subject to the PWI mapping.

B. Return plots

The cutting line parametrization provides a mechanism for
grouping recurrent points in D, that is, points that start in
D and return back to D. Orbits may be trapped within an
invariant set, and by separating out points that are confined
to certain invariant sets, barriers to mixing within cut regions
can be located. In the physical tumbler, orbits confined to cells
do not mix with the rest of the domain [26]. Other barriers to
mixing also seem to exist that, despite being cut by the map,
produce confined orbits that do not actually contribute to the
overall mixing within the exceptional set.

For example, one recurrent point for (45◦, 45◦) after one
application of the PWI is indicated with a half-filled dia-
mond in the upper right of Fig. 5(c), but there are recurrent
points wherever cutting lines intersect, including the boundary
(which is always treated using the same parametrization as the
initial black cutting line). Since recurrent points are marked
by cutting line intersections, an “intersection plot” or “return
plot,” similar to a recurrence plot for time series [50–52],
can be made where the horizontal and vertical axes are both
θ ∈ [0, 4π ). If the point specified by s(θ1) returns to D at a
point specified by s(θ2), then a return plot will be populated
at both (θ1, θ2) and (θ2, θ1), since recurrence is symmetric.
This also means that the entire θ1 = θ2 line will be populated,
since every point in D is trivially recurrent upon itself. Exact
intersections (up to machine precision) can be computed to
create an exact intersection map, which is essentially a first
return plot for D, by applying M to segments of D and finding
the exact locations of their intersection with other parts of D,
which breaks each segment into smaller segments, using the
parametrization in Fig. 5 to exactly identify points.

Exact recurrence measured in this way has shortcomings.
First, the plot will only ever be sparse since cutting line in-
tersections are countable. Additionally, due to the multivalued
nature of the discontinuity, any sort of sidedness of cutting
lines (neighboring atoms having discontinuous dynamics at
the cutting line) cannot be detected computationally using
exact recurrence. This is because a segment returning exactly
to the original cutting line, either in whole or at its endpoint,
will not be cut [an example where segments return exactly
at their endpoints is the (90◦, 60◦) protocol shown in Fig. 4],
and numerical comparison of two floating point zeros (used
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FIG. 6. Schematic diagram of a fat, two-sided (a and b) cutting
line in red with example orbits in light gray. The cutting line is split
into bins of length �θ in which local orbit density is measured. These
example orbits are not representative of all possible orbits in an actual
PWI.

to detect intersections) is impossible. Additionally, as cutting
line segments are continually split into smaller and smaller
segments, the number of cutting line segments to be tracked
(in order to find intersections) appears to grow with the
square of the number of iterations, N2, for protocols that do
not result in polygonal tilings.7 This results in a constantly
growing memory requirement that quickly makes the process
of making an exact return plot intractable.

Instead of an exact return plot, an approximate return plot
is used based on ε-fattened cutting lines. Points along the
cutting lines are iterated using the PWI, and, if they return
to Dε, they approximately return to the closest point in D.
The cutting lines are split into a finite number, T , of bins
[θi, θi + �θ ) where θi, θi + �θ ∈ [0, 4π ], and each returns to
the ε-fattened cutting lines is placed in a bin within a 2D grid
of starting bins and return bins. Figure 6 illustrates a sided,
ε-fattened cutting line (horizontal with red shading to show
the ε-fattening) to demonstrate how the cutting line intersects
with some example orbits. The cutting line is segmented into
�θ -long bins in which the local density of an orbit can be
measured.

To create the return plot, points are initially placed along D
in the i-bins s([θi, θi + �θ )), which are assigned to the hori-
zontal axis of the return plot. These points then increment the
corresponding return j-bin, [θ j, θ j + �θ ), along the vertical
axis when they return within ε of the cutting line as they are
iterated by the PWI. This localized return density, called ρi j ,
represents how often a point starting in the bin [θi, θi + �θ )
returns to the bin [θ j, θ j + �θ ). For example, point x in Fig. 6
will fill out the orbit X̄ under the PWI, and every return to
the θ j bin (dark blue region of X̄ on the right) updates the ρi j

measurement and indicates that the two bins are connected
by an orbit. This can also be thought of as the fractional area
of orbits from the θi bin that intersects the θ j bin as shown
in Fig. 6. Several points to the left of point x in bin θi also
intersect bin θ j following a different orbit, while other points
further to the left of point x in bin θi follow orbits that do
not intersect bin θ j . Also recall that the ε-fattened cutting line

7This is a preliminary result that is backed up by evidence from
the described method not detailed here, but beyond the scope of this
work.

has two sides; points on opposite sides of the cutting line may
follow different orbits and intersect different bins. Because of
this, initial points are placed a small distance δ � ε from the
cutting line to simplify this distinction in the computational
analysis.

Because this local density links a cutting line segment and
an ε-wide bin, there is an inherent, but subtle, asymmetry in
the resulting local density (only disappearing in the ε → 0
limit). The local density is written mathematically as the
cumulative fraction of all orbits from the θi bin that intersect
the θ j bin,

ρi j =
∫ θi+�θ

θi

ρ(s(t ), {ε × [θ j, θ j + �θ )}) dt, (11)

where {ε × [θ j, θ j + �θ )} is the θ j bin constructed by the ε

expansion (to the left in the direction of increasing θ ) of the
cutting line segment making up the entire θ j bin as shown in
Fig. 6.

Figure 7(a) shows the resulting return plot for the
(45◦, 45◦) protocol. We plot the value of ρi j normalized by
both the cutting line half-width, ε, and the bin length, �θ .
Orbits where points return frequently to a small number
of bins (possibly localized near the cutting line) result in
highly skewed local density ρi j values [e.g., black dots at
the centers of the dark squares in Fig. 7(a)]. The skewed
data are transformed to log10 ( ρi j

ε�θ
+ 1) to better reveal the

less frequent return regions, which are lighter (due to orbits
occupying more space away from the cutting lines). Note that
the earlier measurement of hue used to color the exceptional
set in Sec. III is exactly this measurement with only two bins:
one bin for all the points along the red cutting line, [0, 2π ),
and one bin for all the points along the blue cutting line,
[2π, 4π ), indicated on the axes of Fig. 7(a) with adjacent blue
and red lines.

The return plot is reminiscent of the adjacency matrix
of a weighted graph, with each entry relating the weight
of connectivity between two infinitesimal nodes along the
cutting lines.8 The weights in a traditional weighted graph
adjacency matrix indicate the difficulty of traveling between
nodes. Here the return plot indicates the reciprocal of this
difficulty, i.e., the ease of travel between two “nodes,” a value
of zero indicating travel is impossible. Questions about the
shortest orbit given some diffusion on the scale of ε, which
is built into the return plot, between any two parts of the
cutting line can be answered. A measurement of a time-to-ε-
connectivity between regions of the cutting line, which comes
from this perspective, could indicate the rate of mixing within
the system, but these analyses are beyond the scope of this
study.

