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Large-scale neural networks can be described in the spatial continuous limit by neural field equations. For
large-scale brain networks, the connectivity is typically translationally variant and imposes a large computational
burden upon simulations. To reduce this burden, we take a semiquantitative approach and study the dynamics
of neural fields described by a delayed integrodifferential equation. We decompose the connectivity into
spatially variant and invariant contributions, which typically comprise the short- and long-range fiber systems,
respectively. The neural fields are mapped on the two-dimensional spherical surface, which is choice consistent
with routine mappings of cortical surfaces. Then, we perform mathematically a mode decomposition of the neural
field equation into spherical harmonic basis functions. A spatial truncation of the leading orders at low wave
number is consistent with the spatially coherent pattern formation of large-scale patterns observed in simulations
and empirical brain imaging data and leads to a low-dimensional representation of the dynamics of the neural
fields, bearing promise for an acceleration of the numerical simulations by orders of magnitude.
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I. INTRODUCTION

Neuronal dynamics encompass many temporal and spatial
scales and at each scale several theoretical and computational
models, with a variable level of details, have been developed
[1–4]. When modeling large-scale neural networks, such as
cortical, thalamocortical, or cerebellar networks, some ap-
proaches describe the single neuron of the network with a
conductance-based model or with a simplified version of it,
but in both cases the system becomes rapidly very complex
[5–7]. The number of neurons even in small systems like the
aforementioned ones is prohibitively high. Thereby, to cope
with systems of such complexity, an alternative description
is worthwhile and possible, under certain constraints. In these
cases, the macroscopic state variables are the mean firing rates
or population activities and these descriptions are known as
neural mass models [8–15].

In order to describe the neural activity underpinning com-
plex behavior or cognitive functions [16], a further step
consists in the implementation of interacting neural mass
models, in which the neural signals between the different
populations depend on the brain connectivity [17–21] and are
characterized by time delays, ranging from fractions to tenths
of milliseconds [22–26] and due mainly to the finite value
of action potential transmission speeds [27,28]. Due to the
high spatial density of the number of neurons in the cerebral
cortex, it is possible to represent the mean neural activity as
a continuous function of space, which must satisfy specific
integrodifferential equations [29–31]. In practice, neural field
models are needed when considering a dense ensemble of
neural masses. The relevance of these models resides in their
link with important neural recording techniques, such as elec-
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troencephalogram (EEG) and functional magnetic resonance
imaging (fMRI) [32,33]. Moreover, a great number of neural
processes underlying, for example, working memory and per-
ception can be adequately described by means of neural field
equations [34,35].

In recent years a lot of new experimental data on the
intricate network structure of cerebral matter have become
available, allowing a realistic description of neural connec-
tions as weighted matrices of links among different cortical
areas [17,20]. The so-called connectome is the finite set of
all structural connections including their connection weights.
In conjunction with the link’s track lengths, which allow
the inference of signal transmission delays, the connectome
spans a space-time structure critical for the synchronization
dynamics of the network. The introduction of these data into
the models has led to new and more specific field equations.
The distinctive features of currently used models in neural
dynamics are the presence of continuously distributed delays
and the split of the integral kernel, which represents, in
some cases, the physiological connectivity with two distinct
features.

Along this line of research, in a previous work [36] a study
of a neural field equation was pursued in which the connectiv-
ity was divided in two components: A local one, defined by its
short-range nature, and a global one, corresponding to long-
range links [37,38]. Finally this model considered the spatially
dependent delay effect, due to the transmission of signals
along neuronal fibers, as simply given by the distance between
two points of the local field divided by the propagation speed.
The work focused on the perturbation to a resting state condi-
tion, thus enabling the mathematical tools of linear analysis.
In particular it has investigated the contribution to the power
spectrum of the field potential, showing that local connectivity
underlies the power-law behavior (with an exponent of −2)
while the global connectivity is at the origin of the frequency
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peaks. Some authors have also studied the behavior of the
power spectrum when the thalamocortical connectivity is also
taken into account [39].

In the present paper we extend the mathematical analysis
developed in Ref. [36] from the one-dimensional linear spa-
tial domain to the two-dimensional spherical surface. This
is relevant for two reasons: First, a closer connection with
experimental data is accomplished, because the existence of
inflation algorithms makes it possible to map the intricate con-
volution structure of the cortex onto a sphere [40,41]. Second,
Jirsa’s analysis demonstrated that the effects of the space-time
structure of the connectome can be absorbed to a large degree
in the coefficients of an appropriately chosen spatial mode
decomposition. This process, in conjunction with a truncation
of the mode decomposition, promises an enormous numerical
information compression and reduction of the complexity of
the system. There is a conspicuous number of papers treating
low-order truncation of modal dynamics and mode coupling
by inhomogeneity (see, for example, Refs. [26,39,42]).

Here we derive the mathematical form of such a com-
pressed representation. To do so, we perform a mode decom-
position on the basis of spherical harmonics for the neural
field. Spherical harmonics have already been used in the
literature of neural fields because of their natural relationship
with the topology of the brain [43,44]. A detailed stability
analysis of the model on a spherical domain was given in
Ref. [45], where the connectivity kernel was taken as rota-
tionally invariant, at variance with the present work.

Apart from the obvious topological reason, there are other
motivations for using spherical harmonics:

(1) Since the local connectivity, when properly approxi-
mated, gives rise to a diffusive dynamics, we use a basis of
eigenfunctions for the Laplacian operator. Such a decomposi-
tion leads to a form of the field equations which can be the
starting point for a truncation approximation; in particular,
being interested in local electrical brain activities, possibly
for a comparison with experimental data, we can disregard all
the fine structure which is encoded in the spherical harmonics
with a high resolution, that is, those of higher order.

(2) The time evolution of the mode coefficients shows a
dissipative behavior, which grows as the squared order of the
mode. We exploit this fact in dissipative systems to reduce the
memory involved in numerical simulations via the truncation
technique.

(3) The use of spherical harmonics in neural field models
is not suggested only by mathematical convenience; there is
also experimental insight supporting their natural emergence:
In recent work [46], spherical harmonics were able to describe
the principal components in the analysis of stationary electri-
cal activity during non-REM sleep.

The paper is organized as follows. In Sec. II we specify our
model, giving an insight of its physiological foundations. In
Sec. III we study, as a toy model, the case of a circular domain.
The reason is that this domain is compact like the spherical
one, which is our final interest, so that it shows the logic of
our analyses, but, being one dimensional, all the technical
details are greatly reduced. The results of this section are the
approximation of the local connectivity term and the mode
decomposition of the global field equation. In Sec. IV we
apply exactly the same analyses done for the circumference to

the spherical domain obtaining the analogous results. Finally,
in Sec. VI we draw our conclusions, commenting on the
usefulness of our analyses in connection with current brain
models. Our mathematical results are almost exact and can be
used as the starting point for different types of approximations
and numerical computations.

II. NEURAL FIELD EQUATION

In this paper we study the neural field equation [36]

ψ̇ (x, t ) + εψ (x, t )

=
∫
D

Whom(|x − y|) S[ψ (y, t − |x − y|/c)] dy

+
∫
D

Whet (x, y) S[ψ (y, t − |x − y|/v)] dy, (1)

where the dot denotes the time derivative. Here D represents a
general physical domain and x, y are spatial variables relative
to that domain. The function ψ (x, t ) measures the local field
potential of neural activity at time t and position x and it is
a coarse-grained mean of the firing rates of a population of
neurons. The constant ε represents the temporal rate of decay
of the local field potential ψ (x, t ). The integral kernels Whom

and Whet are called the homogeneous and heterogeneous brain
connectivities, respectively, and are assumed to be known
functions, while the parameters c and v denote the transmis-
sion speeds through the two fiber systems. Finally, S[ψ] is
the activity function, which is generally approximated with a
sigmoid.