For Fig. 7(a), each [θi, θi + �θ ) bin is seeded with 103

points uniformly arranged along the bin. In order to maintain
sidedness, the initial points are placed a distance δ � ε away
from either side of the cutting line. The error in position

8Any introductory text on graph theory (e.g., Ref. [53]) should
include a discussion of weighted graphs and shortest path problems
as well as an algorithm due to Dijkstra for computing the shortest
path [58].
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FIG. 7. (a) Approximate return plot for the (45◦, 45◦) protocol as a 2D histogram of ρi j , return to bin i from bin j; �θ = π × 10−3.
(b) Detail of (a) from the dashed black box in the lower left; �θ = π/16×10−3. (a), (b) 2×106 points are initialized δ = 10−9 from the cutting
line, iterated N = 2 × 106 times using a cutting line width ε = 10−5. The θ ∈ [0, 2π ) range represents D2 [blue (black) cutting line] and the
θ ∈ [2π, 4π ) range represents D1 (red cutting line). (c)–(h) Various regions of the exceptional set corresponding to portions of the return plot.

after N iterations for the double precision numbers grows
like N × (2 × 10−16) where 2 × 10−16 is roughly machine
precision (sometimes called machine epsilon). As a direct
result of this error, it is not possible to place points exactly
on a cutting line. The plots shown in the following figures
use N = 2 × 106 iterations such that the error in position after
all iterations is roughly 4 × 10−10. Setting δ smaller than this
value allows for points to potentially switch sides of the initial
cutting line at some point during the application of the PWI,
so δ = 10−9 is used for the following figures. See Appendix A
for further discussion of the error introduced and mitigated by
δ. Since sidedness often adds a symmetry to protocols without
coincident cutting lines such as (45◦, 45◦), the approximate
return plot in Fig. 7(a) is symmetrical across θ = π within the
[0, 2π ) range and across θ = 3π within the [2π, 4π ) range in
both axes. There is also a symmetry across θi = θ j , because an
orbit connecting θi to θ j also connects θ j to θi [there is a subtle
asymmetry when using ε-fat cutting lines that is invisible in
Fig. 7(a); see Appendix A].

How the orbits throughout the domain are connected with
one another directly affects mixing. Figure 7(a) shows ap-
proximately where Ē is connected and, likewise, where it is
disconnected. If ρi j is nonzero (gray or black), there exists
at least one orbit in Ē that begins in [θi, θi + �θ ) along the
cutting line and either intersects or passes within ε of the
[θ j, θ j + �θ ) bin. If ρi j is zero, white in Fig. 7(a), then no
such orbit exists and bins i and j are disconnected from one
another such that the orbits within each are necessarily in
different invariant subsets of Ē . White stripes indicate that
the corresponding orbit is disconnected from a large part of
Ē . Disconnected regions directly impact the mixing dynamics
by containing the mixing to a region smaller than the entire
exceptional set.

The larger the value of ρi j [darker in Fig. 7(a)], the more
often an orbit returns to that bin. If an orbit spends many
iterations returning to the same cutting lines, it is not spending
as many iterations exploring the domain. As such, a high value
of ρi j indicates the associated orbit is small or short. Similarly,

large orbits that spread throughout the domain return to the
cutting lines with a much lower frequency (lighter color). We
refer to filled regions in the same horizontal (row) or vertical
(column) position together as blocks due to their rectangular
shape. Each block has orbits that return close to everywhere
else in the block, indicating potential mixing. Since mix-
ing can only occur between connected regions, disconnected
blocks represent disparate mixing regions.

Figure 7(a) shows that some regions (invariant sets) are
completely disconnected from the rest of Ē , as indicated by
the white stripes in the return plot. For example, in the lower
left [corresponding to D2, θ ∈ [0, 2π )] and upper right [cor-
responding to D1, θ ∈ [2π, 4π )] the dark square blocks with
empty vertical and horizontal stripes around them correspond
directly with the blue and red arrowheads in Fig. 3(a). These
are regions that only interact with one of the two cutting lines
and are isolated from the rest of Ē .

The return plot in Fig. 7(a) can be used to split the
exceptional set into its constituent invariant sets. To explain,
consider a detail of the lower left corner of Fig. 7(a), which
is shown in Fig. 7(b) for θ ∈ [0, π/4]. A close examination
of Fig. 7(b) demonstrates how the repeating section shown
in the figure approximately decomposes the exceptional set
for the (45◦, 45◦) protocol into different invariant sets. The
thin curve at the center of the zigzag in the exceptional set,
shown in Fig. 7(e), intersects (θi, θ j ) = (0, 0) in the domain
shown in Fig. 7(b). Immediately surrounding this zigzag curve
is a caterpillar-like shell in Fig. 7(h) and a region outside
the arrowheads and the zigzag in Fig. 7(c). Some invariant
sets only intersect the blue cutting line D2. A small region
inside the caterpillar-like zigzag is distinct from the central
zigzag curve, as shown in Fig. 7(d). The boundary of the
blue arrowheads in Fig. 7(g) is actually a line of small dark
blocks, each representing a thin invariant set that outlines
an arrowhead, as shown in Fig. 7(g) surrounding the blue
arrowhead core in Fig. 7(f). Finally, there is a separate set in-
tersecting (θi, θ j ) = (π/4, π/4) (not shown) which is a point
of tangency with a circular cell and produces a series of very
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FIG. 8. (a) Approximate return plot for the (57◦, 32.75◦) protocol as a 2D histogram of ρi j , return to bin i from bin j; �θ = π × 10−3.
(b) Detail of (a) from the dashed black box in the lower left; �θ = π/8 × 10−3. Some of the dark spots along the diagonal are circled in green
with the corresponding cells responsible for the horizontal white lines and dark spots shown on the right. The arrows indicate the point of
tangency with the circular cells responsible for the depletion of area. (a), (b) 2 × 106 points are initialized δ = 10−9 from the cutting line, and
iterated for N = 2 × 106 iterations using a cutting line width ε = 10−5. The θ ∈ [0, 2π ) range represents D2 [blue (black) cutting line] and the
θ ∈ [2π, 4π ) range represents D1 (red cutting line).

small circles throughout the exceptional set. The associated
short orbits that return frequently to the cutting line create the
extreme skew in the return plot, which in turn requires the use
of the log scale in the figures.