We now give some examples of brain connectivities. Since
Whom represents the short-range cortical connectivity, its form
can thus be assumed to be translation invariant and fast
decaying [18]. A common choice for Whom is

Whom(z) = N (σ )e−|z|/σ , (2)

where σ is the typical length scale and N (σ ) is a domain-
dependent normalization factor, so that

∫
D Whom(z)dz = 1.

Instead, since Whet represents the long-range cortical connec-
tivity, no general assumption is justified on a physiological
basis [18]. For Whet the following pairwise point form is often
assumed:

Whet =
L∑
i j

μi jδ(x − xi )δ(y − x j ), (3)

where the sum is over the set of bidirectional links and L is
their number. The physical units of the W s are the inverse of
the volume of the space. The motivation for dividing the brain
connectivity in two parts is discussed in Sec. VI and rests on
the need to develop a model which incorporates data derived
from human physiology.

In this paper we are interested in the perturbation to the
stationary solution of Eq. (1). Writing ψ (x, t ) = ψ0(x) +
ψ1(x, t ), where ψ0(x) is the solution satisfying ψ̇ (x, t ) =
0, the neural field equation for the perturbation ψ1(x, t )
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becomes

ψ̇ (x, t ) + εψ (x, t ) = ν

∫
D

Whom(|x − y|) ψ (y, t−|x − y|/c) dy

+ ν

∫
D
Whet (x, y) ψ (y, t − |x − y|/v) dy,

(4)

where we relabeled ψ1 → ψ and ν = ∂S/∂ψ is a constant
with the dimensions of a frequency. In deriving Eq. (4) we
made the assumption that the nonhomogeneous stationary
solution ψ0(x) works in the linear domain of the sigmoid
function S. More details on the derivation of Eqs. (1) and (4)
can be found in Refs. [37,38,47].

III. CIRCUMFERENCE

In this section we obtain the expression of the neural field
equation on a circular spatial domain. We start considering
the homogeneous connectivity term without delay, which is
equivalent to the c → ∞ limit, corresponding to instanta-
neous signal propagation: The result is a diffusion equation
with a sink term. Then we consider the homogeneous term
with a finite value for c, thus introducing the effect of the
delay: The result is still a diffusive equation with a sink term
but the coefficients are rescaled according to a c dependence.

Finally, we analyze the full equation by adding the het-
erogeneous term with its delay and performing the mode
decomposition. Working in the frequency domain, we obtain
the exact form for the characteristic equation of (4) in a form
suitable for a truncation approximation.

A. Instantaneous homogeneous connectivity

The starting point of our analysis is the representation

ψ (θ, t ) =
∑

m

ξm(t )eimθ (5)

for the local field potential ψ (θ, t ). The functions ξm(t ) are
the coefficients of our mode decomposition. Working on the
circumference, the natural choices for the basis functions are
the complex exponentials, being m ∈ Z. The homogeneous
term of the integral in Eq. (4) for a circular domain can be
written, disregarding the delay, in the following form:

I (θ, t ) ≡ ν

∫
C

Whom(d (θ, θ ′))ψ (θ ′, t )dθ ′

= ν

∫
C
Whom(d (θ, θ ′))

∑
m

ξm(t )eimθ ′
dθ ′, (6)

where the integral is on the unitary circumference C ≡ S1 and
d (θ, θ ′) is the distance between two points, the length of the
shorter arc connecting the two points on the circumference. In
this paper all lengths are measured in units of the circumfer-
ence or sphere radius so that R ≡ 1 will set the length unit.

Since Whom is a fast-decaying function of the distance be-
tween two points on the circumference, we change the integra-
tion variable θ ′ so that it measures the distance from the “ob-
servation” point θ . This is accomplished by a rotation which,
on the basis functions, acts as eimθ ′ → e−imθ eimθ ′ = e−imθ̄ with
θ̄ ≡ θ − θ ′. In this way the distance d = cos−1[cos θ̄] can be

expressed as d = |θ̄ | if the domain [−π,+π ] is used. Assum-
ing an exponentially decaying homogeneous connectivity, the
connectivity function takes the form Whom(θ̄ ) = N (σ )e−|θ̄ |/σ ,
where N (σ )−1 = ∫ π

−π
e−|θ̄ |/σ d θ̄ is the normalization. Thus,

I (θ, t ) = νN (σ )
∑

m

ξm(t )eimθ

∫ π

−π

e−|θ̄ |/σ e−imθ̄ d θ̄

= νN (σ )
∑

m

ξm(t )eimθ

×
∫ π

−π

e−|θ̄ |/σ
(

1 − imθ̄ − m2

2
θ̄2 + . . .

)
d θ̄

= νN (σ )
∑

m

ξm(t )eimθ

×
(

1

N (σ )
− m2

2

∫ π

−π

θ̄2e−|θ̄ |/σ + . . .

)
d θ̄ , (7)

where the −imθ̄ integral vanishes by symmetry. Since the
second derivative of ψ with respect to θ is represented
by

∑
m(−m2)ψm exp(imθ ), the second-order approximation

reads

ψ̇ (θ, t ) + (ε − ν)ψ (θ, t ) = Dψ ′′(θ, t ), (8)

where ψ ′′ ≡ ∂θθψ and the diffusion coefficient D is given by

D = ν
N (σ )

2

∫ π

−π

θ̄2e−|θ̄ |/σ d θ̄ . (9)

As already stated, this equation has the form of a diffusive
equation with a sink term.

B. Homogeneous connectivity with delay

We now introduce a time delay in the pairwise connection,
taking into account the finite velocity of transmission, c. Since
the neural signal propagation encoded in Whom is considered
to be “fast,” we perform a first-order Taylor expansion in the
time dependence of the neural field. Thus,

I (θ, t ) = ν

∫ π

−π

Whom(d (θ, θ ′))ψ (θ ′, t − d (θ, θ ′)/c) dθ ′

= ν

∫ π

−π

Whom(|θ̄ |)
∑

m

eimθ e−imθ̄ ξm(t − |θ̄ |/c) d θ̄

= ν
∑

m

eimθ

×
∫ π

−π

Whom(|θ̄ |)e−imθ̄

(
ξm(t ) − |θ̄ |

c
∂tξm(t ) + · · ·

)
d θ̄

= νψ (θ, t ) + Dψ ′′(θ, t ) − ν

c
Aψ̇ (θ, t ), (10)

where

A =
∫ π

−π

|θ̄ |Whom(|θ̄ |)d θ̄ (11)

and D is still given by Eq. (9). We conclude that, when only
the homogeneous term is considered and with the introduction
of the delay, the neural field equation (4) can be written as

ψ̇ + ε′ψ = D′ψ ′′, (12)
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where

ε′ = ε − ν

1 + νA/c
, D′ = D

1 + νA/c
. (13)

As already stated, we see two things: (1) the equation structure
is the same as that of Eqs. (8) and (2) the introduction of a
delay only redefines the coefficients ε and D.

Notice that all the results obtained so far are based on
the two features of the homogeneous connectivity: Its fast
decaying nature, which allows for a Taylor expansion in the
space variable, and its rotational invariance, which makes the
∂θ term vanish. Finally, the delay term results in a correction to
the ∂t term, due to the “high” value of c. All these qualitative
features translate to the spherical case of Sec. IV. This means
that, recalling that R ≡ 1 sets the length unit and putting
ε ≡ 1 to set the frequency and time units, all the physiolog-
ical variability described by Whom is encoded only into the
two coefficients ε′ and D′ through its spatial moments. It is
unlikely that such a model can account for the great variability
observed in EEG recordings. To make the model closer to
physiological evidence, the subject-dependent heterogeneous
term must be introduced in order to explore to what extent it
is needed to account for such complexity.

C. Heterogeneous connectivity

We now consider the heterogeneous term which contains
the long-range connectivity. The aim of this section it to write
the neural field equation in a form suitable for a truncation
expansion on the relevant eigenmodes. We see that the final
form can be divided in part related to the topology of the
physical space and in part related to the neuronal connectivity
and the delay.

First of all we note that in Eqs. (1) and (4) the function
Whet is a continuous function of two variables but in Eq. (3)
we consider, as a significant example, a δ-shaped connectivity
with link strengths given by μi j . Since the following treatment
is as general as possible, we still use a continuous represen-
tation for the heterogeneous connectivity but, having in mind
the discontinuous (δ-like) form of Eq. (3), we change notation
from Whet (x, y) to μ(x, y), representing it in a continuous fash-
ion. Because μ(x, y) is related to the long-range connections,
we cannot assume a particular parametrization, as we have
done for Whom, nor we can suppose it is a monotonic function
of its spatial variables.

In order to perform the mode decomposition, we substitute
representation (5) into Eq. (4). Then we approximate the
homogeneous term with its first nontrivial Taylor expansions,
according to the procedure of Secs. III A and III B. Finally, we
project on the basis functions. The result is

ξ̇m(t ) = −(ε + Dm2)ξm(t ) + I (t, m), (14)

I (t, m) ≡
∫

θ1

∫
θ2

μ(θ1, θ2)e−imθ1

×
∑

n

einθ2ξn(t − d (θ1, θ2)/v)dθ1dθ2. (15)

In Eq. (14) the quantities ε and D are the rescaled ones of
Eq. (13) while in Eq. (15) we have μ(θ1, θ2) ≡ Whet/A with
A given by Eq. (11). These equations are exact, apart from

the short-range and high-c approximations on Whom already
discussed. We now proceed to work on the heterogeneous
integral (15). We take three steps:

(i) Expand the heterogeneous connectivity on
the basis of complex exponentials as μ(θ1, θ2) =∑

m1,m2
μm1,m2 eim1θ1 eim2θ2 . In the following discussion

a number of π factors arise since we have used the
non-normalized eimθ basis functions.

(ii) Change variable θ2 → θ̄ through a rotation so that
|θ̄ | = d (θ1, θ2) with θ̄ ∈ [−π, π ] and relabel θ ≡ θ1.

(iii) Fourier transform in the time domain the ξn(t ) coeffi-
cients.

A comment is in order about step (i). The expansion for
μ is an exact representation as long as the sums involve
infinite terms. This means that a connectivity of δ links is
continuously represented in an exact way but, when truncating
the sums, it is smoothed, and thus approximated, to a proper
continuous function.

After step (ii) we get

I (t, m) =
∑

m1,m2

∑
n

μm1,m2

×
∫

θ

eiθ (m1+m2−m+n)dθ

∫
θ̄

e−iθ̄ (m2+n)ξm(t − |θ̄ |/v)d θ̄ .

The change of variables has divided the double integral
into a part which depends only on the basis functions and a
part which retains the delay term. Anyway, the two factors
are entangled by the sums over the modes which involve the
connectivity components. It is easy to recognize that the form
of the first part is dictated only by the topology of the space.
Thus, we set

T ≡
∫ π

−π

eiθ (m1+m2−m+n)dθ = 2πδm, m1+m2+n. (16)

The meaning of this equation, an expression of angular mo-
mentum conservation, is a topology constraint on the connec-
tivity modes that can contribute to the time evolution of the
mth eigenmode.

Performing the Fourier transform of step (iii), we get

Î (ω, m) =
∑

m1,m2

μm1,m2

∑
n

ξ̂n(ω)T (m, m1, m2, n)

×
∫

θ̄

e−iθ̄ (m2+n)eiω|θ̄ |/vd θ̄ . (17)

The structure of this expression is of the form

Î (ω, m) =
∑

n

∑
m1,m2

T (m, m1, m2, n)

×W (ω, m2, n)μm1,m2 ξ̂n(ω), (18)

where

W ≡
∫ π

−π

e−iθ̄ (m2+n)eiω|θ̄ |/vd θ̄ . (19)

Putting together all the pieces, the neural field equation in
the frequency domain expanded on the complex exponentials
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basis is

(ε + m2D − iω)ξ̂m(ω)

=
∑

n

∑
m1,m2

T (m, m1, m2, n)W (ω, m2, n)μm1,m2 ξ̂n(ω) (20)

= 2π
∑

n

∑
m2

W (ω, m2, n)μm−n−m2,m2 ξ̂n(ω). (21)

In this form, the first sum is a series expansion for the
ξ̂ coefficients, which becomes our truncation approximation,
while the second sum is a “convolution-like” term, which
cannot be further simplified without some assumption on
the heterogeneous connectivity. As a consistency check, we
consider the v → ∞ limit: W (m2, n) = 2πδm2,−n �⇒ I =
(2π )2 ∑

n μm,−nξ̂n. This is the correct result that one would
have gotten starting directly from I without the delay. Notice
that, following a standard analysis [37,48], Eqs. (20) and (21)
can be easily cast into the form of a characteristic equation:

M · ξ (ω) = 0, M = D + K, (22)

Dm,n = (ε + m2D − iω)δm,n, (23)

Km,n = −2π
∑
m2

W (ω, m2, n)μm−n−m2,m2 , (24)

where D is a diagonal matrix related to the short-range
connectivity and K is the matrix related to the heterogeneous
kernel. In the absence of the global connectivity, this would
reduce to a standard dispersion relation ε + m2D − iω = 0,
where for each “wavelength” m a solution with a precise com-
plex frequency exists. For a nonzero μ we have instead the
condition det[M] = 0, which constrains the possible values
of the eigenfrequency ω, introducing a strong “interaction”
among all the ms.

IV. SPHERE

In this section we consider the neural field equation (4) on
a spherical spatial domain. As we have done for the circum-
ference, we start by assuming an instantaneous homogeneous
connectivity, then we add a delay (through the parameter
c) and finally we analyze the full equation including the
heterogeneous term and its delay (through the parameter v).
The analyses closely follow the ones already done for the
circumference and much of the physical considerations done
in Sec. III are extended to the more physical case of the sphere.

Our first result is the approximation of the homogeneous
integral with the delay again through a diffusive equation
with a sink term and the computation of the corresponding
coefficients in terms of the spherical Whom. The final result
is a mode decomposition of the full field equation on the
spherical harmonic basis in a form suitable for a truncation
approximation.