None of the gray blocks associated with the (45◦, 45◦)
protocol in Fig. 7(b) have a uniform ρi j throughout the block.
The existence of nonuniform patterns within blocks indicates
that these blocks are not the smallest invariant sets, although
different sets may be so intertwined with one another that
separating them in this fashion is impossible. This is obvious
in the upper right of Fig. 7(b), where the cutting line density
has an almost checkerboard pattern suggesting that different
parts of the arrowhead in Fig. 7(f) correspond to different
intensities in the block. On the other hand, the combination of
two blocks is evident in the color variation within Fig. 7(c),
demonstrating how blocks may correspond to intertwined
invariant sets that are close but not overlapping.

In order for a mixing block to exist, an orbit in the block
must intersect a nonzero length of the cutting line. Combined
with an occupation of a nonzero width away from the cutting
line in an orbit, this means that any mixing block must have
orbits that individually have nonzero area on the hemispheri-
cal shell (finite length and width). It appears that a necessary
condition for mixing is that individual orbits occupy a finite
area, as it allows orbits to interact with one another while thin
(zero-area) curves that do not overlap anywhere do not allow
mixing between them. Although a large exceptional set can be
constructed using thin curves (see Appendix C), there will be
no mixing if orbits do not create the area for mixing to occur.

With this decomposition of the θi, θ j ∈ [0, π/4] region
in mind, the entirety of the structure in Fig. 7(a) can be
decomposed into similar invariant sets. Invariant sets inter-
secting both D1 and D2 from [0, π/4] × [0, π/4] are repeated
throughout the entire [0, 4π ] × [0, 4π ] space. Invariant sets

intersecting just the blue cutting line, D2, are repeated only in
the lower left, [0, 2π ) × [0, 2π ). The invariant sets intersect-
ing just the red cutting line, D1, are repeated only in the upper
right, [2π, 4π ) × [2π, 4π ), but are identical in their return
structure to those that intersect just D2.

The return plot for (45◦, 45◦) corresponds with the struc-
ture evident when invariant subsets are color coded as in
Fig. 3. In contrast, the return plot for (57◦, 32.75◦), shown
in Fig. 8(a), has no distinct blocks that would indicate distinct
invariant subsets. This is consistent with the previous obser-
vations that there are no distinct invariant subsets within Ē in
Fig. 3(c). In fact, if Ē for (57◦, 32.75◦) is truly ergodic, then
Fig. 3(c) would be uniform except for the nonmixing cells.
However, upon close inspection of a small section of the return
plot for the (57◦, 32.75◦) protocol in Fig. 8(b), faint white
horizontal lines are visible which result from the proximity
of orbits to a large circular periodic cell. In addition, faint
dark dots, inside the superimposed circles, are also visible
along each horizontal white line at the intersection with the
θi = θ j diagonal. These dark spots are from points placed δ

away from D that fall inside a periodic cell. The horizontal
white lines result from the decreased width of Ē immediately
next to a cell. Essentially, the cell occupies some of the Dε

sample region, which creates a light region since points are
less likely to be in this small region compared with the full
or nearly full width regions elsewhere along the cutting line.
White vertical lines from points placed in a cell are noticeably
absent since there are several hundred points seeded in each
horizontal bin. Since δ � ε, the vertical stripes produced
by placement inside a cell (due to δ) are smaller (and not
visible) than those produced by the intersection of a cell
with Dε (due to ε). Thus, the trapping of points within cells
is not the dominant effect producing these aberrations, but
rather it is the depletion of area of Dε ∩ Ē due to adjacent
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FIG. 9. Return plot (δ = 10−9) for (90◦, 60◦) protocol showing
ρi j , using 2 × 106 points, N = 2 × 106 iterations, and ε = 10−5.

circular cells which makes returning to cell-adjacent regions
less likely.

Recall that this “sided” parametrization of the cutting lines
was chosen to specifically deal with cases where cutting lines
are coincident, such as the (90◦, 60◦) protocol shown in Fig. 4.
The corresponding return plot is shown in Fig. 9. In this case,
θ ∈ [2π, 3π ) and θ ∈ [3π, 4π ) are two “sides” of the same
cutting line, each corresponding to different atoms for the PWI
dynamics. These two sides act in a similar fashion to the two
separate cutting lines in the (45◦, 45◦) protocol. For example,
the symmetry across θ = 3π for θ ∈ [2π, 4π ) evident for the
(45◦, 45◦) protocol is absent in Fig. 9. The two distinct regions
(each with the same vertical or horizontal pattern) can also
be used to separate the exceptional set into two portions, as
shown below the return plot. These two portions are identical
when reflected about the vertical diameter, consistent with the
left-right barrier to mixing shown in Fig. 4(b). Not only is
there a barrier to mixing across the vertical midline, but there
are also completely separate regions contributing to each half
of Ē that are not captured by the red and blue coloring for
the cutting lines used in Fig. 4(c). Based on the return plot, it
becomes clear that the red and blue cutting line assignment for
color is naive in this case and does not capture the separable
mixing sets. Separable mixing sets in Ē [like those for the
(45◦, 45◦) protocol in Fig. 7(b)] are not a generic property.
Instead, they occur for some protocols but not for others.
However, separable mixing sets are a generic property of
protocols with exclusively coincident cutting lines (polygonal
tilings) as shown in Appendix D.

We have described an easily separable protocol that has
large regions with no returns at all (white) in the return plot
indicating barriers to mixing, (45◦, 45◦), and a seemingly
inseparable protocol that has no large regions without returns
indicating few barriers to mixing, (57◦, 32.75◦). An interme-
diate case is the (57◦, 57◦) protocol, first shown in Fig. 1(g),
for which only 0.4% of the return plot in Fig. 10(a) is empty
(white), but which still has many barriers to mixing due to
separate invariant subsets within the exceptional set. This is
made apparent by the obvious pattern in this protocol’s return
plot in Fig. 10(a). The comparison between the (57◦, 57◦)
protocol and the other two we have examined is imperfect
because the fractional coverage for the (57◦, 57◦) protocol
is �∞ ≈ 0.33, smaller than the coverage of the other two.
Nevertheless, the (57◦, 57◦) protocol has orbits that are not
equally dense in their returns to the cutting lines, indicating
that orbits are simultaneously very close to one another and
still separate.