A. Instantaneous homogeneous connectivity

The starting point of our analysis is now the representa-
tion for the local field potential ψ (θ, φ, t ) on the spherical

harmonics:

ψ (θ, φ, t ) =
∑
l,m

ξl,m(t )Yl,m(θ, φ), (25)

where θ and φ are respectively the polar and azimuthal
angles parametrizing the unitary sphere S ≡ S2. The sums
run over l = 0, 1, 2, . . . and, for each l , over m = −l,−l +
1, . . . , 0, . . . , l − 1, l . The spherical harmonics are defined as
follows:

Yl,m(θ, φ) = Nl,mPm
l (cos θ )eimφ, (26)

where Pm
l (x) are the associated Legendre polynomials of order

l and degree m while Nl,m are proper normalization factors,
defined by the condition

∫ 2π

0 dφ
∫ π

0 dθ sin θYl,m(θ, φ) = 1.
In our conventions we have Yl,−m = (−1)mY ∗

l,m. It is well
known that the spherical harmonics Yl,m(θ, φ) constitute a
complete and orthonormal set of functions for a spherical
domain. Since our field equation involving the homogeneous
connectivity is a diffusive one, spherical harmonics are the
natural expansion basis, being eigenfunctions of the Laplacian
operator [49]. We now study the homogeneous term of Eq. (4)
in the instantaneous approximation:

I (θ, φ, t ) = ν

∫
′

Whom(d (,′))ψ (′, t ) d′

= ν

∫
′

Whom(d (,′))
∑
l,m

ξl,m(t )Yl,m(′) d′,

(27)

where  ≡ (θ, φ). Since the connectivity function has a sim-
ple form in a spherical system whose polar axis is along the
direction of (θ, φ) [in this section the function d (,′) is
defined as the great circle distance between two points], we
need to perform the rotation

Yl,m(̄) =
∑

m′
D(l )

m′,m(R())Yl,m′ (′), (28)

where R() ≡ R(α = φ, β = θ, γ = 0) is the rotation,
parametrized through the Euler angles (α, β, γ ), that actively
takes the polar axis in the wanted direction.

We used the Wigner rotation matrices D(l ) with integer l ,
well known from the theory of angular momentum in quantum
mechanics, since they realize the representation of the rotation
group in the space of spherical harmonics which is exactly
what we need to perform the change of integration variables
′ → ̄. Wigner matrices, being a unitary representation of
rotations, satisfy the following properties [49]:

D(l )
m′,m(R)−1 = D(l )†

m′,m(R) = D(l )∗
m,m′ (R). (29)

Using Eq. (29) to invert Eq. (28) and substituting in Eq. (27),
the integral I (θ, φ, t ) becomes

I (θ, φ, t ) = νN (σ )
∑
l,m

ξl,m(t )

×
∑

m′
D(l )

m′,m(R())−1
∫

̄

e−θ̄/σYl,m′ (̄) d̄

= νN (σ)
∑
l,m

ξl,m(t )D(l )
0,m(R())−1

∫
̄

e−θ̄/σYl,0(̄) d̄

012202-5



DAINI, CECCARELLI, CATALDO, AND JIRSA PHYSICAL REVIEW E 101, 012202 (2020)

= νN (σ )
∑
l,m

ξl,m(t )

×
√

4π

2l + 1
Yl,m(θ, φ)

∫
̄

e−θ̄/σYl,0(̄) d̄, (30)

where N is the proper normalization for the homogeneous
connectivity on the sphere. In the first passage the resulting
integral does not depend on φ̄ so that only the m′ = 0 terms
remain while in the last passage we used the relation [49]

D(l )
m,0(φ, θ, γ ) =

√
4π

2l + 1
Y ∗

l,m(θ, φ) −→

D(l )
0,m(R−1()) =

√
4π

2l + 1
Yl,m(θ, φ). (31)

Assuming again a fast-decaying connectivity function, we
use the Taylor expansion, about θ = 0, φ = 0, for the spher-
ical harmonics inside the integral to get the second-order
approximation as

I (θ, φ, t ) = νN (σ )
∑
l,m

ξl,m(t )Yl,m(θ, φ)

√
4π

2l + 1

×
∫

̄

(
Yl,0(0, 0) + ∂Yl,0

∂θ̄
(0, 0)θ̄

+ 1

2

∂2Yl,0

∂θ̄2
(0, 0)θ̄2

)
e−θ̄/σ d̄, (32)

where ∂φYl,0 = 0 has been used so that all the azimuthal
derivatives vanish. We need the values of the derivatives with
respect to the polar angle of the spherical functions with
m = 0 at the north pole: The results are ∂θYl,0(0, 0) = 0 and
∂2
θ Yl,0(0, 0) = − 1

2 l (l + 1)Yl,0(0, 0).
Substituting in the integral, we finally get

I (θ, φ, t ) = νψ (θ, φ, t ) −
∑
l,m

l (l + 1)ξl,m(t )

×Yl,m(θ, φ)ν
N (σ )

4

∫
̄

θ̄2e−θ̄/σ d̄, (33)

where Yl,0(0, 0) = √
(2l + 1)/4πPl (1) = √

(2l + 1)/4π has
been used.

We see that we obtained the representation of the Laplacian
operator on the unit sphere and thus the homogeneous part of
the neural field equation can be rewritten as

ψ̇ (θ, φ, t ) + (ε − ν)ψ (θ, φ, t ) = D∇2ψ (θ, φ, t ), (34)

where the diffusion coefficient is given by

D = ν
N (σ )

4

∫
̄

θ̄2e−θ̄/σ d̄. (35)

Also for the spherical domain the resulting equation is a
diffusive equation with a sink term.

B. Homogeneous connectivity with delay

We take advantage of the preceding results to study the
homogeneous term with a delay. Introducing the time delay
in the homogeneous integral (27) through the parameter c and

using the result (30), we can take a Taylor expansion of ξl,m(t ):

I (θ, φ, t ) = ν

∫
′

Whom(d (,′))ψ (′, t − d (,′)/c) d′

= νN (σ )
∑
l,m

√
4π

2l + 1
Yl,m(θ, φ)

×
∫

̄

ξl,m(t − θ̄/c)e−θ̄/σYl,0(̄) d̄

= νN (σ )
∑
l,m

√
4π

2l + 1
Yl,m(θ, φ)

×
∫

̄

(
ξl,m(t )− θ̄

c
∂tξl,m(t ) + · · ·

)
e−θ̄/σYl,0(̄) d̄

= νψ (θ, t ) + D∇ψ (, t ) − ν

c
Bψ̇ (θ, t ), (36)

where now

B = N (σ )
∫

̄

θ̄e−θ̄/σ d̄ (37)

is the analogy of the circumference coefficient A of Eq. (11).
Recalling the starting field equation ψ̇ + εψ = I , we get

ψ̇ + ε − ν

1 + νB/c
ψ = D

1 + νB/c
∇ψ (38)

so that we can again read the new decaying constant ε′ and
diffusion coefficient D′:

ε′ = ε − ν

1 + νB/c
, D′ = D

1 + νB/c
. (39)

The structure of the equation is again a diffusion equation
with a sink term where the coefficients are given in terms of
opportune moments of the function Whom and renormalized by
the delay term.

C. Heterogeneous connectivity

We now consider the full field equation (4) on the spher-
ical domain. According to the discussion of Sec. II and the
analysis of Sec. III, we get our starting point in the form

ξ̇l,m(t ) = −(ε + Dl (l + 1))ξl,m(t ) + I (t, l, m), (40)

I (t, l, m) ≡
∫

1

∫
2

μ(1,2)Y ∗
lm(1)

×
∑
l ′m′

Yl ′m′ (2)ξl ′m′ (t − d (1,2)/v)d1d2,

(41)

where ε and D are given by Eq. (39) but now μ ≡ Whet/B with
B given by Eq. (37). We perform the analogy of the three steps
already taken for the circumference:

(1) Expand the heterogeneous connectivity on the spheri-
cal harmonic basis.

(2) Change variable 2 → ̄ through a rotation so that
θ̄ = d (θ1, θ2) and relabel  ≡ 1.