To illustrate, the [0, π/4] × [0, π/4] region of Fig. 10(a) is
shown in detail and approximately decomposed into different
invariant subsets in Fig. 10(b). Although there is a pattern
within the return plot, it is essentially blurred or smudged
such that the more precise separation done in Fig. 7(b) for
the (45◦, 45◦) protocol is not possible here. Instead, some
of the more “fuzzy” regions can be approximately separated.
Figures 10(c) and 10(d) approximate the invariant sets that
compose the center of the arrowhead structures visible in
Fig. 1(g). That the colors are very faint is a consequence of
almost all orbits reaching almost all of the exceptional set
with a low density even when each orbit has a region of
high density. In order to better show these more disperse,
faint orbits, the colors used for the orbits in Figs. 10(c)–10(j)
are twice as dark as those used in Fig. 7(b). Figures 10(e)
and 10(f) show regions of slightly concentrated blue and
wide faint regions of red, exploring the boundary between
the major blue and red arrowheads. The regions in Fig. 10(g)
and 10(h) explore most of the exceptional set uniformly other
than a difference in blue and red density. Figure 10(i) shows
a region surrounding the zigzag curve shown in Fig. 10(j),
similar to the zigzag in Fig. 7(e) for the (45◦, 45◦) protocol.
Thus, the (57◦, 57◦) protocol return plot represents an inter-
mediate between the easily separable (45◦, 45◦) protocol and
the seemingly impossible-to-separate (57◦, 32.75◦) protocol
in which almost all orbits visit most of the exceptional set with
uneven density.

The return plot contains both information about the area
and connectivity of the potentially ergodic region of the PWI,
Ē . In an abstract sense, the return plot defines the connectivity
of a complex network between different segments of the cut-
ting lines. This return plot analysis is naturally extendable to
any area-preserving PWI with finite perimeter atoms (to allow
parametrization) and could have applications in the analysis of
other area preserving dynamical systems. We conjecture that
a metric on the shapes within the return plot in conjunction
with the fractional coverage �∞ would create a complete
measure of mixing for any given PWI of this type. In the
following section, we show that �∞ can be extracted from
density measurements such as the return plot. Variation within
the return plot seems to be an indicator of distinct mixing
regions that form barriers to overall mixing. The amount of
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FIG. 10. (a) Approximate return plot for the (57◦, 57◦) protocol as a 2D histogram of ρi j , return to bin i from bin j; �θ = π × 10−3.
(b) Detail of (a) from the dashed black box in the lower left; �θ = π/16 × 10−3. (a), (b) 2 × 106 points are initialized δ = 10−9 from the
cutting line, iterated N = 2 × 106 times using a cutting line width ε = 10−5. (c)–(j) Various regions of the exceptional set corresponding to
portions of the return plot.

white space in the return plot also is an indicator of the lack of
connectivity of the exceptional set that indicates the barriers
to mixing within Ē . A measurement of the variation in density
or the amount of white space (disconnectedness) could, in
conjunction with a measurement of the area of Ē , be used to
quantify the mixing under any given protocol.

V. ESTIMATING MIXING METRICS FROM CUTTING
LINE DENSITY VALUES

We now return to the fractional coverage of the fat fractal
exceptional set, �∞ [10,11], which is the normalized area of
the fat fractal, to show that the density measure described in
Sec. III can be used to estimate the area of the fat fractal,
and hence the value of �∞, from measurements of ρ along
the cutting lines. One of the more interesting features of the
exceptional set is that a 2D fat fractal is generated from 1D
cutting lines. Since the PWI is composed of isometries, this
means that all information (without distortion) about the ex-
ceptional set, specifically the cutting line density everywhere,
must be contained within the original 1D, ε-fattened cutting
lines themselves, and applying the PWI over many iterations
simply spreads this information to the rest of the exceptional
set. With this in mind, the cutting line density ρ(x,Dε ) at any
point along D1 or D2 is a measure of how that particular point
on the cutting line spreads through the domain under the PWI.

Since the PWI map is measure preserving, ρ(x, A) can
be extended from a simple counting measure fraction to a
fraction of how much of the orbit X = ⋃∞

i=−∞ Mi(x) is in an
area A, i.e., a fraction of measures ρ(x, A) = μ(A ∩ X )/μ(X ).
The Lebesgue measure (area) of an orbit X from point x ∈ Dε,
where D is any 1D curve such as the cutting lines (or any
subset of the cutting lines), is

L2(X ) =
∫
Dε∩X

1

ρ(x,Dε )
dx. (12)

This integral is specifically over a 2D region such that if
the dimension of the orbit is smaller than two, this integral

evaluates to zero. Since ρ(x,Dε ) is invariant under the map,
1/ρ(x,Dε ) is also invariant. Intuitively, the integral bounds
measure the size of the intersection of X and Dε and the value
of 1/ρ(x,Dε ) measures how many copies of this intersection
are used to create the orbit X .

By taking the union of all orbits from Dε, which is
precisely the ε-fattened exceptional set Eε, the area of the
ε-fattened exceptional set is

L2(Eε ) =
∫
Dε

1

ρ(x,Dε )
dx. (13)

The intersection of D and any individual orbit X is no longer
needed as the intersection of all orbits from Dε with itself
is simply Dε. In this way, the integral evaluates the expected
value of the number of copies of Dε needed to create Eε and
multiplies this by the area of Dε to get the total area.

In the limit of small ε, the region of integration approaches
D which is 1D. With this in mind, the integral in Eq. (13)
can be approximated by a 1D integral over D multiplied by
width ε,

L2(Ē ) ≈ lim
ε→0

∫
Da

ε

ρ(x,Dε )
dx + lim

ε→0

∫
Db

ε

ρ(x,Dε )
dx, (14)

where Da and Db are the two sides of the cutting line as shown
in Fig. 6, each side is assigned the dynamics of one of the two
overlapping atoms, Pa or Pb. The value of limε→0 ε/ρ(x,Dε )
is an abstraction of how much of the orbit is spread away
from the measurement set. Note that for periodic orbits,
limε→0 ρ(x,Dε ) �= 0 such that limε→0 ε/ρ(x,Dε ) is always 0.
To arrive at �∞, this measure simply needs to be normalized
by the area of domain. Since the ε → 0 limit is not directly
computable, an appropriately small ε can be used to approx-
imate L2(Ē ). More thorough derivations of Eqs. (12)–(14)
as well as additional intuition regarding density and area are
given in Appendix B.