(3) Fourier transform in the time domain the ξl,m(t )
coefficients.
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The final result is

Î (ω, l, m) =
∫



∫
̄

∑
l1,m1

∑
l2,m2

μl1,m1,l2,m2Y
∗

l,m()Yl1,m1 ()

×
∑
l ′,m′

∑
m′

2,m
′′
ξ̂l ′,m′ (ω)

× D(l2 )
m′

2,m2
(R−1())D(l ′ )

m′′,m′ (R−1())

×Yl2,m′
2
(̄)Yl ′,m′′ (̄)eiωθ̄/v dd̄. (42)

Using the properties (29) for D(l )(R−1) and D(l )∗
m′,m(R) =

(−1)m′−mD(l )
−m′,−m(R), we can rewrite the last equation as

Î (ω, l, m) =
∫



∫
̄

dd̄
∑
l1,m1

∑
l2,m2

μl1,m1,l2,m2 (−1)m

×Yl,−m()Yl1,m1 ()
∑
l ′,m′

∑
m′

2,m
′′
ξ̂l ′,m′ (ω)

× (−1)m′+m2−m′′−m′
2 D(l2 )

−m2,−m′
2
(R())D(l ′ )

−m′,−m′′

× (R())Yl2,m′
2
(̄)Yl ′,m′′ (̄)eiωθ̄/v. (43)

Once again in the spherical case, we recognize a factoriza-
tion over the integration variables which identifies a topology-
related part T and a delay-related part W:

T = (−1)m+m′+m2−m′′−m′
2

∫


Yl,−m()Yl1,m1 ()

× D(l2 )
−m2,−m′

2
(R())D(l ′ )

−m′,−m′′ (R())d, (44)

W =
∫

̄

Yl2,m′
2
(̄)Yl ′,m′′ (̄)eiωθ̄/vd̄. (45)

In order to study the topology function, we first write the
product of the two spherical harmonics as a Clebsch-Gordan
series:

Yl,−m()Yl1,m1 ()

=
∑
L,M

√
(2l + 1)(2l1 + 1)

4π (2L + 1)
CL,0

l,0,l1,0
CL,M

l,−m,l1,m1
YL,M (), (46)

where L satisfies the triangular rule |l − l1| � L � l + l1 and
we use the Condon-Shortley convention for the phases of the
Clebsch-Gordan coefficients, so that they are real. Then we
use relation (31) to convert a spherical harmonic function into
the proper element of a Wigner matrix and we get

T = (−1)m+m′+m2−m′′−m′
2

∑
L,M

√
(2l + 1)(2l1 + 1))

4π

×CL,0
l,0,l1,0

CL,M
l,−m,l1,m1

×
∫



D(L)∗
M,0 (R()) × D(l2 )

−m2,−m′
2
(R())

× D(l ′ )
−m′,−m′′ (R())d. (47)

Noting that the rotation involved in the  integral, in
terms of Euler angles, is R(φ, θ, 0), it is possible to use the
orthonormality relation of the Wigner matrices for the special

case of axial symmetry:∫


D(L)∗
M ′,M (φ, θ, 0)D(l1 )

m′
1,m1

(φ, θ, 0)D(l2 )
m′

2,m2
(φ, θ, 0)d

= 4π

2L + 1
CL,M

l1,m1,l2,m2
CL,M ′

l1,m′
1,l2,m

′
2
. (48)

For T we thus obtain

T = (−1)m+m′+m2−m′′−m′
2

∑
L,M

√
(2l + 1)(2l1 + 1)

2L + 1

×CL,0
l,0,l1,0

CL,M
l,−m,l1,m1

CL,0
l2,−m′

2,l
′,−m′′C

L,M
l2,−m2,l ′,−m′ . (49)

To proceed further, we extract from the Clebsch-Gordan
coefficients the constraints for the azimuthal quantum
numbers: m′′ + m′

2 = 0 and m = m1 + m2 + m′. A comment
is in order: We see that the integral in W is nonzero only
for m′

2 = −m′′, which is consistent with the constraint already
given by the T term. Of course this is a consequence of the
fact that the time delay depends only on the distance of 1

and 2. Finally, putting together all the results, we have our
final expansion for the topology function:

T = (−1)m1
∑

L

√
(2l + 1)(2l1 + 1)

2L + 1

×CL,0
l,0,l1,0

CL,0
l2,m′′,l ′,−m′′C

L,m1−m
l,−m,l1,m1

CL,m1−m
l2,m1+m′−m,l ′,−m′ . (50)

Working in the frequency domain, as already noted in the
study of the circumference, we can recast our results in the
form of a characteristic equation:

M · ξ (ω) = 0, M = D + K, (51)

Dlm,l ′m′ = (ε + l (l + 1)D − iω)δlm,l ′m′ (52)

Klm,l ′m′ =
∑
l1,m1

∑
l2,m2

∑
m′

2,m
′′
T (lm; l ′m′; l1m1; l2m2; m′

2m′′)

×W (ω; l2m′
2; l ′m′′)μl1,m1,l2,m2 , (53)

where D is a diagonal matrix related to the homogeneous part
of the model and K is the matrix related to the heterogeneous
kernel. Once again det[M] = 0 is the characteristic equation
which now identifies the eigenfrequency ω which describes
the intricate “interactions” of the modes l, m.

V. PRINCIPAL RESULTS

Here we want to stress the principal results of our work.
Our final result for the Fourier transforms ξ̂l,m(ω) is

(ε + D l (l + 1) − iω) ξ̂l,m(ω)

=
∑
l ′,m′

ξ̂l ′,m′ (ω)
∑
l1,m1

∑
l2

μl1,m1,l2,m1+m′−m

×
∑
m′′

T (lm; l ′m′; l1m1; l2m′′)W (ω, l ′, l2, m′′), (54)

where the coefficients ε and D given in Eq. (39) are related to
the spatial moments of homogeneous connectivity while the
μ components are related to the heterogeneous connectivity.
The functions T and W are defined in Eqs. (50) and (45)
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FIG. 1. 3D visualization of the neural field simulated on an
inflated hemisphere using a 34 × 34 weight matrix [50]; 1 32 608
neural populations have been simulated, and three successive time
steps are shown (time increases from top to bottom). The data have
been processed using MRTRIX3 and FREESURFER. Every image shows
two spheres: On the left, the neural field obtained with a mode
decomposition (lmax = 50) is represented; on the right, the neural field
has been obtained with a finite volume method. All the figures share
the same color scale, where white is high value and black is low.
The weight matrix is antisymmetric, and the parameters have been
chosen so that the system falls into an oscillatory regime (ε = 0.1,
v = 0.1, D = 0.01, maximum delay 20; unit of measure for time
is milliseconds, and unit of measure for space is the radius of the
sphere).

and represent the effect of the space topology and the delay,
respectively.

The time evolution of the projection of the neural field
onto the eigenfunctions of the Laplacian operator, respectively
on the circumference and on the sphere, is described by the
following equations:

ξ̇m(t ) = −(ε + m2D)ξm(t )

+
L∑
i j

μi je
−imθi

∑
n

einθ j ξn(t − di j/v), (55)

ξ̇l,m(t ) = −(ε + l (l + 1)D)ξl,m(t )

+
L∑
i j

μi jY
∗

l,m(i )
∑
l ′,m′

Yl ′,m′ ( j )ξl ′,m′ (t − di j/v).

(56)

FIG. 2. 3D visualization of the neural field simulated under the
same conditions as Fig. 1, but with the weight matrix that has only
positive elements and D = 0.001. In this case, the system reaches a
stationary state (fixed point).