The parametrization in Fig. 5 provides a framework for
applying the integral expression for the area of the exceptional

012204-13



LYNN, OTTINO, UMBANHOWAR, AND LUEPTOW PHYSICAL REVIEW E 101, 012204 (2020)

set given in Eq. (14), such that this integral becomes

L2(Ē ) ≈ lim
ε→0

∫ 4π

0

ε

ρ(s(θ ),Dε )
dθ. (15)

The previously used metric for the fractional coverage of the
exceptional set was �∞ = L2(Ē )/2π , where 2π is the area of
the unit hemispherical shell [10,11,20]. The density along the
cutting lines ρ(s(θ ),Dε ) is, in general, not continuous, so it is
convenient to recast the integral as an average (denoted with
angled brackets) of the integrand over θ to evaluate �∞,

�∞ ≈ 1

2π
lim
ε→0

∫ 4π

0

ε

ρ(s(θ ),Dε )
dθ (16)

≈ lim
ε→0

〈
2ε

ρ(s(θ ),Dε )

〉
. (17)

From the return plots in Sec. IV, ρ(s(θ ),Dε ) can be
approximated by integrating (summing) any corresponding
column (or row) in the return plot, which reflects the total
return to (or from) any part of the cutting line, i.e., summing
across row j approximates ρ(s(θ ∈ [θi, θi + �θ )),Dε ) ≈∑

j ρi j and the fractional coverage would be �∞ ≈
limε→0〈2ε(

∑
i ρi j )−1〉 j . For instance, the (57◦, 32.75◦) proto-

col has a value of �∞ ≈ 0.41 using direct measurement [20]
and �∞ ≈ 0.41 using Eq. 17 with ε = 10−5, δ = 10−9, N =
2 × 106 iterations, averaged across 2 × 106 different positions
along the cutting lines.

VI. CONCLUSIONS

We have described two different representations of the
internal dynamics in the exceptional set of the hemispherical
PWI by creating an invariant measure, ρ, which we refer to
as cutting line density. The first representation is easily shown
everywhere throughout the domain through a color coding that
is generated by interactions with the two different cutting line
discontinuities in the PWI. The second is the natural extension
of this color coding, treating the cutting lines as a continuum,
and measuring the return dynamics at each point along them
to create a return plot. Although the color coding can show
a snapshot of the dynamics everywhere in the exceptional
set, the return plot shows only dynamics near the original
cutting lines. Due to the nature of the construction of the
PWI exceptional set, the dynamics at the cutting line are
representative of the dynamics everywhere in the exceptional
set.

These two representations of the cutting line density, color
coding and return plots, indicate that more cuts do not indicate
more mixing, rather an even distribution of cuts is required
for mixing and variation in cutting line densities actually
indicates barriers to mixing. Additionally, sufficient variation
in the return dynamics of the cutting line is required to
generate mixing. Without this variation, no amount of cuts
can produce mixing, even if the domain is cut with an equal
density of cuts. Ultimately, the existence and detection of
confined mixing regions in the spherical tumbler mixer is
aided by understanding the role of cutting and shuffling in
creating trapped orbits. Large, invariant regions in the PWI,
such as the arrowheads in the (45◦, 45◦) protocol, as shown

in Fig. 2(a), are essentially extensions of the nonmixing cells
contained in them.

The density of cutting lines in the hemispherical shell
PWI can be used as an indicator of nonergodic behavior
within the exceptional set. Although the fractional coverage
of the exceptional set, �∞, is correlated with the degree of
mixing [10,11], the existence of mixing within the exceptional
set is entirely dependent on the dynamics within it. The
cutting line density-based coloring techniques described in
Sec. III B can be used in most situations to rule out (but not
to definitively show) ergodicity within an exceptional set with
minimal effort.

Return plots described in Sec. IV essentially project 2D
orbits into a 1D space (the parameterized cutting lines), which
necessarily exists for this PWI since the 1D set of cutting lines
D sweeps out and generates the exceptional set. Separating
out orbits using the return plot can reveal nonmixing regions
within the exceptional set as well as rule out ergodicity. A
measurement of the white space (disconnectedness) of the re-
turn plot or the variation of the local densities within the plot,
combined with the fractional coverage of the exceptional set,
indicates not only how much of the domain can mix, but also
accounts for how mixing within this space is occurring. Return
plots can also be used to determine cutting line densities from
which �∞ can be approximated. Consequently, return plots
enable relevant mixing information to be contained in a single
representation that expresses both the size and connectivity of
the exceptional set.

Just as cells only interchange with other cells within their
periodic orbit [11,23,25,28,32], inside the exceptional set
points only mix with one another if they are connected by
at least one orbit. The colored exceptional set and the return
plot are both visual representations of the connectedness of
all the orbits within the exceptional set. The color-based
classification of the exceptional set allows easy identifica-
tion of invariant subsets, while the return plot provides a
detailed deconstruction of where these subsets appear in the
exceptional set. The return plot image is similar to that of an
adjacency matrix in a weighted graph system if such a graph
had infinitely many nodes [53].

The methods presented in this paper to examine mixing,
connectedness, and barriers to both mixing and connected-
ness can be immediately applied to any 2D, finite domain,
almost everywhere invertible PWI (especially different ge-
ometries [6]) and even PWI systems of other dimensions
(although a 2D return plot may not always be possible).
Notably, these methods could be easily applied to simpler
PWIs such as a digital filter (a square geometry) [1,2]. Apart
from the change in geometry, little changes in the analysis.
The ability to construct and measure the connectivity of the
exceptional set for any such system provides an effective
means of evaluating the mixing, and the coloring methods can
be applied to immediately identify the existence of invariant
subsets by inspection.
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APPENDIX A: DISCUSSION OF ERROR

There are four main sources of error in the methods pre-
sented here: error due to numerical precision, error due to
δ-placement away from cutting lines (for the return plot and
measurements of ρ), error due to ε-fattened cutting lines, and
error due to the number of iterations, N , being finite.

Numerical precision affects all numerically advanced maps
such as the PWI studied here. Error from finite precision
calculations manifest as accumulated errors in position, or
drift, that scales like N times the machine epsilon (in this
case, roughly 2 × 10−16). Better precision in position is not
possible using double-precision data types since this error is
scaled by the position of the tracked point, which is often
O(1). These types of numerical errors could influence the
underlying dynamics of the map by creating spurious new
periodic points in the numerical system or destroying actual
periodic orbits through drift. The scale of these types of errors
is mostly irrelevant to the study here (other error effects are
much larger in comparison) because the accumulated drift
after 2 × 106 iterations is only about 4 × 10−10.

δ-placement away from the cutting lines is introduced to
ensure that the aforementioned numerical drift does not cause
a calculated point to incorrectly drift across the cutting line
it is placed near. The value in this paper, δ = 10−9, is chosen
to account for an N × (machine epsilon) = 4 × 10−10 amount
of drift. The numerical drift can still cause errant cutting line
crossings at later positions, but a positive δ guarantees that
points do not immediately collapse onto one another (remov-
ing the sided nature of the cutting lines). If a point is advected
under the map and then advected under the reverse map, this
δ-placement should keep the original point and the iterated
point in the same starting atom. The biggest consequence of
δ-placement is the potential placement of points inside of a
cell instead of inside the exceptional set. The fraction of points
errantly placed inside of a cell is incalculable (it depends on
the details of Ē ), but points placed within cells can only oc-
cupy thin circular orbits. These thin circular orbits contribute
a δ-fattening to the exceptional set when taken together. In
addition to this fattening, they can also exclude parts of the
exceptional set; the exceptional set is only guaranteed to be
arbitrarily close to the cutting lines, not necessarily arbitrarily
close to a line δ from the cutting lines. Any invariant sets
within the exceptional set not intersecting this line are not
measured. Hence, the error from δ changes values of ρ(x, A)
by shifting x by δ. The balance of unmeasured invariant sets
and a measured fattening is difficult to determine. However,
the error due to δ-placement is potentially orders of magnitude
smaller than the error incurred from ε-fattening of the cutting
line.

The error due to ε-fattening introduces an additional, adja-
cent region, where points can “return” to the cutting line, and
creates a border within the collection of periodic islands, O,
where points in open cells appear to belong to the exceptional
set. In the colored exceptional set [e.g., Fig. 1(g)], these
regions appear as distinct invariant sets, which confuses any
measurement of ergodicity (which would only have a single

invariant set within Ē ). In the return plot, this ε-fattening
causes a vertical smearing effect since orbits can return to
other parts of the cutting lines without actually reaching
them. This smearing is not uniform, as evidenced by the
horizontal white bands, discussed with respect to Fig. 8,
which result from the overlap with the circular cells in O.
For direct measurements of �, the fattening of the cutting
lines includes the entirety of any cells of radius � ε and the
boundary of all cells with larger radii. For the density-based
calculation of �, error is not primarily dependent on ε but
rather on the placement of points δ from the cutting line and
the spacing between points (an accurate measurement would
require values of ρ continuously along the cutting line). As
outlined in Appendix B, the size and shape of the region used
for measurement of ρ is not as important as the intersection
with invariant sets, and the δ-placed line is solely responsible
for this. However, there is error in measuring the size of
the fattened cutting line (since the line lies on a sphere, the
cutting line is a great circle, but the ε-fattened border is not)
and overlap between the two cutting lines. This error can be
quantified exactly, although the exact overlap is not easily
formulated.9 The approximate area of the fattened cutting line
is 4πε while the true area is 4π sin(ε) minus the overlap
of the two fattened cutting lines which is asymptotically
2ε2[csc(α) sec(α) + csc(β ) sec(β )] for small ε. The overlap
is the dominant error source since ε − sin(ε) = O(ε3) and the
overlap is O[ε2( 1

α
+ 1

β
)] accounting for the csc terms which

are larger when α or β are small. The error due to ε changes
the value of ρ(x, A) by introducing overlap at the cutting line
intersection (double counting) but is still small, O(ε2), for
most of the (α, β ) protocol space.

Error due to finite iterations is subtle since it depends sensi-
tively on the irrationality of measured quantities. Irrationality
here concerns rotations and measurements that are not “close”
to rational numbers that are “early” in Cantor’s ordering of
the rationals. For example, a cell that rotates internally by
an amount that is nearly 1/3 will appear as a triangle for
much longer than a cell that rotates internally by an amount
that is nearly 1/300, hence the 1/300 rotation may appear
more irrational since more of the boundary of the cell is
initially explored. Quantifying this irrationality is subjective
and dependent on the values of ε and N . If, in the previous
example, the rotation is orders of magnitude closer to 1/300
for the second cell than 1/3 of the first, which one appears
more irrational may switch after some N . These are errors in
the construction of Ẽε,N , but there are also errors in measuring
ρ. If ρ at some point is truly irrational, then there is no
sufficient N at which ρ can be measured exactly. In this case,
the true value of ρ can be considered the average of a random
variable, i.e., ρ(x, A) is the probability of the orbit of x being
in A, for which one can consider the standard error of the
mean, which is

√
ρ(1 − ρ)/N . The

√
N dependence would be

a dominant effect if not for the influence of the actual value of
ρ, which is small for nonperiodic orbits and small ε. The error

9The exact value of this overlap is 4
∫ π

2
0 4 −

4
√

1 − ε2 csc(β + φ)2 − 4
√

1 − ε2 csc(α + φ)2dφ when
ε � min(sin(α), sin(β )).
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due to finite N changes the value of ρ(x, A) by introducing
error in the actual measurement of ρ rather than an error in
orbit (δ) or orbit intersection with the overlapped region (ε).
Additionally, the error in measurements of ρ as a result of
using a finite number of iterations manifests itself as a sparse
return plot, and, as ε is decreased, the number of iterations
required to offset this sparsity increases.

With all this said, the dominant error term is unclear since
the various nonnumerical errors depend on the geometry of
the exceptional set which varies continuously through the
(α, β ) protocol space. Nevertheless, our experience in con-
sidering a range of protocols with the N , δ, and ε values used
here, gives us confidence that the errors in the current analysis
are inconsequential to the conclusions about invariant mixing
regions within the exceptional set.

APPENDIX B: EXTRACTING THE MEASURE OF
THE EXCEPTIONAL SET FROM CUTTING LINE

DENSITY MEASUREMENTS

Previous papers [10,11,20] have examined the correlation
between mixing and the size of the exceptional set (the fat
fractal where mixing is possible). It can be shown that the
size of the exceptional set is related to the measured density
of cutting lines along the initial cutting lines. Intuitively,
density can increase only if cutting lines are not spreading to
other parts of the hemisphere, but instead stack on themselves
such that 1/ρ is, abstractly, a measure of how cutting line
“area” is spread through the hemisphere. Since density is
easy to measure for a single point in a set, using density to
approximate the measure of the exceptional set is useful.

For a measure-preserving map M : S → S, define the den-
sity of the orbit from x in set A as in Eq. (8), and define the
closure of a set C as C̄ = limr→0 Br (C) such that the following
are equivalent:

ρ(x, A) = lim
r→0

F (x, Br (A)) (8)

= F (x, Ā)

= lim
n→∞

No.{Mi(x) ∈ Ā : 0 � i < n}
n

= lim
n→∞

No.{Mi(x) ∈ Ā : −n � i < n}
2n

, (B1)

where “No.” is the counting measure and ρ measures the
fraction of iterates that an orbit spends in Ā. The forward
iterates are sufficient for the map in this paper, but the back-
ward iterates can be included as shown previously [10,20].
To be explicit, the measurable space here is (S, E ) where S
is the domain and E is the invariant σ -algebra with respect
to M. Then ρ is the conditional probability of A with respect
to the invariant σ -algebra (i.e., the possible combinations of
minimally invariant sets under the map). That is, if x ∈ X
where X is a minimally invariant set, X ∈ E , such as an orbit
of the map, X = ⋃∞

n=−∞ Mn(x),

ρ(x, A) = Px(A|X ) = Px(A ∩ X )

Px(X )
, (B2)

where Px(A|X ) is the conditional probability measure such
that given a random iterate of x under the map, Px(A|X )

is the probability that this iterate is in A. This probability
measure only makes sense if Px(X ) �= 0, so we define the
symbol Px(·) with respect to x such that Px(X ), given X is
the orbit of x, is always 1. In an inexact way, we extend this
definition to measures other than Px(·) and allow ρ(x, A) =
limr→0 μ[Br (A ∩ X )]/μ[Br (X )] where μ(·) is a higher di-
mensional measure matching the dimension of the ball Br (·)
such that μ[Br (·)] is not zero or ∞. We ultimately utilize the
definition ρ(x, A) = μ(A ∩ X )/μ(X ) for intermediate steps,
although this is inexact.