Notice that the equations for the mode coefficients have the
form of a dissipative process.

The dissipation becomes stronger for higher-order modes,
thus suggesting that a truncation of the series might produce a

FIG. 3. Power spectral density of the neural field obtained by
introducing noise into Eq. (56) via a Wiener process with variance
0.045 and amplitude 5. The parameters have been chosen so that the
state of the system fluctuates around a fixed point (ε = 0.1, v = 0.1,
D = 0.1), but it is near to bifurcate to the limit-cycle regime: The
expected peak is clearly visible. A single heterogeneous connection
is present, and the weight matrix μi j is antisymmetric (this condition
maximizes the amplitude of the peak). The dashed line represents
a y ∝ 1/ f 2, which is the behavior seen for purely homogeneous
connectivity.
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reliable approximated solution. We illustrate this in Figs. 1
and 2, where a three-dimensional (3D) visualization of the
neural field calculated onto a sphere is shown both for the
(truncated) mode decomposition and the numerical evaluation
(through the finite volume method) of the neural field equa-
tion. From a qualitative comparison, it is possible to see that
the mode decomposition is capable of capturing the correct
dynamics features of the nonapproximated solution, with a
spatial resolution that is related to the l that is chosen for the
truncation.

In Fig. 3, the power spectral density (PSD) of the resting
state of the noise-driven neural field sources on the sphere
is shown, mimicking the one-dimensional result shown in
Ref. [36]. This result has been obtained using the mode
decomposed equation (56) with lmax = 20; the model is still
able to capture the peak typically shown in the PSD of EEG
data (shown, for example, in Ref. [36]).

VI. SUMMARY AND DISCUSSION

In recent years, experimental techniques in measuring neu-
roanatomical properties of the brain cortex made it possible
to study neural field models where connectivities are no
longer modeled in a generic fashion but can be introduced
explicitly as specific inputs from individual brain imaging
data. Along this line of research, in Ref. [36] Jirsa studied
a one-dimensional model in a linear spatial domain with a toy
connectome of one bidirectional connection and established
a linear stability analysis of the dynamics and analyses of
power-spectra features. The complexity of the model lies in
the space-time structure of the connectome, which expresses
itself, once reduced via mode decompositions, through a finite
set of delay-differential equations (after truncation). Since our
aim has been to go a step further towards a realistic description
of the cerebral cortex, we have considered the same model
in the domain of a spherical surface and retained a general
connectivity. We thus performed an expansion on the spherical
harmonic basis in order to get the equations for the corre-
sponding coefficients ξl,m(t ). Working in the frequency do-
main, the field equation is turned into a characteristic equation

among ω and the coefficients l, m. Despite the mathematical
complexity of our result [Eq. (54)], it is exact, apart from the
Taylor approximation of Whom.

Considering the complex time evolution of the neural
fields with time delays, we use the equations for the mode
coefficients [Eqs. (14) and (15)] for the circumference and
Eqs. (40) and (41) for the sphere, respectively. We render the
equations specific to the connectivity in Eq. (3).

The corticocortical time delays introduce resonant behav-
iors characteristic of the so-called space-time structure of
connectivity (see Refs. [36,51,52]) and enable selectivity of
spatiotemporal behaviors due to connectivity changes and
delay changes. The latter is significantly less common in
the literature, but prevalent in oscillatory behaviors. Another
important source of resonances is the corticothalamic, which
represents a more complex type of local dynamics, since
it introduces an effective time delay to all cortical regions,
communicated through the thalamus [53]. The corticothala-
mic loop has proven to be explanatory for a wide range of
resonances and dynamic behaviors [39,53,54].

In the spatial domain, the presence of time delays due to
the heterogeneous connectivity term leads to high memory
and time usage. Solving the truncated equations of the mode
coefficients space removes this limitation and provides an
important contribution to the solving of high-dimensional
connectome-based brain network models. Moreover, the trun-
cated equations provide analytical results like Eq. (54), which
now allow the explicit treatment of more biologically realistic
scenarios (for instance inclusion of shot noise [55], plasticity
[56], and multiscale architectures [14]) that were tangible so
far only under strong approximations.

ACKNOWLEDGMENTS

This research has been partially supported by the European
Union’s Horizon 2020 Framework Programme for Research
and Innovation under the Specific Grant Agreements No.
720270 (HBP SGA1) and No. 785907 (HBP SGA2) and the
grant “PANACEE” (Prevision and analysis of brain activity in
transitions: Epilepsy and sleep) of the Regione Toscana - PAR
FAS 2007-2013 1.1.a.1.1.2 - B22I14000770002.

[1] A. V. M. Herz, T. Gollisch, C. K. Machens, and D. Jaeger,
Modeling single-neuron dynamics and computations: A balance
of detail and abstraction, Science 314, 80 (2006).

[2] W. Gerstner, H. Sprekeler, and G. Deco, Theory and simulation
in neuroscience, Science 338, 60 (2012).

[3] G. B. Ermentrout and D. H. Terman, Mathematical Foundations
of Neuroscience (Springer, London, 2010).

[4] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
Dynamics: From Single Neurons to Networks and Models
of Cognition (Cambridge University Press, Cambridge, UK,
2014).

[5] R. D. Traub, D. Contreras, M. O. Cunningham, H. Murray,
F. E. LeBeau, A. Roopun, A. Bibbig, W. B. Wilent, M. J.
Higley, and M. A. Whittington, Single-column thalamocor-
tical network model exhibiting gamma oscillations, sleep

spindles, and epileptogenic bursts, J. Neurophysiol. 93, 2194
(2005).

[6] H. Markram, The blue brain project, Nat. Rev. Neurosci. 7, 153
(2006).

[7] E. M. Izhikevich and G. M. Edelman, Large-scale model of
mammalian thalamocortical systems, Proc. Natl. Acad. Sci.
USA 105, 3593 (2008).

[8] W. J. Freeman, Mass Action in the Nervous System. Examination
of the Neurophysiological Basis of Adaptive Behavior through
the EEG (Academic Press, London, 1975).

[9] P. L. Nunez, The brain wave equation: A model for the EEG,
Math. Biosci. 21, 279 (1974).

[10] H. R. Wilson and J. D. Cowan, Excitatory and inhibitory inter-
actions in localized populations of model neurons, Biophys. J.
12, 1 (1972).

012202-9

https://doi.org/10.1126/science.1127240
https://doi.org/10.1126/science.1127240
https://doi.org/10.1126/science.1127240
https://doi.org/10.1126/science.1127240
https://doi.org/10.1126/science.1227356
https://doi.org/10.1126/science.1227356
https://doi.org/10.1126/science.1227356
https://doi.org/10.1126/science.1227356
https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1038/nrn1848
https://doi.org/10.1038/nrn1848
https://doi.org/10.1038/nrn1848
https://doi.org/10.1038/nrn1848
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1016/0025-5564(74)90020-0
https://doi.org/10.1016/0025-5564(74)90020-0
https://doi.org/10.1016/0025-5564(74)90020-0
https://doi.org/10.1016/0025-5564(74)90020-0
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/S0006-3495(72)86068-5


DAINI, CECCARELLI, CATALDO, AND JIRSA PHYSICAL REVIEW E 101, 012202 (2020)

[11] H. R. Wilson, and J. D. Cowan, A mathematical theory of the
functional dynamics of cortical and thalamic nervous tissue,
Kybern. 13, 55 (1973).

[12] S. Amari, Homogeneous nets of neuron-like elements, Biol.
Cybernetics 17, 211 (1975).