This density function is constant along orbits, i.e., it is
measurable with respect to the invariant σ -algebra. Take y ∈
A in minimally invariant set Y such that ρ(y, A) �= 0, and
therefore, since ρ is constant throughout orbits,

μ(Y ) = μ(A ∩ Y )

ρ(y, A)
(B3)

= 1

ρ(y, A)

∫
A∩Y

dμ (B4)

=
∫

A∩Y

1

ρ(y, A)
dy. (B5)

Equation (B5) is the generalization of Eq. (12). Define the
streak of set A, A , under the map as the union of all orbits
to or from A and that intersect A at least once (i.e., the orbit of
the set A), Ei, such that

A =
⋃
x∈A

∞⋃
n=−∞

Mn(x) =
⋃
x∈A

Ei. (B6)

A is likewise the union of all minimally invariant sets, Ei,
from the invariant σ -algebra, E , that intersect A, i.e., every
Ei ∩ A �= ∅ for all Ei ∈ E . Likewise, A is the smallest col-
lection of minimally invariant sets

⋃
Ei such that A ⊂ ⋃

Ei.
To be explicit, we choose minimally invariant sets from the
invariant σ -algebra, E , that intersect A and label these Ei.
There may be uncountably many minimally invariant sets, Ei,
that compose A . Then, μ(A ) can be written as

μ(A ) =
∑

i

μ(Ei ). (B7)

μ(A ) is the “summation” of μ(Ei ) for all minimally invariant
sets Ei that make up A . Since

⋃
i A ∩ Ei = A and all Ei are

mutually disjoint, this implies

μ(A ) =
∑

i

μ(Ei ) (B8)

=
∑

i

∫
A∩Ei

1

ρ(y, A)
dy (B9)

=
∫

A

1

ρ(y, A)
dy. (B10)

Equation (B10) is the generalization of Eq. (13). This in-
tuitively says that the density information within A is the
reciprocal of how A is advected through the domain. If density
is “high” at some x, the associated orbit is mostly contained
within A, while if density is “low” at some x, the associated
orbit is mostly outside of A, spreading out the streak of A.

By referring to ρ as a density, we acknowledge that it
is analogous to a physical mass density. Consider that A
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FIG. 11. A comparison of � values computed by (a) direct measurement of the exceptional set as in previous work [20] and (b) by
integrating the cutting line density. The absolute value of the difference between the two is shown in (c). For most protocols, the difference is
near zero. Also note that � > 1, which is impossible, for some protocols near the boundaries in (b) while values above 1 are impossible using
the method in (a). Both methods use ε = 1 × 10−3 wide cutting lines for N = 20 000 iterations.

contributes a certain amount of “mass” to A with each
iteration. This contribution is constant since the map M is
measure preserving (all iterates of A have the same “mass”).
This means that each individual orbit from a point in A is
given the same amount of mass. The density is then the
distribution of this mass, and, since density is necessarily
constant along orbits, the area of each orbit can be calculated,
i.e., ρ = mass/area. Note that although some orbits are given
more mass with each iteration than others depending on how
much the orbit overlaps the cutting line, this additional mass
is taken into account by a proportional increase in ρ.

This can be applied directly to fattened cutting lines Dε

such that

ρ(x,Dε ) = μ(Dε ∩ X )

μ(X )
. (B11)

Note that the streak of Dε is, for infinite iterations, the
fattened exceptional set Eε, and, for finitely many iteration
N , this streak is the approximation to Eε, Ẽε,N . Note that
limε→0(limN→∞ Ẽε,N ) = limε→0 Eε = Ē [20]. Using the 2D
Lebesgue measure instead of μ(·), the 2D measure of the
approximate exceptional set is

L2(Ẽε,N ) ≈ L2(Eε ) =
∫
Dε

1

ρ(x,Dε )
dx. (B12)

In practice, measuring ρ(x,Dε ) cannot be done exactly, such
that this integral is closer to value of Ẽε,N than Eε.

In the limit of small ε, the fattened cutting line approaches
a thin, 1D, cutting line such that L2(Dε ) ∼ 2εL1(D) (ε con-
tribution from either side of the cutting line). Using this, the
integral is, as ε → 0, asymptotically,

lim
ε→0

L2(Eε ) = lim
ε→0

∫
Dε

1

ρ(x,Dε )
dx (B13)

≈ lim
ε→0

∫
D

2ε

ρ(x,Dε )
dx. (B14)

Since we have used a multivalued cutting line in this paper,
getting values for ρ along the cutting line is actually not possi-
ble. Instead, consider the boundary of the fattened cutting line
∂Dε as ε → 0, which is essentially the two sides of the cutting
line, which we call Da and Db (the order does not matter here,

only that a and b are different sides). The integral should then
be split into a sided cutting line (each side of width ε), such
that

L2(Ē ) ≈ lim
ε→0

∫
D

2ε

ρ(x,Dε )
dx (B15)

≈ lim
ε→0

∫
Da

ε

ρ(x,Dε )
dx + lim

ε→0

∫
Db

ε

ρ(x,Dε )
dx.

(B16)

Since the parametrization in Sec. IV A accounts for the sided-
ness of the cutting lines already, this can be written succinctly
as

L2(Ē ) = lim
ε→0

∫ 4π

0

ε

ρ(s(θ ),Dε )
dθ. (B17)

If the regions of intersection of the cutting lines and a
particular orbit are known, then the measure of the particular
orbit can be computed,

L2(X̄ ) ≈ lim
ε→0

∫
Da∩X̄

ε

ρ(x,Dε )
dx

+ lim
ε→0

∫
Db∩X̄

ε

ρ(x,Dε )
dx (B18)

≈ [L1(Da ∩ X̄ ) + L1(Db ∩ X̄ )] lim
ε→0

ε

ρ(x,Dε )
.

(B19)

For many orbits, this is zero, but any orbit that is dense in a
2D set will evaluate as the measure of the 2D set.

To illustrate application of this method, the fractional
coverage of the hemispherical shell, � = L2(Ē )/2π , was
computed using 20 000 iterations of protocols within the
(α, β ) ∈ [0, 180◦] × [0, 180◦] space using the method pre-
sented here [Fig. 11(b)] as well a previously used method
[Fig. 11(a)] that directly measures a fattened exceptional
set [20]. Both use ε = 1 × 10−3 fattened cutting lines. The
direct measurement method samples the fattened cutting line
at 1024 evenly spaced points across the shell. The cutting
line density measurement uses δ = 1 × 10−6 and measures
ρ(x,Dε ) at 2000 evenly spaced points along the cutting lines.
For most protocols, the difference between the two, shown
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in Fig. 11(c), is near zero, but has large deviations in some
regions from the direct measurement method. The large differ-
ence near (90◦, 90◦) could result from orbits being incomplete
after 20 000 iterations. The direct measurement method is
less sensitive to incomplete orbits as area accumulates nearly
uniformly as iterations increase. The density measurement
requires that many circuits be taken around an orbit in order
for the value of ρ to converge near its true value. For most
protocols, this happens quickly (i.e., within 1000 iterations),
but near (90◦, 90◦), convergence is very slow, which overes-
timates ρ and results in an incorrect estimate of �. A more
concerning phenomenon occurs near the boundaries when
approximating � using cutting line density and cutting lines
begin to significantly overlap with one another (overlap is
roughly 2ε2[csc(α) sec(α) + csc(β ) sec(β )]), which results in
an estimate for � that is larger than 1. The only remedy for
this is to use a smaller value of ε and a larger number of
iterates. Since cutting lines are so close, it becomes challeng-
ing to separate the two cutting lines from one another and the
estimate breaks down.

The main diagonals in Fig. 11 contain protocols that have
additional symmetries [11] and create cells that scale more
gradually than protocols off the diagonal. For these protocols,
the estimate of � using the cutting line density is more
accurate than the direct measurement, which handles smaller
cells sizes poorly, of which there are many along the diagonal.

APPENDIX C: ANALYTIC DENSITY EXAMPLE

For some trivial protocols, the density of cutting lines
can be analytically defined. Take the example of the (φ, 0)
protocol where φ/π /∈ Q (i.e., irrational). This is an example
of irrational rotation that creates an exceptional set dense in
S such that there are no cells, i.e., O = ∅ where O is the
set of cells as defined in Sec. I, and every orbit is dense
in an arc across the hemisphere in the x direction (rotation
about the z axis does not change z values) with arc-length
l (z) = π

√
1 − z2. For this example, we ignore the cutting line

at the equator (due to β = 0, rotation about the second axis)
since it generates no cutting lines. Each orbit is also ergodic
such that the density ρ(x,Dε ) for any point x = (x, y, z) ∈ S,
given cutting line width ε > 0 (on both sides), is the fraction
of l (z) that intersects Dε, which is roughly10 of length 2ε due
to contributions from both separate sides of the cutting line.
Therefore, using sided cutting lines in this analytic example,
the cutting line density at any point x ∈ S is

ρ(x,Dε ) =
{

2ε
l (z) if 2ε < l (z)

1 if 2ε � l (z)
. (C1)

Note that in the limit of ε → 0, ρ → 0 everywhere except
at the poles where ρ is always 1. Here, it is immediately
clear that ρ ∼ ε because ρ can easily be thought of as a
fraction of an ergodic orbit, and we have used this in the
explicit definition of ρ. The normalized density, i.e., ρ/ε, is

10There are some caveats with regard to the curvature of orbit arc
versus the curvature of D [e.g., the true length is 2 arcsin(ε)], but
these disappear as ε → 0.

simply 2/l (z). In this example, the arc-length of any orbit is
closely connected to the normalized density. Density, although
symmetric about z = 0, is different for each orbit indicating
that all of the domain is confined along infinitely thin orbit
curves that do not mix. Rewriting l (z) so that it can be
parameterized by arc-length along D using φ ∈ [0, 2π ) for a
sided parametrization of the single cutting line gives

l (φ) = π | sin(φ)|, (C2)

and the corresponding fractional coverage using Eq. (14)
normalized by the area of the unit hemisphere,

� = L2(Ē )

2π
= 1

2π

∫ 2π

0

ε

ρ
dφ

= 1

2π

∫ 2π

0

l (φ)

2
dφ (C3)

= 1

2π

∫ 2π

0

π | sin(φ)|
2

dφ = 1, (C4)

which indicates the entire hemisphere is covered, as
expected.

When φ/π ∈ Q (i.e., a rational rotation) for the same
(φ, 0) protocol, we expect that � = 0 which is, indeed, the
case. First, let φ/π = p/q such that q is the periodicity of the
entire domain. In this case, there are exactly q cutting lines of
zero width comprising Ē . Then, for small ε > 0 (with some
caveats near the poles that we will ignore since they disappear
in the limit of ε → 0), the cutting line density at any point
x ∈ S is

ρ(x,Dε ) =
{

1/q, if x ∈ Eε

0, if x /∈ Eε

, (C5)

FIG. 12. Exact return plot for the (90◦, 90◦) protocol. This is a
protocol with only coincident cutting lines (i.e., a polygonal tiling of
the sphere) resulting in a periodic interval exchange transform (IET)
along the cutting line.
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where we do not double count multivalued points that exactly
return to the cutting line. Each orbit in Ē can then be assigned
the “arc-length” ε/ρ as before, which is simply εq in this case,
and the fractional coverage is

� = lim
ε→0

1

2π

∫ 2π

0
εq dφ = lim

ε→0
εq = 0, (C6)

as expected.
The values of � = 1 for irrational rotations and � = 0

for rational rotations are completely unsurprising, but we use
this trivial example to demonstrate the concept of density.
The closed curves that are the orbits in the irrational case
contribute no coverage individually, but together, they cover
the hemisphere. For rotation about a single axis, neither the
irrational rotation nor the rational rotation cause any mixing
since there are no orbits that intersect D in more that a finite
number of points, and it seems that a condition for mixing in
the exceptional set is the existence of orbits that contribute

nonzero coverage individually (which would necessarily in-
tersect D in some nonzero length region).

APPENDIX D: PURELY IET PROTOCOLS

A protocol where E forms a polygonal tiling (in this case,
Ē is equal to E since there are no limit points of E ) [20], such
as the (90◦, 90◦) protocol, consists exclusively of coincident
(overlapping or repeating) cutting lines and is essentially an
interval exchange transform (IET). As such, it is a 1D cut-
and-shuffle system [36,39–45,54–57] on the cutting lines, and
the exact return plot can be constructed as shown in Fig. 12.
For a protocol of this type, the return plot is constructed out
of separate diagonal lines consisting of neighboring periodic
points along the cutting lines. This results in a continuum of
separate invariant sets (which are just collections of periodic
points) that makes the entire exceptional set nonmixing and
the return plot completely free from mixing blocks.
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