[13] S. Amari, Dynamics of pattern formation in lateral-inhibition
type neural fields, Biol. Cybernetics 27, 77 (1977).

[14] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, K. Friston,
and O. Sporns, The dynamic brain: From spiking neurons
to neural masses and cortical fields, PLoS Comput. Biol. 4,
e1000092 (2008).

[15] S. Coombes, Large-scale neural dynamics: Simple and com-
plex, NeuroImage 52, 731 (2010).

[16] Principles of Neural Science, 5th ed., edited by J. Hudspeth,
T. M. Jessell, E. R. Kandel, and J. H. Schwartz (McGraw-Hill,
New York, 2013).

[17] O. Sporns and G. Tononi, Classes of network connectivity and
dynamics, Complexity 7, 28 (2002).

[18] Handbook of Brain Connectivity, edited by V. K. Jirsa and A. R.
McIntosh (Springer-Verlag, Berlin, 2007).

[19] Micro-, Meso- and Macro-Connectomics of the Brain, edited by
H. Kennedy, D. C. Van Essen, and Y. Christen, Research and
Perspectives in Neurosciences (Springer, Berlin, 2016).

[20] E. T. Bullmore, A. Fornito, and A. Zalesky, Fundamentals of
Brain Network Analysis (Academic Press, London, 2016).

[21] M. Rubinov and O. Sporns, Complex network measures of brain
connectivity: Uses and interpretations, NeuroImage 52, 1059
(2010).

[22] P. E. Roland, C. C. Hilgetag, and G. Deco, Tracing evolution
of spatio-temporal dynamics of the cerebral cortex: Cortico-
cortical communication dynamics, Front. Syst. Neurosci. 8, 76
(2014).

[23] I. Bojak and D. T. J. Liley, Axonal velocity distributions
in neural field equations, PLoS Comput. Biol. 6, e1000653
(2010).

[24] F. M. Atay and A. Hutt, Neural fields with distributed trans-
mission speeds and long-range feedback delays, SIAM J. Appl.
Dyn. Sys. 5, 670 (2006).

[25] F. M. Atay and A. Hutt, Stability and bifurcations in neural
fields with finite propagation speed and general connectivity,
SIAM J. Appl. Math. 65, 644 (2005).

[26] P. L. Nunez and R. Srinivasan, Neocortical dynamics due to
axon propagation delays in cortico-cortical fibers: EEG travel-
ing and standing waves with implications for top-down influ-
ences on local networks and white matter disease, Brain Res.
1542, 138 (2014).

[27] V. K. Jirsa and M. Ding, Will a Large Complex System with
Time Delays Be Stable? Phys. Rev. Lett. 93, 070602 (2004).

[28] V. K. Jirsa, Connectivity and dynamics of neural information
processing, Neuroinformatics 2, 183 (2004).

[29] P. C. Bressloff, Spatiotemporal dynamics of continuum neural
fields, J. Phys. A: Math. Theor. 45, 033001 (2012).

[30] D. Pinotsis, P. Robinson, P. beim Graben, and K. Friston, Neural
masses and fields: Modeling the dynamics of brain activity,
Front. Comput. Neurosci. 8, 149 (2014).

[31] Neural Fields: Theory and Applications, edited by S. Coombes,
P. beim Graben, J. Potthast, and J. Wright (Springer, London,
2014).

[32] P. L. Nunez and R. Srinivasan, Electric Fields of the Brain
(Oxford University Press, New York, 2006).

[33] G. Buzsaki, Rhythms of the Brain (Oxford University Press,
New York, 2006).

[34] S. Coombes, Waves and bumps and patterns in neural field
theories, Biol. Cybernetics 93, 91 (2005).

[35] P. C. Bressloff, Waves in Neural Media: From Single Neurons to
Neural Fields (Springer, London, 2014).

[36] V. K. Jirsa, Neural field dynamics with local and global connec-
tivity and time delay, Philos. Trans. R. Soc. A 367, 1131 (2009).

[37] V. K. Jirsa and J. A. S. Kelso, Spatiotemporal pattern formation
in neural systems with heterogeneous connection topologies,
Phys. Rev. E 62, 8462 (2000).

[38] M. R. Qubbaj and V. K. Jirsa, Neural Field Dynamics with Het-
erogeneous Connection Topology, Phys. Rev. Lett. 98, 238102
(2007).

[39] P. A. Robinson, P. N. Loxley, S. C. O’Connor, and
C. J. Rennie, Modal Analysis of Corticothalamic Dynamics,
Electroencephalographic Spectra, and Evoked Potentials, Phys.
Rev. Lett. 63, 041909 (2001).

[40] B. Fisch, M. I. Sereno, and A. M. Dale, Cortical surface-based
analysis II: Inflation, flattening, and a surface-based coordinate
system, NeuroImage 9, 195 (1999).

[41] M. J. Kwon, J. Hahn, and H. W. Park, A fast spherical inflation
method of the cerebral cortex by deformation of a simplex mesh
on the polar coordinates, Int. J. Imaging Syst. Technol. 18, 9
(2008).

[42] S. C. O’Connor and P. A. Robinson, Spatially uniform and
nonuniform analyses of electroencephalographic dynamics,
with application to the topography of the alpha rhythm, Phys.
Rev. E 70, 011911 (2004).

[43] B. M. Wingeier, P. L. Nunez, and R. B. Silberstein, Spherical
harmonic decomposition applied to spatial-temporal analysis
of human high-density electroencephalogram, Phys. Rev. E 64,
051916 (2001).

[44] P. A. Robinson, J. C. Pages, N. C. Gabay, T. Babaie, and K. N.
Mukta, Neural field theory of perceptual echo and implications
for estimating brain connectivity, Phys. Rev. E 97, 042418
(2018).

[45] S. Visser, R. Nicks, O. Faugeras, and S. Coombes, Standing and
travelling waves in a spherical brain model: The Nunez model
revisited, Physica D 349, 27 (2017).

[46] S. S. Sivakumar, A. G. Namath, and R. F. Galan, Spherical
harmonics reveal standing EEG waves and long-range neu-
ral synchronization during non-REM sleep, Front. Comput.
Neurosci. 10, 59 (2016).

[47] V. K. Jirsa and H. Haken, A derivation of a macroscopic field
theory of the brain from the quasi-microscopic neural dynamics,
Phys. D: Nonlin. Phen. 99, 503 (1997).

[48] S. Coombes, N. A. Venkov, L. Shiau, I. Bojak, D. T. J. Liley,
and C. R. Laing, Modeling electrocortical activity through im-
proved local approximations of integral neural field equations,
Phys. Rev. E 76, 051901 (2007).

[49] M. E. Rose, Elementary Theory of Angular Momentum
(Chapman & Hall, London, 1957).

[50] Connectivity matrices are available, for instance, at http://www.
thevirtualbrain.org

[51] S. Petkoski and V. K. Jirsa, Transmission time delays organize
the brain network synchronization, Philos. Trans. R. Soc. A 377,
20180132 (2019).

[52] S. Petkoski, A. Spiegler, T. Proix, P. Aram, J. J. Temprado,
and V. K. Jirsa, Heterogeneity of time delays determines

012202-10

https://doi.org/10.1007/BF00288786
https://doi.org/10.1007/BF00288786
https://doi.org/10.1007/BF00288786
https://doi.org/10.1007/BF00288786
https://doi.org/10.1007/BF00339367
https://doi.org/10.1007/BF00339367
https://doi.org/10.1007/BF00339367
https://doi.org/10.1007/BF00339367
https://doi.org/10.1007/BF00337259
https://doi.org/10.1007/BF00337259
https://doi.org/10.1007/BF00337259
https://doi.org/10.1007/BF00337259
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1016/j.neuroimage.2010.01.045
https://doi.org/10.1016/j.neuroimage.2010.01.045
https://doi.org/10.1016/j.neuroimage.2010.01.045
https://doi.org/10.1016/j.neuroimage.2010.01.045
https://doi.org/10.1002/cplx.10015
https://doi.org/10.1002/cplx.10015
https://doi.org/10.1002/cplx.10015
https://doi.org/10.1002/cplx.10015
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.3389/fnsys.2014.00076
https://doi.org/10.3389/fnsys.2014.00076
https://doi.org/10.3389/fnsys.2014.00076
https://doi.org/10.3389/fnsys.2014.00076
https://doi.org/10.1371/journal.pcbi.1000653
https://doi.org/10.1371/journal.pcbi.1000653
https://doi.org/10.1371/journal.pcbi.1000653
https://doi.org/10.1371/journal.pcbi.1000653
https://doi.org/10.1137/050629367
https://doi.org/10.1137/050629367
https://doi.org/10.1137/050629367
https://doi.org/10.1137/050629367
https://doi.org/10.1137/S0036139903430884
https://doi.org/10.1137/S0036139903430884
https://doi.org/10.1137/S0036139903430884
https://doi.org/10.1137/S0036139903430884
https://doi.org/10.1016/j.brainres.2013.10.036
https://doi.org/10.1016/j.brainres.2013.10.036
https://doi.org/10.1016/j.brainres.2013.10.036
https://doi.org/10.1016/j.brainres.2013.10.036
https://doi.org/10.1103/PhysRevLett.93.070602
https://doi.org/10.1103/PhysRevLett.93.070602
https://doi.org/10.1103/PhysRevLett.93.070602
https://doi.org/10.1103/PhysRevLett.93.070602
https://doi.org/10.1385/NI:2:2:183
https://doi.org/10.1385/NI:2:2:183
https://doi.org/10.1385/NI:2:2:183
https://doi.org/10.1385/NI:2:2:183
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.3389/fncom.2014.00149
https://doi.org/10.3389/fncom.2014.00149
https://doi.org/10.3389/fncom.2014.00149
https://doi.org/10.3389/fncom.2014.00149
https://doi.org/10.1007/s00422-005-0574-y
https://doi.org/10.1007/s00422-005-0574-y
https://doi.org/10.1007/s00422-005-0574-y
https://doi.org/10.1007/s00422-005-0574-y
https://doi.org/10.1098/rsta.2008.0260
https://doi.org/10.1098/rsta.2008.0260
https://doi.org/10.1098/rsta.2008.0260
https://doi.org/10.1098/rsta.2008.0260
https://doi.org/10.1103/PhysRevE.62.8462
https://doi.org/10.1103/PhysRevE.62.8462
https://doi.org/10.1103/PhysRevE.62.8462
https://doi.org/10.1103/PhysRevE.62.8462
https://doi.org/10.1103/PhysRevLett.98.238102
https://doi.org/10.1103/PhysRevLett.98.238102
https://doi.org/10.1103/PhysRevLett.98.238102
https://doi.org/10.1103/PhysRevLett.98.238102
https://doi.org/10.1103/PhysRevLett.63.041909
https://doi.org/10.1103/PhysRevLett.63.041909
https://doi.org/10.1103/PhysRevLett.63.041909
https://doi.org/10.1103/PhysRevLett.63.041909
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1002/ima.20140
https://doi.org/10.1002/ima.20140
https://doi.org/10.1002/ima.20140
https://doi.org/10.1002/ima.20140
https://doi.org/10.1103/PhysRevE.70.011911
https://doi.org/10.1103/PhysRevE.70.011911
https://doi.org/10.1103/PhysRevE.70.011911
https://doi.org/10.1103/PhysRevE.70.011911
https://doi.org/10.1103/PhysRevE.64.051916
https://doi.org/10.1103/PhysRevE.64.051916
https://doi.org/10.1103/PhysRevE.64.051916
https://doi.org/10.1103/PhysRevE.64.051916
https://doi.org/10.1103/PhysRevE.97.042418
https://doi.org/10.1103/PhysRevE.97.042418
https://doi.org/10.1103/PhysRevE.97.042418
https://doi.org/10.1103/PhysRevE.97.042418
https://doi.org/10.1016/j.physd.2017.02.017
https://doi.org/10.1016/j.physd.2017.02.017
https://doi.org/10.1016/j.physd.2017.02.017
https://doi.org/10.1016/j.physd.2017.02.017
https://doi.org/10.3389/fncom.2016.00059
https://doi.org/10.3389/fncom.2016.00059
https://doi.org/10.3389/fncom.2016.00059
https://doi.org/10.3389/fncom.2016.00059
https://doi.org/10.1016/S0167-2789(96)00166-2
https://doi.org/10.1016/S0167-2789(96)00166-2
https://doi.org/10.1016/S0167-2789(96)00166-2
https://doi.org/10.1016/S0167-2789(96)00166-2
https://doi.org/10.1103/PhysRevE.76.051901
https://doi.org/10.1103/PhysRevE.76.051901
https://doi.org/10.1103/PhysRevE.76.051901
https://doi.org/10.1103/PhysRevE.76.051901
http://www.thevirtualbrain.org
https://doi.org/10.1098/rsta.2018.0132
https://doi.org/10.1098/rsta.2018.0132
https://doi.org/10.1098/rsta.2018.0132
https://doi.org/10.1098/rsta.2018.0132


SPHERICAL-HARMONICS MODE DECOMPOSITION OF … PHYSICAL REVIEW E 101, 012202 (2020)

synchronization of coupled oscillators, Phys. Rev. E 94, 012209
(2016).

[53] T. B. Janvier and P. A. Robinson, Neural field theory of cor-
ticothalamic prediction with control systems analysis, Front.
Hum. Neurosci. 10, 3389 (2018).

[54] D. Yang and P. A. Robinson, Critical dynamics of Hopf bifur-
cations in the corticothalamic system: Transitions from normal

arousal states to epileptic seizures, Phys. Rev. E 95, 042410
(2017).

[55] F. Droste and B. Lindner, Exact analytical results for integrate-
and-fire neurons driven by excitatory shot noise, J. Comput.
Neurosci. 43, 81 (2017).

[56] P. A. Robinson, Neural field theory of synaptic plasticity,
J. Theor. Biol. 285, 156 (2011).

012202-11

https://doi.org/10.1103/PhysRevE.94.012209
https://doi.org/10.1103/PhysRevE.94.012209
https://doi.org/10.1103/PhysRevE.94.012209
https://doi.org/10.1103/PhysRevE.94.012209
https://doi.org/10.1103/PhysRevE.95.042410
https://doi.org/10.1103/PhysRevE.95.042410
https://doi.org/10.1103/PhysRevE.95.042410
https://doi.org/10.1103/PhysRevE.95.042410
https://doi.org/10.1007/s10827-017-0649-5
https://doi.org/10.1007/s10827-017-0649-5
https://doi.org/10.1007/s10827-017-0649-5
https://doi.org/10.1007/s10827-017-0649-5
https://doi.org/10.1016/j.jtbi.2011.06.023
https://doi.org/10.1016/j.jtbi.2011.06.023
https://doi.org/10.1016/j.jtbi.2011.06.023
https://doi.org/10.1016/j.jtbi.2011.06.023

